Datenmathematik
Vorlesungsbeginn am Dienstag, 22.10.24, 15:15-16:45, R 513
Die Lehrveranstaltungen zur Datenmathematik beginnen mit der ersten Vorlesung am Dienstag, 22.10.2024, um 15:15-16:45 Uhr im R 513.
Vorlesung und Übung (6 SWS/9 ECTS)
In der Vorlesung werden in zusammenhängender Weise die mathematischen Techniken und Hilfsmittel aus den Bereichen Stochastik, Lineare Algebra und Numerische Mathematik eingeführt, wie sie beispielsweise in Machine-Learning- und Big-Data-Technologien Anwendung finden. Thematische Schwerpunkte sind mathematische Datenmodelle, Wahrscheinlichkeitstheorie, deskriptive und induktive Statistik, Markov-Ketten, Eigenraumanalyse, Faktorisierung von Matrizen und Sampling.
Termine
Vorlesung: | Dienstag, 15:15-16:45, R 513 (Sven Kosub) |
Donnerstag, 13:30-15:00, R 513 (Sven Kosub) | |
Übung: | Mittwoch, 10:00-11:30, D 301 (1: Tobias . 2. Toepfer @ uni . kn) |
Donnerstag, 10:00-11:30, D 301 (2: Axel Wolter) | |
Donnerstag, 11:45-13:15, M 628 (3: Tobias . 2 . Toepfer @ uni . kn) | |
Klausur: | Donnerstag, 13.02.2025, 11:00-13:30, TBA (Ersttermin) |
Donnerstag, 03.04.2025, 08:00-10:30, R 513 (Zweittermin) |
Übungsblätter
Übungsblätter werden immer am Freitag (ausschließlich elektronisch) auf der Vorlesungsseite in ILIAS zur Verfügung gestellt.
Themen
Folgende Inhalte werden in der Vorlesung behandelt:
- Mathematische Datenmodelle
- Wahrscheinlichkeitsrechnung
- Induktive Statistik
- Zufällige Prozesse
- Fehlerrechnung
- Iterationsverfahren
- Faktorisierungsverfahren
- Stichprobenverfahren
Skriptum
Im Laufe der Vorlesung wird ein Skript zur Vorlesung zur Verfügung gestellt werden. Die jeweils aktuelle Version finden Sie auf der Vorlesungsseite in ILIAS. Sollten Sie Anregungen zum Skript haben oder Fehler jeglicher Art finden, schreiben Sie bitte eine kurze Email.
Literatur
Ergänzendes und vertiefendes Material zu Vorlesung und Skriptum finden sich in folgenden Monographien und Lehrbüchern:
- Avrim Blum, John Hopcroft, Ravindran Kannan. Foundations of Data Science. An online textbook draft, 2016.
- Peter Grindrod. Mathematical Underpinnings of Analytics. Oxford University Press, Oxford, 2014.
- Ankur Moitra. Algorithmic Aspects of Machine Learning. An online textbook draft, 2014.
- Olle Häggström. Finite Markov Chains and Algorithmic Applications. Cambridge University Press, Cambridge, 2001.
- Thomas Schickinger, Angelika Steger. Diskrete Strukturen. Band 2: Wahrscheinlichkeitstheorie und Statistik. Springer-Verlag, Berlin, 2002.