
Introduction to the theory of complexity

Daniel Pierre Bovet

Pierluigi Crescenzi

The information in this book is distributed on an “As is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, the
authors shall not have any liability to any person or entity with respect to any loss
or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

First electronic edition: June 2006

Contents

1 Mathematical preliminaries 1

1.1 Sets, relations and functions 1

1.2 Set cardinality 5

1.3 Three proof techniques 5

1.4 Graphs 8

1.5 Alphabets, words and languages 10

2 Elements of computability theory 12

2.1 Turing machines 13

2.2 Machines and languages 26

2.3 Reducibility between languages 28

3 Complexity classes 33

3.1 Dynamic complexity measures 34

3.2 Classes of languages 36

3.3 Decision problems and languages 38

3.4 Time-complexity classes 41

3.5 The pseudo-Pascal language 47

4 The class P 51

4.1 The class P 52

4.2 The robustness of the class P 57

4.3 Polynomial-time reducibility 60

4.4 Uniform diagonalization 62

5 The class NP 69

5.1 The class NP 70

5.2 NP-complete languages 72

v

vi

5.3 NP-intermediate languages 88

5.4 Computing and verifying a function 92

5.5 Relativization of the P 6= NP conjecture 95

6 The complexity of optimization problems 110

6.1 Optimization problems 111

6.2 Underlying languages 115

6.3 Optimum measure versus optimum solution 117

6.4 Approximability 119

6.5 Reducibility and optimization problems 125

7 Beyond NP 133

7.1 The class coNP 134

7.2 The Boolean hierarchy 140

7.3 The polynomial hierarchy 142

7.4 Exponential-time complexity classes 150

8 Space-complexity classes 156

8.1 Space-complexity classes 157

8.2 Relations between time and space 157

8.3 Nondeterminism, determinism and space 160

8.4 Nondeterminism, complement and space 162

8.5 Logarithmic space 164

8.6 Polynomial space 171

9 Probabilistic algorithms and complexity classes 178

9.1 Some probabilistic algorithms 179

9.2 Probabilistic Turing machines 188

9.3 Probabilistic complexity classes 194

10 Interactive proof systems 203

10.1 Interactive proof systems 204

10.2 The power of IP 208

10.3 Probabilistic checking of proofs 214

11 Models of parallel computers 221

11.1 Circuits 222

11.2 The PRAM model 230

11.3 PRAM memory conflicts 232

11.4 A comparison of the PRAM models 233

11.5 Relations between circuits and PRAMs 238

11.6 The parallel computation thesis 240

vii

12 Parallel algorithms 246
12.1 The class NC 247
12.2 Examples of NC problems 250
12.3 Probabilistic parallel algorithms 256
12.4 P-complete problems revisited 259

Preface

The birth of the theory of computational complexity can be set in the early 1960s
when the first users of electronic computers started to pay increasing attention to
the performances of their programs. As in the theory of computation, where the
concept of a model of computation had led to that of an algorithm and of an algo-
rithmically solvable problem, similarly, in the theory of computational complexity,
the concept of resource used by a computation led to that of an efficient algorithm
and of a computationally feasible problem.

Since these preliminary stages, many more results have been obtained and, as
stated by Hartmanis (1989), ‘the systematic study of computational complexity
theory has developed into one of the central and most active research areas of
computer science. It has grown into a rich and exciting mathematical theory whose
development is motivated and guided by computer science needs and technological
advances.’

The aim of this introductory book is to review in a systematic way the most
significant results obtained in this new research area. The main goals of compu-
tational complexity theory are to introduce classes of problems which have similar
complexity with respect to a specific computation model and complexity measure,
and to study the intrinsic properties of such classes.

In this book, we will follow a balanced approach which is partly algorithmic and
partly structuralist. From an algorithmic point of view, we will first present some
‘natural’ problems and then illustrate algorithms which solve them. Since the aim
is merely to prove that the problem belongs to a specific class, we will not always
give the most efficient algorithm and we will occasionally give preference to an
algorithm which is simpler to describe and analyse.

From a structural point of view, we will be concerned with intrinsic properties of
complexity classes, including relationships between classes, implications between
several hypotheses about complexity classes, and identification of structural prop-
erties of sets that affect their computational complexity.

The reader is assumed to have some basic knowledge of theory of computation (as

ix

x Preface

taught in an undergraduate course on Automata Theory, Logic, Formal Languages
Theory, or Theory of Computation) and of programming languages and techniques.
Some mathematical knowledge is also required.

The first eight chapters of the book can be taught on a senior undergraduate
course. The whole book together with an exhaustive discussion of the problems
should be suitable for a postgraduate course.

Let us now briefly review the contents of the book and the choices made in
selecting the material.

The first part (Chapters 1-3) provide the basic tools which will enable us to study
topics in complexity theory. Chapter 1 includes a series of definitions and notations
related to classic mathematical concepts such as sets, relationships and languages
(this chapter can be skipped and referred to when needed). Chapter 2 reviews
some important results of computability theory. Chapter 3 provides the basic tool
of complexity theory: dynamic complexity measures are introduced, the concept
of classes of languages is presented, the strict correspondence between such classes
and decision problems is established, and techniques used to study the properties
of such classes are formulated.

The second part (Chapters 4-8) studies, in a detailed way, the properties of some
of the most significant complexity classes. Those chapters represent the ‘heart’ of
complexity theory: by placing suitable restrictions on the power of the computation
model, and thus on the amount of resources allowed for the computation, it becomes
possible to define a few fundamental complexity classes and to develop a series of
tools enabling us to identify, for most computational problems, the complexity
class to which they belong.

The third part (Chapters 9-10) deals with probabilistic algorithms and with the
corresponding complexity classes. Probabilistic Turing machines are introduced
in Chapter 9 and a few probabilistic algorithms for such machines are analysed.
In Chapter 10, a more elaborate computation model denoted as interactive proof
system is considered and a new complexity class based on such a model is studied.

The last part (Chapters 11 and 12) is dedicated to the complexity of parallel
computations. As a result of advances in hardware technology, computers with
thousands of processors are now available; it thus becomes important, not only from
a theoretical point of view but also from a practical one, to be able to specify which
problems are best suited to be run on parallel machines. Chapter 11 describes
in detail a few important and widely differing models of parallel computers and
shows how their performance can be considered roughly equivalent. Chapter 12
introduces the concept of a problem solvable by a fast parallel algorithm and the
complementary one of a problem with no fast parallel algorithm, and illustrates
examples of both types of problems.

While selecting material to be included in the book, we followed a few guidelines.
First, we have focused our attention on results obtained in the past two decades,
mentioning without proof or leaving as problems some well-known results obtained
in the 1960s. Second, whenever a proof of a theorem uses a technique described
in a previous proof, we have provided an outline, leaving the complete proof as a

Preface xi

problem for the reader. Finally, we have systematically avoided stating without
proof specialistic results in other fields in order to make the book as self-contained
as possible.

Acknowledgements
This book originated from a course on Algorithms and Complexity given at the
University of Rome ‘La Sapienza’ by D.P. Bovet and P. Crescenzi since 1986. We
would like to thank the students who were exposed to the preliminary versions
of the chapters and who contributed their observations to improve the quality of
the presentation. We also would like to thank R. Silvestri for pointing out many
corrections and for suggesting simpler and clearer proofs of some results.

Chapter 1

Mathematical preliminaries

In this chapter some preliminary definitions, notations and proof techniques which
are going to be used in the rest of the book will be introduced.

1.1 Sets, relations and functions

Intuitively, a set A is any collection of elements. If a, b and c are arbitrary elements,
then the set A consisting of elements a, b and c is represented as A = {a, b, c}.

A set cannot contain more than one copy or instance of the same element;
furthermore, the order in which the elements of the set appear is irrelevant. Thus
we define two sets A and B as equal (in symbols, A = B) if every element of A is
also an element of B and vice versa. Two sets A and B are not equal (in symbols,
A 6= B) when A = B does not hold true.

The symbols ∈ and 6∈ denote, respectively, the fact that an element belongs or
does not belong to a set. Referring to the previous example, it is clear that a ∈ A
and that d 6∈ A.

A set is a singleton if it includes a single element; it is important to distinguish
the singleton set {x} from the element x. A set is empty (in symbols, X = ∅) if it
includes no element, otherwise it is non-empty. A set is finite if it includes a finite
number of elements, otherwise it is infinite.1

Typical examples of infinite sets are the sets of natural numbers N , of integer
numbers Z, and of real numbers R.

Since an infinite set cannot be described by listing all its elements, other ap-
proaches are used: one of these consists of defining new sets relying on the defini-
tion of a few basic ones which are assumed to be already known. More precisely,
given a set X and a property π, we write Y = {y : y ∈ X and y satisfies π} to
express in a compact way the fact that Y consists of all elements y which belong

1Since the previous concepts are rather intuitive, we only give informal definitions here. A
branch of logic called axiomatic set theory deals with formal definitions.

1

2 Mathematical preliminaries

to X and which satisfy property π.

Example 1.1 Using the approach just mentioned, it is easy to verify that A = {x : x ∈
N and (x ≡ 0 (mod 3))} denotes the set of natural numbers which are multiples of 3.

A set A is a subset of B (in symbols, A ⊆ B) if each element of A is also an
element of B. A set A is a proper subset of B (in symbols, A ⊂ B) if A ⊆ B and
A 6= B. If A = B, then both A ⊆ B and B ⊆ A hold.

1.1.1 Connectives and quantifiers

We shall make use of notations from elementary logic: ‘and’ will be abbreviated
to ‘∧’; ‘or’ to ‘∨’; ‘only if’ to ‘→’; and ‘not’ to ‘¬’. All these symbols are called
connectives.

‘∀’ and ‘∃’ are called universal and existential quantifiers, respectively. ‘∀x’ is
read as ‘for all x’ and ‘∃x’ as ‘an x exists such that’.

The logical symbols above serve as convenient abbreviations of ordinary mathe-
matical language. For example, A ⊆ B can be expressed as ∀x[x ∈ A→ x ∈ B].

1.1.2 Operations on sets

Given two sets A and B, their union denoted as A∪B is the set of all elements which
belong either to A or to B: A∪B = {x : x ∈ A∨x ∈ B}; their intersection denoted
as A∩B is the set of all elements common to A and B: A∩B = {x : x ∈ A∧x ∈ B};
the difference set of A from B denoted as A−B is defined as the set of all elements
which belong to A but not to B: A−B = {x : x ∈ A∧x 6∈ B}; finally, the symmetric
difference set of A and B denoted as A4B is the set of all elements which belong
to A but not to B or which belong to B but not to A: A4B = (A−B)∪ (B−A).

Two sets A and B are disjoint if they do not include common elements, that is,
if A ∩B = ∅.

The power set of A (in symbols, 2A) is a set whose elements are all possible
subsets of A, including the empty set and the set A. If A is finite and consists of
n elements, then the power set of A consists of 2n elements, thus the notation 2A.

Example 1.2 Consider the finite set A = {x, y}. The corresponding power set is 2A =
{∅, {x}, {y}, {x, y}}.

Given a non-empty set A, a partition of A is a subset P of 2A such that

1. every element of P is non-empty;
2. the elements of P are pairwise disjoint;

Sets, relations and functions 3

3. the union of the elements of P is equal to A.

Example 1.3 Let A = {1, 3, 5, 8, 12, 16, 25, 50}. A partition P of A is given by P =
{{1, 3, 8}, {5, 16, 50}, {12, 25}}.

1.1.3 Pairs, n-tuples and relations

Given two elements x and y, let us denote the ordered pair of x and y with 〈x, y〉.
Notice that 〈x, y〉 is distinct from the two-element set {x, y} because the order
in which the two elements appear in the pair is significant and because the same
element may appear twice in the pair. Two pairs 〈x, y〉 and 〈z, w〉 are equal if and
only if x = z and y = w.

The Cartesian product of two sets A and B, denoted as A× B, is the set of all
ordered pairs 〈x, y〉 with x ∈ A and y ∈ B.

Any subset R of A × B is called a binary relation between A and B. Given a
binary relation R, we can associate with it a predicate R(x, y) which assumes the
value true if and only if 〈x, y〉 ∈ R. In the following chapters, we shall use the term
‘relation’ to denote both the set of ordered pairs R and the predicate associated
with it.

The domain of R is the set of all x such that 〈x, y〉 ∈ R for some y; the codomain
or range of R is the set of all y such that 〈x, y〉 ∈ R for some x.

Example 1.4 Given two sets A = {1, 2, 3} and B = {a, b, c}, their Cartesian product is

A×B = {〈1, a〉, 〈1, b〉, 〈1, c〉, 〈2, a〉, 〈2, b〉, 〈2, c〉, 〈3, a〉, 〈3, b〉, 〈3, c〉}.

The set R = {〈1, a〉, 〈2, b〉, 〈3, c〉} is a binary relation between A and B. The corre-
sponding predicate is such that R(1, a) = true and R(3, b) = false.

We can easily extend the concept of ordered pairs to sequences of n elements
with n finite. Such sequences, called ordered n-tuples, are denoted as 〈x1, . . . , xn〉.
Two n-tuples 〈x1, . . . , xn〉 and 〈y1, . . . , ym〉 are equal if and only if m = n and
xi = yi for i = 1, 2, . . . , n.

The Cartesian product of n sets A1, . . . , An is defined as A1 × A2 × . . . × An =
{〈a1, a2, . . . , an〉 : (a1 ∈ A1) ∧ (a2 ∈ A2) ∧ . . . ∧ (an ∈ An)}.

Sometimes it is convenient to consider the Cartesian product of n sets coinciding
with A: in such cases we shall use the shorthand notation An = A× A× . . .× A.

Any subset R of A1 × A2 × . . . × An is called an n-ary relation between the n
sets A1, . . . , An. Given an n-ary relation R we can associate with it a predicate
R(x1, . . . , xn) which assumes the value true if and only if 〈x1, . . . , xn〉 ∈ R.

4 Mathematical preliminaries

1.1.4 Set closure

Given a set A, a natural number n > 0 and an (n+1)-ary relation R ⊆ An+1, a set
B ⊆ A is said to be closed with respect to R if, for all (n + 1)-tuple 〈b1, . . . , bn+1〉
of R, (b1 ∈ B ∧ b2 ∈ B ∧ . . . ∧ bn ∈ B)→ bn+1 ∈ B.

Example 1.5 Consider the relation Rdif ⊆ Z3 corresponding to the difference between
two integer numbers. It can immediately be verified that Z is closed with respect to
Rdif , while N is not.

1.1.5 Equivalence relations

A binary relation between A and A is called a binary relation in A. Let R be a
binary relation in A. R is called reflexive if R(x, x) = true for all x, while it is
called antireflexive if R(x, x) = false for all x. R is called symmetric if, for all
pairs of elements x and y, R(x, y) implies R(y, x), while it is called antisymmetric
if, for all pairs of elements x and y, R(x, y) and R(y, x) imply x = y. R is called
transitive if, for all triples of elements x, y and z, R(x, y) and R(y, z) imply R(x, z).

A binary relation in A which is reflexive, symmetric and transitive is called an
equivalence relation.

1.1.6 Functions

Given two sets A and B, a function f from A to B (in symbols, f : A → B) is a
binary relation between A and B which includes, at most, one pair 〈a, b〉 for any
a ∈ A. The definitions of domain and codomain introduced for relations can be
easily extended to functions. A function with domain A′ and codomain B′ is called
a function from A′ onto B′. When referring to functions we prefer to say that the
value of f in a is b (in symbols, f(a) = b) instead of the pair 〈a, b〉 belongs to f .

If f : A→ B is a function and f(a) = b with a ∈ A and b ∈ B, then a is called
the argument and b the value of f .

A function f : A→ B is total if its domain coincides with A and is partial when
the opposite is true.

A function f : A→ B is injective if, for all a, a′ ∈ A with a 6= a′, f(a) 6= f(a′). A
function is surjective if B coincides with the codomain of f . A function is bijective
if it is both injective and surjective. A bijective function is also called a bijection.

Set cardinality 5

1.1.7 Inverse relations and inverse functions

Given a binary relation R ⊆ A× B, the inverse relation of R is defined as R−1 =
{〈y, x〉 : 〈x, y〉 ∈ R}. It follows from the definition that (R−1)−1 = R.

Similarly, given a function f : A→ B, we say that it admits an inverse function
f−1 : B → A if the following identity holds true: f(a) = b↔ f−1(b) = a.

Note that a binary relation R always admits a unique inverse relation R−1 while
only the injective functions admit an inverse function.

Example 1.6 The sum function f : N × N → N , defined as f(x, y) = x + y, is not
invertible because, given z, in general several pairs of numbers 〈x, y〉 exist such that
x + y = z.

1.2 Set cardinality

Given a finite set X, its cardinality is equal to the number n of its elements. In
order to extend the definition of cardinality to infinite sets, we shall make use of
the following definitions. Two sets (finite or infinite) X and Y are equinumerous
or equivalent (in symbols, X ≡ Y) if a bijection between the two sets exists.
Note how this definition is inherently ‘non-constructive’: two sets are considered
equinumerous even if we are unable to compute the bijection, but are only certain
that one exists.

The cardinality of a set X (in symbols, |X|) is introduced as an object which is
only associated with those sets (including X itself) that are equinumerous to X.
By this definition |X| = |Y | ↔ X ≡ Y . In particular, if the set includes a finite
number of elements, a more concrete definition of cardinality can be given (see
Theorem 1.1).

Not all infinite sets are equinumerous. A set is said to be countable or enumerable
or denumerable if it is finite or if it is equinumerous with the set of natural numbers
N .

Example 1.7 The set Z is countable since its elements can be counted by listing them
in the following order:

0,1,-1,2,-2,3,-3,...

A set that is not countable is uncountable. In the next section we shall give
examples of countable and uncountable sets.

1.3 Three proof techniques

The act of proving a theorem is often considered an art which may never be fully
automated. Some techniques, however, have been useful so often in proving the-

6 Mathematical preliminaries

orems that it is certainly worth mastering them. In this section we present three
proof techniques that will be widely used in the rest of the book.

1.3.1 The induction technique

Suppose that you want to prove that, for any natural number n, the sum of the first
n odd natural numbers is equal to n2. If you have a computer you can easily write
a program that, for any n, generates the first n odd natural numbers, sums them
and checks that the sum is equal to n2. But there is one problem: the previous
proof is ‘infinite’ since there is an infinity of natural numbers. This book mostly
deals with the efficiency of algorithms and it does not give a good impression to
start with an algorithm that will run for ever!

Fortunately, mathematicians have developed a technique that allows them to
give finite proofs for statements like the one above. This is based on the induction
principle.

Let R be a unary relation in the set of natural numbers, that is, a subset of N .
The induction principle states that if R(0) = true and, for any n, R(n) = true
implies that R(n + 1) = true, then, for any natural number n, R(n) = true.
Applying such a principle yields the following proof technique.

The induction technique. Given a unary relation R in the set of natural
numbers, to prove that, for any n, R(n) = true carry out the following.

Basis. Prove that R(0) = true.

Inductive step. Assuming that R(n) = true, prove that R(n + 1) =
true. The assumption R(n) = true is also called the induction
hypothesis.

The reader should try to apply the above technique to prove that, for any n,∑n
i=1(2i − 1) = n2 (the practitioner may still prefer the computer method, but

we cannot wait for his or her answer!). As a second example, we shall apply the
induction technique to prove the following result.

Theorem 1.1 For any finite set A, |2A| = 2|A|.

Proof. The proof is by induction on n = |A|.

Basis. If n = 0, that is, A = ∅, then 2A = {∅} and |2A| = 1 = 2n.
Inductive step. Assume that, for any set of n elements, the cardinality of its

power set is equal to 2n. Let A be a finite set of n+1 elements and let x be any
of its elements. By the induction hypothesis, |2A−{x}| = 2n. Corresponding
to any subset B of A− {x} there are two subsets of A, that is, B itself and
B ∪ {x}. Then |2A| = 2|2A−{x}| = 2n+1.

The assertion then follows. 2

Three proof techniques 7

1.3.2 The breadth-first technique

Let us consider the following problem. Given a countable set of infinite countable
sets A0, A1, . . . , An, . . . and an element x, does x belong to at least one Ai? An
enthusiastic reader might say: ‘OK, it’s easy! First of all, note that, for any i, we
can check whether x ∈ Ai in the following way. For j = 1, 2, 3, . . ., compare x with
the jth element of Ai. Now, check if x ∈ A0; if so, we have finished. Otherwise,
check if x ∈ A1; if it is, we have finished. Otherwise ...’. Wait, wait! We agree
that if x ∈ A0, then the previous procedure will find it. But what happens if
x 6∈ A0? We will be deadlocked inside A0 without being able to explore the other
sets further. Once again, we have to contend with infinity!

The breadth-first technique allows us to solve the previous problem because we
will either discover that x ∈ Ai, for some i, or we will never end our search (should
none of the Ai’s include x).

The breadth-first technique. Given a countable set of infinite countable
sets A0, A1, . . . , An, . . . and an element x, to check whether, for some i,
x ∈ Ai carry out the following.

Step 1. Check whether x is the first element of A0.

Step k. Check whether x is the first element of Ak−1, the second ele-
ment of Ak−2, . . . , or the kth element of A0.

A curious reader might ask: ‘Why is this technique called breadth-first?’ In order
to answer this question, let us write the sets An as shown in Figure 1.1, where the
pair (i, j) denotes the (i + 1)th element of Aj. The sequence of elements checked
by the breadth-first technique is then represented by the arrows, so that the entire
picture looks like visiting a tree by means of a breadth-first search algorithm.

An immediate consequence of this search technique is that the set N × N is
countable. More generally, the following result (whose proof is left to the reader)
holds true.

Theorem 1.2 Given n countable sets A1, A2, . . . An, the set A = A1×A2×. . .×An

is also countable.

1.3.3 The diagonalization technique

Given any countable set A of subsets of a countable set X, we wish to show that
A 6= 2X , in other words, 2X is not countable unless X is finite. In order to prove
such a statement, we shall derive a subset of X which does not belong to A.

The diagonalization technique. Given a countable set A = {Ai : i ≥ 0}
of subsets of a countable set X = {x0, x1, . . . , xn, . . .}, the diagonal set
D is defined as

D = {xi : xi 6∈ Ai}.

8 Mathematical preliminaries

〈0, 0〉

〈0, 1〉 〈1, 0〉

〈1, 1〉 〈2, 0〉〈0, 2〉

〈0, 3〉 〈1, 2〉 〈2, 1〉 〈3, 0〉

.

Level 0

Level 1

Level 2

Level 3

-
����������9

������������������9

- -

- - -

�
����

Figure 1.1 A representation of the breadth-first technique

It is easy to verify that D ⊆ X and, for any i, D 6= Ai.

Once again, to justify the name of the technique let us provide a different in-
terpretation. Let M be a binary infinite matrix such that Mij = 0 if xi ∈ Aj,
otherwise Mij = 1. The diagonal of such a matrix represents the set D since
Mii = 1 if and only if xi ∈ D.

Wide use of the diagonalization technique will be made in the rest of this book.
We give the following result, whose proof is based on different interpretations of
the previously defined matrix M , as a first example.

Theorem 1.3 The set 2N , the set R and the set of all functions f : N → {0, 1}
are not countable.

1.4 Graphs

A graph G is a pair of finite sets (N, E) such that E is a binary symmetric relation2

in N . The set N is the set of nodes and E is the set of edges. If 〈x, y〉 ∈ E, then
x and y are said to be adjacent and they are the end-points of that edge (see
Figure 1.2(a)). The number of nodes adjacent to a given node x is called the
degree of x. The degree of G is the maximum over all node degrees.

We say that G′ = (N ′, E ′) is a subgraph of G = (N, E) if N ′ ⊆ N and E ′ ⊆
{〈ni, nj〉 : ni, nj ∈ N ′ ∧ 〈ni, nj〉 ∈ E}.

2In a few examples, we shall also consider directed graphs, that is, graphs G = (N,E) where
E is not symmetric.

Graphs 9

t tt t tt t t�
�

@
@

(a) Graph

t tt t t@@
n0 n4

(b) Path

t tt tt t��@
@

(c) Cycle

t
t

t
t

@
@
@@�
�
��

(d) Clique

ttt
ttt ttt t�
�

�
�

@
@

@
@

@
@

root

leaf

(e) Tree

Figure 1.2 Some example graphs

A weighted graph is a graph G = (N, E) together with a function w : E → N
which associates a weight with any edge so that w(ni, nj) = w(nj, ni).

A graph G = (N, E) is called a complete graph or a clique if E = N × N , that
is, if every two nodes are adjacent (see Figure 1.2(d)).

Given a graph G and two nodes n0 and nk, a path from n0 to nk of length k is
a sequence of edges 〈n0, n1〉, 〈n1, n2〉, . . . , 〈nk−1, nk〉 such that, for 0 ≤ i < j ≤ k,
ni 6= nj (see Figure 1.2(b)). If n0 = nk, then such a sequence is said to be a cycle
(see Figure 1.2(c)).

A graph is connected if, for every two distinct nodes x and y, there is a path
from x to y. A tree is a connected graph with no cycles. Equivalently, a tree is a
graph one of whose nodes is distinguished as a root, together with a relation that
creates a hierarchical structure among the nodes. Formally, a tree can be defined
recursively in the following alternative manner:

1. A single node by itself is a tree. This node is also the root of the tree.
2. Suppose n is a node and T1, T2, . . . , Tk are trees with roots n1, n2, . . . , nk. A

new tree is obtained by joining n with nodes n1, n2, . . . , nk. In this tree n is
the root and T1, T2, . . . , Tk are the subtrees of the root. Nodes n1, n2, . . . , nk

are called the children of node n.

The height of a node in a tree is the length of the path from the root to the node
itself. Figure 1.2(e) shows a tree with three height-one nodes, four height-two
nodes, and two height-three nodes. The height of a tree is the maximum among
the node heights.

In a tree, a node with no children is called a leaf. A tree is a binary tree
(respectively, a complete binary tree) if every node that is not a leaf has at most
(respectively, exactly) two children. A complete binary tree is perfect if all leaves

10 Mathematical preliminaries

have the same height. It is easy to prove by induction that the number of nodes
of a perfect binary tree whose leaves have a height h is equal to 2h+1 − 1.

1.5 Alphabets, words and languages

An alphabet is any non-empty finite set Σ = {σ1, . . . , σk}. A symbol is an element
of an alphabet. A word is a finite tuple x = 〈σi1 , σi2 , . . . , σin〉 of symbols from Σ;
the empty word is denoted by e. For the sake of brevity, the word 〈σi1 , σi2 , . . . , σin〉
will be denoted by σi1σi2 . . . σin . The infinite set of all words over an alphabet Σ
will be denoted by Σ∗.

The length |x| of a word x = σi1σi2 . . . σin is the number n of symbols that
x contains. The empty word has a length 0. Clearly, the number of words of
length n over a k-symbol alphabet is equal to kn. Given two words x and y, the
concatenation of x and y (in symbols, xy) is defined as the word z consisting of
all symbols of x followed by all symbols of y, thus |z| = |x| + |y|. In particular,
the concatenation of a word x with itself k times will be denoted as xk. Given two
words x and y, x is said to be a prefix of y if a word z exists such that y = xz.

Given an alphabet Σ, a language over Σ is a subset of Σ∗. The complement of a
language L, in symbols Lc, is defined as Lc = Σ∗ − L.

Let Σ = {0, 1}. The join of two languages L1 and L2 over Σ is defined as

L1 ⊕ L2 = {x : (x = 1y ∧ y ∈ L1) ∨ (x = 0y ∧ y ∈ L2)}.

Given an alphabet Σ, any order among the symbols of Σ induces an order among
the words in Σ∗ in the following way:

1. For any n, the words of length n precede the words of length n + 1.

2. For each length, the order is alphabetical.

Such an order is called a lexicographic order. As a consequence, any language
over Σ is a countable set.

Example 1.8 Let Σ = {a, b, c}. The lexicographic order of Σ∗ is the following:
e, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, . . .

Given a language L, we shall denote by Ln the set of all words of L having length
n, and by L≤n the set of all words having a length not greater than n.

The census function of a language L, in symbols cL, is a function which yields,
for any n, the number of words of length not greater than n included in L, thus
cL(n) = |L≤n|.

The ‘density’ of a language is determined by the rate of growth of its census
function according to the following classification:

Alphabets, words and languages 11

1. Finite languages are the least dense since their census function is constant
for sufficiently large n.

2. Languages whose census function is bounded above by a polynomial in n are
called sparse. It is easy to verify that a language L is sparse if and only if a
polynomial p exists such that ∀n[|Ln| ≤ p(n)]. Languages included in {σ}∗,
that is, languages over singleton sets, are called tally languages. Clearly, the
census function of a tally language grows at most as n, thus tally languages
are sparse.

3. The most dense languages are those whose census function grows exponen-
tially with n. It can immediately be verified that the census function of Σ∗

is equal to Σn
i=0k

i = (kn+1 − 1)/(k − 1) where k ≥ 2 denotes the cardinality
of Σ.

Example 1.9 Let Σ = {0, 1} and let b(n) denote the binary encoding of the natural
number n. The language L defined as

L = {b(n) : n is a power of 2}

is sparse since its census function is linear.
Conversely, it is easy to verify that, for any natural number k, the language L(k)

defined as

L(k) = {b(n) : n is divisible by 2k}

is not sparse.

Chapter 2

Elements of computability theory

This chapter briefly reviews some important concepts and results of computability
theory which will be used in the remaining chapters. As stated in the Preface,
complexity theory may be considered as a refinement of computability theory. In
fact, in several cases the same proof technique, initially developed for the first
theory, has been adapted for the second.

Intuitively, computing means being able to specify a finite sequence of actions
which will lead to the result. What do we mean by action? A precise answer to
this question can only be given after having defined a model of computation, that
is, a formal system which allows us to unambiguously express the actions to be
performed.

Mathematical logicians have developed many distinct models of computation.
General recursive functions, unrestricted rewriting systems (also called type 0
grammars), Post systems, Markov systems, and Turing machines are only a few
examples of the many formal systems that may be used to perform basically the
same set of computations and which are referred to as unrestricted models of com-
putation.

All efforts in trying to produce a model of computation more powerful than
those just mentioned have not yielded any results, even if it has never been proved
that such a model cannot exist. We are thus left with a conjecture called Church’s
thesis, which states that all ‘solvable’ problems can be solved by using any one of
the previously mentioned unrestricted models of computation.

Since Church’s thesis has valiantly resisted logicians’ attacks for over 50 years,
we feel entitled to focus our attention in Section 2.1 on a specific model called the
Turing machine and to refer to it in order to introduce the concept of computable
function in a precise way. In fact, we shall not restrict ourselves to standard Turing
machines and we shall also consider a few extensions of the basic model which will
be found to be quite useful in studying the complexity of some problems. We shall
also consider a different model of computation called the random access machine
in order to convince the reader that Turing machines are as powerful as an ‘almost’

12

Turing machines 13

real computer.
Next, in Section 2.2 we provide a first rough classification of languages. More

precisely, given a language, we shall study to what extent Turing machines succeed
in discriminating whether a word belongs to that language or not.

Finally, we present in Section 2.3 a basic tool which will be used repeatedly in the
remaining chapters to compare the complexity of languages, namely the concept
of reducibility between pairs of languages.

2.1 Turing machines

The Turing machine is an unrestricted model of computation developed by the
great logician Alan Turing in 1935. We may consider it an idealized computer:
the role of memory is played by semi-infinite tapes subdivided into cells, each cell
containing a symbol of a given alphabet; the control consists of read/write tape
heads which can be positioned on any cell of the tapes and of a set of instructions
called tuples which determine the actions to be performed.

2.1.1 Deterministic Turing machines

A k-tape deterministic Turing machine T with k ≥ 1 is a tuple 〈Q, Σ, I, q0, F 〉
where

1. Q is a finite set called the set of states.
2. Σ is a finite set called the tape alphabet which is always assumed to contain

a special symbol called blank and is denoted by 2.
3. I is a finite set of quintuples 〈q, s, s′,m, q′〉 with q, q′ ∈ Q, s ∈ Σk, s′ ∈

(Σ − {2})k, and m ∈ {L, R, S}k such that no pair of quintuples in the set
has the same first two elements.1

4. q0 ∈ Q is a special state called the initial state.
5. F ⊆ Q is a set of special states called final states.

Each of the k read/write semi-infinite tapes, in turn, consists of an infinite
number of cells labeled as 0, 1, . . . and each cell can store precisely one of the tape
alphabet symbols.

As stated earlier, the quintuples correspond, in a certain sense, to a computer’s
machine language instructions. The meaning of a quintuple is described below
and illustrated in Figure 2.1 (for simplicity, the figure refers to a one-tape Turing
machine).

1. The first element q denotes the current (internal) state of T and the second
element s = 〈s1, . . . , sk〉 denotes the k symbols contained in the cells currently
scanned by the k tape heads.

1Note that, by definition, I includes, at most, |Q||Σ|k elements.

14 Elements of computability theory

6

.

q

a

(1) scan the symbol a

ba

6

.

q

a

(2) write the new symbol b

bb

6

.

q

a

(3) move the tape head to the right

bb

6

.

q′

a

(4) switch to the new state q′

ba

Figure 2.1 Execution of the quintuple 〈q, a, b, R, q′〉

2. The third element s′ = 〈s′1, . . . , s′k〉 denotes the new k symbols which will
replace those currently being scanned.

3. The vector m = 〈m1, . . . ,mk〉 describes the type of motion mi of each of the k
tape heads after the rewriting has taken place: L denotes a one-cell leftward
move (an L move when the tape head is positioned on cell 0 is ignored by
T and replaced by an S move), R denotes a one-cell rightward move and S
denotes a no-move.

4. The last element q′ of the quintuple denotes the new state reached by the
machine after the rewriting of symbols and the tape head moves have taken
place.

The execution of a quintuple by the Turing machine is also called a step.
A global state S of a Turing machine T consists of the current state of T , the

current contents of the k tapes and the current positions of the corresponding tape
heads. Intuitively, the global state contains the information which needs to be saved
if one wants to interrupt the machine at any time and then restart it later. At

Turing machines 15

first, such an amount of information seems infinite. However, note that, according
to the definition of the set of quintuples, the symbol 2 can never be written. Thus,
after a finite number of steps, only the contents of the cells containing a non-blank
symbol have to be specified. More precisely, a global state can be thought of as a
word of a length proportional to the number of steps executed (see Problem 2.7).

We must now define some conventions for how the machine starts to operate and
how it ends.

Initial global state

When the machine starts executing the first step, it is in the initial state q0 and all
tape cells, except those used to store symbols of the input x, contain the symbol
2. By convention, the input x does not include 2 symbols, thus the first 2 symbol
to the right of x plays the role of delimiter of the input word.

The initial global state S0 can then be specified by stating that input x consisting
of n symbols is contained in the leftmost n cells of tape 1 and that machine T is in
state q0 with the read/write heads positioned on cell 0 (there are obviously many
other possible conventions which lead to other definitions of S0).

Deterministic computations

Each step causes a transition from one global state to another. We say that a
global state S1 yields a global state S2 if a step exists causing the transition from
S1 to S2. Notice that if S1 yields S2, then the two global states differ by a finite
number of symbols.

A (deterministic) computation for machine T on input x, in symbols T (x), is a
(possibly infinite) sequence of global states starting with the initial global state of
T with input x and such that each global state in the sequence yields the next.

Final global states for acceptor machines

We still have to define a halting computation. For that purpose, we say that a
computation T (x) halts whenever it is finite and its last global state is a final
global state. Two types of Turing machines will be considered, respectively called
transducers and acceptors, which differ mainly in their definition of final global
states.

Acceptor machines include two final states called accepting state and rejecting
state and are denoted as qA and qR, respectively. All finite computations of T must
halt in one of those final states.

In later proofs it will be found to be useful to assume that only two final global
states, the accepting and the rejecting ones, exist. This can easily be achieved
by allowing the machine to ‘clean the tapes’, that is, to write 2 symbols in all
cells used by the computation and to position the k tape heads on 0 cells before
reaching state qf . This clearly requires a slight modification of our definition of
Turing machines (see Problem 2.5).

An input x is accepted by T if the computation T (x) ends in the accepting global

16 Elements of computability theory

state. The set of inputs accepted by T , in symbols L(T), is called the language
accepted by T .

Example 2.1 Table 2.1 shows in detail the quintuples of a two-tape machine T which
accepts the language L = {x : x = 0n1n with n = 0, 1, . . .}. The machine is assumed
initially in state q0 with the first tape head positioned on the leftmost input symbol of
x (if any).

For clarity, the same table has been redrawn in Figure 2.2 as a state transition diagram:
nodes denote internal states while labelled edges of the form x1x2/y1y2 from node qi to
node qj express the fact that the machine in state qi reading symbols x1 and x2 from the
two tapes rewrites symbols y1 and y2 and switches to state qj .

Table 2.1 An example of a two-tape
Turing machine

q 〈s1, s2〉 〈s′1, s′2〉 〈m1,m2〉 q′

1 q0 〈2,2〉 〈#, #〉 〈S, S〉 q1

2 q0 〈1,2〉 〈1, #〉 〈S, S〉 q2

3 q0 〈0,2〉 〈0, 0〉 〈R,R〉 q3

4 q3 〈0,2〉 〈0, 1〉 〈R,R〉 q3

5 q3 〈2,2〉 〈#, #〉 〈S, S〉 q2

6 q3 〈1,2〉 〈1, #〉 〈R,L〉 q4

7 q4 〈0,2〉 〈0, #〉 〈S, S〉 q2

8 q4 〈1, 1〉 〈1, 1〉 〈R,L〉 q4

9 q4 〈2, 1〉 〈#, 1〉 〈S, S〉 q2

10 q4 〈1, 0〉 〈1, 0〉 〈S, S〉 q2

11 q4 〈2, 0〉 〈#, 0〉 〈S, S〉 q1

In the table, q1 and q2 denote, respectively, the accepting and the rejecting states.
The meaning of the quintuples is as follows:

1. e = 0010 belongs to L.

2. If input starts with a 1, then reject it.

3. The first 0 has been read, write a 0 on tape 2 to delimit the sequence of 0s read
on tape 1 and switch to q3.

4. Write a 1 on tape 2 for each 0 read on tape 1.

5. Input of the form x = 0h, reject it.

6. The first 1 has been read, move rightward on tape 1 looking for other 1s and
leftward on tape 2 to check whether a corresponding 0 has been encountered,
switch to q4.

Turing machines 17

q0

Accept

Reject

q3 q4

��
��
��
��1

H
HHH

HHHj

C
C
C
C
C
C
C
CW
�
�
�
�
���

-

6 6

6

XXX
XXX

XXX
X

HH
H

HH
H
HH

H
HY

C
C
C
C

XXX
XXX

XXy

PP
PP

PP
PP

PP
PPi22/##

12/1#

02/00

02/01 11/11

22/##

12/1#

20/#0

10/10

21/#1

02/0#

Figure 2.2 State diagram for the example two-tape Turing machine

7. Input read is x = 0h1k0, reject it.

8. Continue checking for other matchings.

9. Input has more 0s than 1s, reject it.

10. Input has more 1s than 0s, reject it.

11. Input x = 0n1n, accept it.

Final global state for transducer machines
A transducer machine T is used to compute functions. It receives a word x as
input and produces on a special tape called the output tape another word, say y,
as output. A transducer T includes a single final state denoted as qf and is said
to be in the final global state if it has reached state qf and if the k tape heads are
positioned on 0 cells. The first |y| cells of the output tape contain the output of
the computation. As for the input x, it will be assumed that y consists of symbols
of Σ − {2} so that the first 2 symbol to the right of y plays the role of output
delimiter.

Given a function f , a transducer machine T computes f if the computation T (x)
reaches a final global state containing f(x) as output whenever f(x) is defined. In
the opposite case, T (x) is infinite, that is, it never reaches a final global state. A
function is computable if a Turing machine T exists capable of computing it.

18 Elements of computability theory

Universal Turing machines
Turing machines can be considered as fixed program machines: the set of quintu-
ples implement a specific algorithm and the resulting machine is only capable of
applying that algorithm to distinct input values.

Existing computers, on the other hand, are programmable machines able to
execute any program on any set of input data. We will now demonstrate that even
Turing machines are in some sense programmable since it is possible to define a
universal Turing machine U which acts on an input consisting of a Turing machine
T description and of a datum x and which simulates the corresponding computation
T (x). We shall assume, for simplicity, that T is a one-tape machine. This is not
a restriction since we will show in Section 4.2 how to transform k-tape machines
into equivalent one-tape machines. Thus, we are not limiting the power of U .

Before defining the characteristics of the universal machine, let us resolve the
alphabet problem. Like any other Turing machine, U consists of a finite set of
quintuples which refer to a finite alphabet ΣU and a finite set of states QU . On
the other hand, U is assumed to simulate all possible Turing machines T and those
machines may make use of an alphabet ΣT and of a set of states QT much larger
than the ones used by U . We overcome this problem by encoding in ΣU both ΣT

and QT . The following example illustrates a possible encoding which will perform
the task. We shall return in Section 3.3 to the encoding problem.

Example 2.2 We choose to encode the symbols of ΣT (respectively, the states of QT) as
the binary representation of the natural numbers so that the ith symbol of ΣT (respec-
tively, the ith state of QT) will be encoded as the binary representation of i (eventually
filled by leading 0s in order to ensure that all the encodings have the same length). The
three types of tape head moves L,R, S are encoded, respectively, as 00, 01, 10. We then
use two new characters ‘,’ and ‘;’ as delimiters between the components of a quintuple
and between quintuples. Similarly, the input x = σi1 . . . σin on ΣT will be encoded as
b(i1), . . . , b(in) where b(ij) is the binary representation of the integer ij .

The description of T is then separated from the encoding of the input x by a third
new character, say ‘.’.

Now that it is clear how to represent the quintuples of T and the input x, let
us provide a few more details on the required data structures. Machine U makes
use of three tapes: the first will contain the description of T and of the input x,
the second will be used to simulate the tape of T and the last tape will contain
the description of the current state of T along with the description of the symbol
scanned by the tape head of T .

In the initialization phase, U copies the word x onto the second tape and writes a
suitable number of 0’s into the third tape (since q0 is the initial state of T) followed
by the description of the first symbol of x (since that symbol is initially scanned
by T). The simulation of a quintuple of T by U is straightforward: depending on
the value of the current state of T and on that of the scanned symbol, U selects
the proper quintuple of T and executes it. As a result, a new binary sequence

Turing machines 19

corresponding to the new symbol is rewritten onto the old one, the values of the
current state and of the scanned symbol are updated and the appropriate moves
are performed.

Whenever T halts, U halts according to the final state of T . If the input is not
a valid description of a Turing machine along with its input, U is assumed never
to halt.

2.1.2 Nondeterministic Turing machines

Deterministic Turing machines owe their name to the fact that each computation
can be viewed as a sequence (finite or infinite) of global states whose first element
is the initial global state. The uniqueness of such a computation is in turn due to
the fact that a deterministic Turing machine cannot include two or more quintuples
with the same first two elements.

Nondeterministic Turing machines, denoted as NT , are not constricted by such
a limitation. Let us denote by Q the set of states and with Σ the tape alphabet of
a k-tape nondeterministic machine NT . NT can include up to 3k|Q|2|Σ|k(|Σ| − 1)k

quintuples.
Suppose that NT is in global state S and let q and s be, respectively, the current

state and the set of currently scanned symbols. Then, if NT includes p quintuples
(1 ≤ p ≤ 3k|Q|(|Σ| − 1)k) whose first two elements are q and s, any of the p global
states yielded by S can be the next global state.

A nondeterministic computation NT (x) can then be viewed as a tree called a
computation tree; the nodes correspond to global states while the edges between
nodes correspond to transitions between global states caused by a single step.
Each of the (finite or infinite) paths of the tree starting from the root is said to
be a computation path. Figure 2.3 shows the first three steps of an example of a
computation tree.

The highest number r of quintuples of NT having the same first two elements is
called the degree of nondeterminism of NT .

As in the case of deterministic machines, it is possible to define both nondeter-
ministic acceptors and nondeterministic transducers.

Let NT be a nondeterministic acceptor machine which includes two final states:
an accepting (qA) and a rejecting one (qR). An input x is accepted by NT if the
computation tree associated with NT (x) includes at least one accepting computa-
tion path, i.e. a finite computation path whose leaf is an accepting global state.
The set of inputs accepted by NT is called the language accepted by NT and is
denoted as L(NT).

Defining a nondeterministic transducer machine requires some imagination. Let
NT be a nondeterministic transducer machine which includes a single final state qf .
Let x be a given input and assume that NT (x) computes several distinct values:
how do we know which is correct? The only way to overcome this problem is by
placing suitable restrictions on NT : for example, it can be assumed that all finite

20 Elements of computability theory

S0

�
�
�

S1 S2

PPPPPPPPP

!!!!!!!!

S3
S5 S6

````````````̀

S4









J
J
JJ

S7

Z
Z
Z
Z









J
J
JJ

S8 S9 S10 S11 S12 S14S13

Figure 2.3 The first three levels of an example of a computation tree

computation paths of NT (x) compute the same value f(x).
In this book, only acceptor nondeterministic machines will be considered.

Determinism versus nondeterminism
Since the purpose of acceptor machines, whether deterministic or nondeterministic,
is the same, namely to accept languages, we shall consider two acceptor Turing
machines as equivalent if they accept the same language.

The following theorem shows that the class of languages accepted by nonde-
terministic Turing machine coincides with the class of languages accepted by de-
terministic machines. It may be considered as a first corroboration of Church’s
thesis.

Theorem 2.1 Given a nondeterministic Turing machine NT , it is always possible
to derive an equivalent corresponding deterministic machine T . Furthermore, a
constant c exists such that, for any input x, if NT accepts x in t steps, T will
accept x in, at most, ct steps.

Proof. For any input x, the aim of T is to systematically visit the computation tree
associated with NT (x) until it finds an accepting computation path, if it exists.
However, the fact that the computation tree may include computation paths of an
infinite length poses a problem for us since we do not know how to detect them. A
depth-first visit of the tree must be ruled out since the visit might proceed for ever
following one of those infinite paths, overlooking other finite accepting paths. We
already encountered a similar problem in Section 1.3.2 and we were able to solve
it by making use of the breadth-first technique.



Turing machines 21

We rely again on the same technique and explore the computation tree as follows.
Visit all the computation paths for, at most, one step and if an accepting global
state is found then accept x; otherwise visit all the computation paths for, at most,
two steps, and so on. If NT accepts x, sooner or later T will find an accepting
global state and accept the input.

We must still specify how to visit all the computation paths for, at most, i steps,
for i = 1, 2, . . . Observe that we are now dealing with a finite tree and a depth-
first search proves to be a good technique for visiting such a tree. More formally,
denote by r the degree of nondeterminism of NT . The computation tree of depth
i of NT (x) includes, at most, ri ‘partial’ computation paths.

We can associate a word over the alphabet Γ = {1, 2, . . . , r} with a maximum
length i with each of these paths. Intuitively, such a word represents the sequence
of choices that have been made along that path.

We can then successively generate all such words in lexicographic order and
execute the corresponding computation path for each, starting from the initial
global state. As soon as a new word w is generated, we start simulating pw, the
sequence of steps of NT represented by w. Three situations may occur:

1. If pw does not represent a valid sequence of steps by NT (this happens when
a symbol of w specifies the choice of the jth quintuple among those with the
same first two elements while NT includes less than j such quintuples), then
T moves to the next word in Γi.

2. If the first j symbols of w (0 ≤ j ≤ i) induce a sequence of steps causing NT
to accept x, then T also accepts x.

3. If the first j symbols of w (0 ≤ j ≤ i) induce a sequence of steps causing NT
to reject x, then T moves to the next word in Γi.

The details of the simulation are left as a problem (you may consider introducing
a few additional tapes).

It is easy to verify that in order to derive the next word w ∈ Γi and simulate the
corresponding pw a linear number of steps with respect to i is required. Thus all
the computation paths for, at most, i steps can be visited by executing, at most,
ci
1 steps with c1 constant. If NT accepts x in t steps, then the total time spent in

simulating it is bounded by
∑t

i=1 ci
1 ≤ ct where c is a suitable constant. 2

2.1.3 Oracle Turing machines

Let us now consider a further variation of the Turing machine model which plays
an important part in complexity theory.

An oracle deterministic (nondeterministic) Turing machine is a k-tape machine
with an additional special-purpose tape called an oracle tape and three additional
special-purpose states called query state, yes state, and no state. Whenever an
oracle Turing machine enters the query state after having written a given word



22 Elements of computability theory

on the oracle tape, the next state will be the yes or the no state, depending on
whether that word belongs to the oracle language or not.

Both acceptor and transducer oracle machines will be considered. Notice how
the same basic machine T (respectively, NT ) may be combined with any oracle L.
Oracle machines will thus be denoted as TL (respectively, NTL).

Clearly, the behavior of an oracle Turing machine is established once the language
to be used as an oracle has been determined. Intuitively, the oracle may be viewed
as a ‘supercomputer’ capable of deciding in a single step whether a word belongs
to the oracle language.

Powerful oracle languages may significantly enhance the power of the basic ma-
chine. Conversely, very simple ones do not enhance its power at all since the basic
machine is able to answer the query efficiently without making use of the oracle
(we do not need a supercomputer to decide that a number is even!).

2.1.4 Alternating Turing machines

The computation tree associated with a nondeterministic computation NT (x) may
be considered a tree of ‘existential’ nodes. Assume that a given node of the tree
corresponding to global state S has been reached. NT will only accept x starting
from S if the computation tree includes a path from S to an accepting global state.

Alternating Turing machines, denoted as AT , are a natural extension of nonde-
terministic ones where both ‘existential’ and ‘universal’ branching is allowed. Let
us refer to the previous example. Informally, if S is a ‘universal’ global state, then
all paths from S must end in an accepting global state. Thus, the definition of AT
is similar to that of NT except that an AT has two types of state called existential
and universal.

We shall limit our attention to acceptor alternating Turing machines. The def-
inition of the acceptance of a word x by AT is more involved since it depends on
the existence in the computation tree of finite subtrees, called alternating trees,
with specific properties.

Let AT (x) denote a (possibly infinite) computation tree of AT on input x. An
alternating tree A included in AT (x) is a finite subtree defined as follows:2

1. A consists of a finite subset of nodes of AT (x).

2. The root of A coincides with the root of AT (x).

3. If A includes an existential node S, then it must include exactly one child of
S.

4. If A includes a universal node S, then it must include all children of S.

5. The leaf nodes of A must be final nodes.

2For simplicity, we say that a node of the tree is existential (respectively, universal or final) if
the state corresponding to that node is an existential (respectively, universal or final) one.



Turing machines 23

∃

∀ ∀ ∃

∀ ∃ ∃ qA qR qA ∀ ∀

∃ qA qA qR ∃ ∀ qR qA qR ∃ ∀

qR qA qR qA qR qA qR qA qAqA

s
s
s s

s s s

          
�

�

``````````

���
�

��
��

HH
HH

��
��

HH
HH

@
@

H
HHH

�
�

�
�

@
@

�
�

@
@

�
�

�
�

��
��

@
@

H
HHH

@
@

H
HHH

Figure 2.4 An example of an alternating tree

The (Boolean) value of an alternating tree A is true if and only if all the leaves
of A are accepting final nodes.

An alternating machine AT accepts x if the corresponding computation tree
includes at least one alternating tree whose value is true.

Figure 2.4 shows a simple example of a computation tree for an alternating
machine. The marked edges form an alternating tree whose value is true.

Let us restrict our attention to machines AT which only induce finite computa-
tion trees. It is then possible to give the following definitions.3

A path from the root to a leaf of an alternating tree A includes k alternations if
the number of alternations between existential and universal nodes (or vice versa)
along that path is exactly k.

An alternating tree includes k alternations if the largest number of alternations
among all paths from the root to a leaf is exactly k.

The number of alternations of a computation AT (x) is defined as the largest
number of alternations among all possible alternating trees included in AT (x). If
we refer to the example shown in Figure 2.4, it is easy to verify that the marked
alternating tree includes two alternations while the computation tree includes three.

Finally, a machine AT is said to be k-alternating if, for all x, the number of
alternations of AT (x) is, at most, k .

3The same definition has been extended to infinite computation trees (see Notes).

24 Elements of computability theory

2.1.5 Random access machines

Let us now turn to another unrestricted model of computation called a random
access machine (RAM) which will be the basis for a parallel model of computation
to be presented in the last part of this book. As the name suggests, RAMs make
use of a random access memory, thus overcoming the limitation of Turing machines
which use a sequential access tape as a memory component.

A RAM consists of a processor and of a memory composed of a potentially
unlimited number of cells denoted as Mi (i = 0, 1, . . .). Each cell Mi is identified
by an index i.

The processor can execute a limited set of distinct instructions which cause, in
general, random accesses to memory cells. Each cell can contain any finite number
(even a very large one!) expressed in binary and the time spent reading (respec-
tively, writing) a number from (respectively, in) cell Mi is assumed to be constant.4

A RAM is controlled by a program consisting of a sequence of instructions; each
instruction has a unique sequencing number. The state of a RAM is defined as the
sequencing number of the instruction which is being executed; the initial state is 1
(program execution starts with the first instruction). As in the case of Turing ma-
chines, the RAM program is not stored in memory but is encoded in the machine’s
control. RAM instructions are quite simple and are similar to those of existing
computers:

1. Mi ← 1 (write constant 1 in memory cell Mi).

2. Mi ← Mj + Mk (write in Mi the sum of the numbers contained in Mj and
in Mk).

3. Mi ← Mj −Mk (write in Mi the difference of the numbers contained in Mj

and in Mk).

4. Mi ← bMi/2c (divide by 2 the number contained in Mi and leave the result
in Mi).

5. Mi ← MMj
(indirect addressing: write in Mi the number contained in the

cell whose index is contained in Mj).

6. MMi
← Mj (indirect addressing: write the number contained in Mj in the

cell whose index is contained in Mi).

7. go to m if Mi > 0 (conditional branching: if the number contained in Mi

is greater than 0, then set the RAM state to m; otherwise add one to the
current RAM state).

8. halt (end the computation of the RAM model).

The first six instructions modify the state of the RAM in the same way. After
the instruction has been executed, the current state of the RAM is increased by
one.

4A variation of the model in which the access time depends on the value of the number x to
be transferred has also been considered (see Notes).

Turing machines 25

For simplicity, it is assumed that each instruction requires the same constant
time in order to be executed. It is also assumed that input x consists of m integers
x1, x2, . . . , xm which are contained, respectively, in memory cells M1, . . . ,Mm. The
length n of input x is defined as the sum of the lengths of all numbers xi (1 ≤ i ≤
m).

Both acceptor and transducer RAM models will be considere here. In the first
case, the RAM writes 1 or 0 in cell M0, depending on whether it accepts or rejects
input x. In the second case, the RAM writes the value f(x) of the computed
function in cell M0.

Is it possible to transform a Turing machine T into an equivalent RAM? To do
this, we simply map the ith tape cell (i = 0, 1, 2, . . .) of T into memory cell Mi+c of
the corresponding RAM (the first c cells are reserved for RAM internal use). Then
all we have to do is to write a RAM program which simulates the set of quintuples
of T and this turns out to be quite easy (see Problem 2.13).

How can a RAM be transformed into an equivalent Turing machine T? This
task, which will provide further evidence for Church’s thesis, is more difficult since
the memory cells of a RAM are much more flexible than the tape cells of T . The
following theorem shows how to transform a RAM into a deterministic Turing
machine.

Theorem 2.2 Given a RAM, it is always possible to derive a corresponding three-
tape deterministic Turing machine T equivalent to the RAM. Furthermore, the
number of steps executed by T to simulate the execution of the first t instructions
(t > n) of the RAM on input x of length n is, at most, ct2(t + n) where c denotes
a constant.

Proof. Machine T uses the first tape to describe the contents of the RAM memory
and the remaining two as working tapes. The RAM program is encoded into the
quintuples.

We can observe that the RAM can modify the contents of, at most, t distinct
cells while executing t instructions. Each of these cells is represented on the tape
as a pair 〈i, mi〉 where i denotes the index and mi the contents of the cell.

How many cells of tape 1 do we have to set aside for storing a value mi? Note
that, in general, of the eight types of instructions available, only addition may
increase the value of an operand. In particular, an addition instruction with the
form Mi ← Mi + Mi succeeds in doubling the value mi initially contained in Mi.
Since the numbers are expressed in binary, the length in bits of the new value 2mi

is equal to the length of mi plus one. In other words, each instruction execution
may, at most, increase the length of an operand by one bit.

Initially, all memory cells are empty, except the cells used to store the input
x. Denote by n the total length of the input. Clearly, n tape cells are sufficient
to store any of the values xi of the input x. To be certain, we agree to set aside
c1(t + n) consecutive tape cells for each of the t RAM cells with c1 > 1 constant;
hence, the portion of tape 1 used by T has length c1t(t + n).

26 Elements of computability theory

The cost of simulating a RAM instruction depends on the type of instruction.
Let us consider the case of addition which may involve three distinct operands. To
save time, we use tapes 2 and 3 as working tapes. We scan tape 1 looking for the
cells corresponding to Mj and Mk, copy their contents, respectively, into tape 2
and tape 3, and add them into tape 2 (this can be done in linear time when the
operands are on distinct tapes). Next we scan tape 1 looking for Mi and we write
into that cell the result contained in tape 2. It should be clear that the number
of steps required by T to perform such a simulation is, at most, ct(t + n). Thus,
the time required to simulate t RAM instructions is, at most, ct2(t + n) with c
constant. 2

2.2 Machines and languages

Now let us study how well Turing machines succeed in discriminating whether a
word belongs to a given language. As we shall see in Section 3.3, we may restrict our
attention, without loss of generality, to languages L based on a common alphabet
Σ (L ⊆ Σ∗).

2.2.1 Acceptability and decidability

A language L1 is acceptable if a Turing machine T exists which accepts L1, that
is, a machine T such that L(T) = L1. In Example 2.1 we have already seen a first
acceptable language. Are all languages acceptable or do non-acceptable languages
exist, i.e. languages L such that, for all T , L(T) 6= L? Since the class of all
languages over Σ, that is, 2Σ∗

, is not countable while the set of Turing machines is
countable (remember how we can encode a Turing machine as a word in a given
alphabet), the answer is that non-acceptable languages must exist. Indeed, the
diagonalization technique allows us to define one of them. For any i, let Ti be the
ith Turing machine and xi be the ith word over Σ. The diagonal language thus
contains all words xi such that xi 6∈ L(Ti) and it is obviously not acceptable.

Notice how the behavior of a machine which accepts a given language is left
partly unspecified for words not included in that language. For such words, the
computation can either halt in the rejecting state or continue for ever. The next
definition constricts the machine to a somewhat greater extent.

A language L is decidable if an acceptor Turing machine T exists such that, for
all x ∈ Σ∗, T (x) halts and it accepts x if and only if x ∈ L (that is, if x 6∈ L then
T (x) halts in the rejecting state). We shall also state that such a T decides L.

The next lemmas and theorems illustrate the relation between acceptability and
decidability.

Lemma 2.1 If a language is decidable then it is acceptable.

Machines and languages 27

Proof. It follows from the definition. 2

Lemma 2.2 If a language L is decidable then Lc is also decidable.

Proof. Let T be the machine which decides L. Derive T ′ from T by inverting the
accepting state qA with the rejecting state qR and vice versa for all quintuples of
T . It can immediately be verified that such T ′ decides Lc. 2

Theorem 2.3 Languages exist which are acceptable but not decidable.

Proof. Consider the language

Lhalt = {〈T, x〉 : T (x) terminates}

(Observe that we use the symbol T to denote both the machine T and its descrip-
tion. However, the correct interpretation should always be clear from the context.)

1. Lhalt is acceptable: we make use of a universal Turing machine U (see Section
2.1) which receives the pair 〈T, x〉 as input and simulates the computation
T (x). We slightly modify U so that it accepts all pairs 〈T, x〉 such that T (x)
halts either in state qA or in state qR (in the original definition, U accepts
〈T, x〉 only if T accepts x).

2. Lhalt is not decidable: in the opposite case, a Turing machine Thalt exists
which decides Lhalt. Let us define the following Turing machine T based
on Thalt. For input x, T simulates Thalt(x, x); if Thalt accepts 〈x, x〉, then
T (x) does not halt, otherwise it accepts x. What is the computation T (T)
supposed to do? Assume it halts. This implies that Thalt does not accept
〈T, T 〉, that is, that T (T) does not halt. Now assume that T (T) does not
halt. This implies that Thalt accepts 〈T, T 〉, that is, that T (T) does halt. In
both cases, we encounter a contradiction and we conclude that Thalt cannot
exist.

We have thus shown that Lhalt is acceptable but not decidable. 2

Theorem 2.4 A language L is decidable if and only if both L and Lc are accept-
able.

Proof. If L is decidable, then Lc is also decidable (see Lemma 2.2) and both L and
Lc are acceptable. Conversely, if L and Lc are acceptable, then two machines T
and T c exist which accept such languages. We can then combine T and T c into a
single machine T ′ which alternatively executes quintuples of T and of T c using the
breadth-first technique. T ′ terminates for all possible inputs x and decides L. 2

28 Elements of computability theory

2.3 Reducibility between languages

Reducibility is a powerful tool whose first two main applications in the field of
computability theory were to classify acceptable languages according to their degree
of unsolvability and to prove that some important languages are not decidable. In
this section we shall concentrate on the second application, namely how to prove,
via a suitable reduction, that a given language is not decidable. First, however, we
must clarify the terms ‘reducibility’ and ‘reduction’.

2.3.1 m-reducibility

Informally, a language A is reducible to a second language B if the existence of an
algorithm to decide whether a word belongs to B induces the existence of another
algorithm to decide whether a word belongs to A . Even though several definitions
of reducibility have been proposed (see Notes), it will be sufficient for our purpose
to consider only one.

A language A is many-one reducible or m-reducible to a second language B, in
symbols A ≤m B, if a total and computable function f exists such that, for all
x ∈ Σ∗,

x ∈ A↔ f(x) ∈ B.

The function f is called an m-reduction between A and B.
Many proofs of non-decidability can easily be obtained by making use of suitable

m-reductions. Suppose we want to prove that a given language, say L2, is not
decidable. The following lemma shows us how to proceed.

Lemma 2.3 If L1 ≤m L2 and L1 is not decidable, then L2 is not decidable either.

Proof. Assume a Turing machine T2 exists which decides L2 and denote by f the
reduction from L1 to L2. Whether x ∈ L1 or not could then be decided by first
computing f(x) and then by using T2 to check whether f(x) ∈ L2. Thus T2 cannot
exist and L2 is not decidable. 2

A simple example will show how to apply the previous lemma.

Example 2.3 We want to prove that the language Lhalt−e = {T : T (e) halts}, that is,
the language corresponding to the halting computations of Turing machines applied to
the empty word e, is not decidable. This can be done by showing that the language Lhalt,
which is known to be not decidable (see Theorem 2.3), is m-reducible to the language
Lhalt−e.

In order to do this, we notice that, given any machine T and any input x, it is
always possible to derive a machine T ′ which acts on an empty word and such that T ′(e)
terminates if and only if T (x) terminates. This can be done as follows. T ′, which has
the value x stored in its internal states (since x is finite, this is always possible), first

Problems 29

writes x on the tape and then proceeds to simulate T . Clearly, such a transformation
from 〈T, x〉 to T ′ is an m-reduction.

2.3.2 Properties of m-reducibility

It can immediately be verified that ≤m is both reflexive and transitive, that is, for
all languages A, B, C ⊆ Σ∗,

A ≤m A and A ≤m B ∧B ≤m C → A ≤m C.

A second property of ≤m is that, for all pairs of languages A, B ⊆ Σ∗,

A ≤m B → Ac ≤m Bc.

A third property of ≤m, expressed in the following lemma, shows that such a
reducibility is of limited interest when dealing with decidable languages.

Lemma 2.4 Let B be any language such that B 6= ∅ and B 6= Σ∗. Then, for any
decidable language A, A ≤m B.

Proof. Denote a word of B with y and a word of Bc with z (according to the
definition of B, y and z must exist). Define the function f as

f(x) =

{
y if x ∈ A,
z otherwise.

The function f is total and computable since A is decidable. Furthermore,
x ∈ A↔ f(x) ∈ B, thus f is an m-reduction between A and B. 2

Since complexity theory deals mostly with decidable languages, in the following
chapters we shall consider reducibilities enhanced with quantitative refinements for
which the previous lemma does not hold true.

Problems

2.1. How is it possible to detect whether the tape head of a given tape is currently
positioned on cell 0?

2.2. Define a one-tape acceptor deterministic Turing machine T with tape alphabet
Σ = {0, 1,2} which accepts all words including an even number of 1s and rejects all
remaining words.

2.3. Define a two-tape acceptor deterministic Turing machine T with tape alphabet
Σ = {0, 1,2} which decides whether a given word of the form 1m01n is such that m is a
multiple of n.

30 Elements of computability theory

2.4. Define a two-tape transducer deterministic Turing machine T with tape alphabet
Σ = {0, 1, #,2} which computes the number of 1s included in input x. The value
computed by T (x) must be written on the tape as a binary number. How many additional
tapes are needed to compute the same function if the marker symbol ‘#’ is no longer
available?

2.5. Supply an alternative definition of acceptor Turing machines satisfying the following
two properties:

1. After a finite number of steps, only the contents of the cells containing a non-blank
symbol have to be specified in a global state.

2. Only two final global states, the accepting and the rejecting ones, exist.

2.6. Define one-tape Turing machines by means of triples (qi, σ, ?) where ? denotes either
a symbol to be rewritten in the cell, a read/write head move to be performed, or a new
state. Show how to transform a standard one-tape Turing machine into an equivalent
machine which uses triples. [Hint: mark the symbols scanned by the former machine by
making use of additional symbols.]

2.7. Show that, for any t greater than the input length, the global state of a k-tape
Turing machine after executing t steps can be encoded by a word of length kt. [Hint:
make use of a suitable alphabet which enables scanned and unscanned symbols to be
distinguished and the internal state of the machine to be encoded.]

2.8. Given a nondeterministic machine, derive an equivalent nondeterministic machine
whose computation trees are binary trees.

2.9. Illustrate a RAM program which on input x and i computes the ith bit of the
binary representation of x.

2.10. Define a RAM program which on input x and y computes the product xy by
executing a total number of instructions proportional to the length of the input.

2.11. Define a RAM program which on input x and y computes the integer division x÷y

by executing a total number of instructions proportional to the length of the input.

2.12. Consider a Random Access Stored Program machine (RASP) which is similar to
RAM except that the program is stored in memory and can thus modify itself, and that
indirect addressing is not allowed. Show that a RAM can be simulated by a RASP with
a constant overhead and vice versa. [Aho, Hopcroft, and Ullman (1974)]

2.13. Describe a RAM program which simulates t steps of a one-tape deterministic
Turing machine T in c1t + c2 steps with c1, c2 constant. [Hint: for each state q of T ,
define a block of |Σ| groups of instructions, each group simulating the quintuple having
〈q, σ〉 as prefix.]

2.14. Show that any language accepted by a RAM can be accepted by a RAM without
indirect addressing. [Hint: make use of Theorem 2.2 and of the solution of the previous
problem.]

Notes 31

2.15. Show that the set of acceptable languages is closed under union and intersection.

2.16. A non-empty language L is recursively enumerable, in short r.e., if a transducer
deterministic Turing machine T exists such that

L = {y : ∃x[T (x) outputs y]},

that is, L is the codomain of the function computed by T .
Show that L is r.e. if and only if L is acceptable. [Hint: make use of the breadth-first

technique in order to prove the necessity.]

2.17. An infinite language L is r.e. without repetitions if L is the codomain of an injective
computable function. Prove that L is r.e. without repetitions if and only if L is infinite
and r.e. [Hint: derive a transducer deterministic machine which reads x and outputs x

if and only if x ∈ L.]

2.18. Prove that a language L is r.e. if and only if L is the domain of a partial computable
function. [Rogers (1967)]

2.19. Consider the language

L = {x : the decimal expression of π includes at least |x| consecutive 5s}.

Prove that L is decidable even if the decimal expression of π is found to be not
computable. [Hint: the definition of decidability is inherently non-constructive.]

2.20. Show that the class of decidable languages is closed under union, complementation,
intersection, and concatenation.

2.21. A language L is r.e. in increasing order if L is the codomain of an increasing
total computable function (a function f is increasing if, for any x and y, x < y implies
f(x) < f(y)). Prove that L is r.e. in increasing order if and only if L is infinite and
decidable. [Rogers (1967)]

2.22. Show that any acceptable language admits a decidable infinite subset. [Rogers
(1967)]

2.23. Consider the language L∃−halt = {T : ∃x[T (x) halts]}. Prove that this language is
not decidable. [Hint: supply an m-reduction from Lhalt−e to L∃−halt.]

Notes

Turing machines were introduced in Turing (1936) in order to formally define the
concept of computable numbers (equivalently, that of computable functions or
predicates): a number is computable if its digits can be written down by such a
machine. In particular, it is shown that certain large classes of numbers are com-
putable although definable numbers exist which are not computable. Furthermore,

32 Elements of computability theory

it is shown that there is no general method for ascertaining whether a given formula
is provable in Hilbert’s functional calculus.

An interesting introduction to Turing machines can be found in Minsky (1967).
More advanced treatments of such machines and of computability theory in general
are included in Kleene (1962), Davis (1958), Rogers (1967), and Hermes (1969).
We also recommend the book edited by Davis (1965) which is an anthology of
fundamental papers dealing with undecidability and unsolvability.

As pointed out in Spaan, Torenvliet, and van Emde Boas (1989), the concept
of nondeterministic machines was inspired by automata theory and computational
complexity theory rather than by computability theory and it was not introduced
before the end of the 1950s. In the original Turing paper, nondeterministic quintu-
ples are viewed in some respects as an abberation of the concept of computability.

A first reference to oracle Turing machines appeared in Turing (1939) in studying
systems of logic based on ordinals. Such machines played an important part both
in computability theory and, as we shall see in the following chapters, in the theory
of computational complexity.

Alternating Turing machines were introduced in Chandra, Kozen, and Stock-
meyer (1981). Although few results based on such machines will be explicitly
described in the text, the concept of alternation impacts on several topics in com-
puter science, including time and space complexity, logic, games, and parallelism.

The RAM model was considered in Shepherdson and Sturgis (1963) and in Elgot
and Robinson (1964). Two cost criteria for RAM programs have been proposed in
those papers: the uniform cost criterion, according to which each RAM instruction
requires one unit of time, and the logarithmic cost criterion where the time varies
roughly as blog(|x|)c where x denotes the value of an operand. Notice also that the
basic set of instructions may be defined in several ways. If additional instructions,
such as multiplication, are introduced, the second part of Lemma 2.2 must be
modified (see Section 4.2). A good introduction to RAMs is provided in Aho,
Hopcroft, and Ullman (1974).

The following references deal with the equivalence between Turing machines and
other unrestricted models of computation:

• General recursive functions: Kleene (1936).
• Unrestricted rewriting systems: Chomsky (1959).
• Post systems: Post (1943).
• Markov systems: Markov (1954).
• RAM: Shepherdson and Sturgis (1963).

The last two sections of this chapter are a summary of results obtained in the field
of computability theory. For further results and additional kinds of reducibilities,
the interested reader is referred to many excellent textbooks such as Davis (1965),
Rogers (1967), and Lewis and Papadimitriou (1981).

Chapter 3

Complexity classes

Now that we know what a model of computation and a computable function are,
the next step is to provide the tools which will allow us to ‘measure’ the complexity
of a problem and to group together problems with a similar complexity.

Discussion of the complexity of a problem implicitly refers to the complexity of an
algorithm for solving that problem and to the measure of complexity that allows us
to assess the algorithm’s performance. Although an infinite number of algorithms
exist which solve the same problem, we can clearly identify the complexity of
the problem with that of the most efficient with respect to a given measure of
complexity.

Observe, however, that the structure of algorithms is so rich and the models of
computation so widely different that several definitions of complexity measurement
can be given, each taking into account specific aspects of the algorithms and/or of
the models of computation.

Two different kinds of complexity measures can be roughly identified: static
measures that are based only on the structure of the algorithms and dynamic
measures that take into account both the algorithms and the inputs and are thus
based on the behavior of a computation.

A typical example of static measure of complexity is program size. Any algorithm
can be viewed as a word over a finite alphabet (of course, an algorithm is much
more than a word: it has a semantic) and a natural question is: how long is such
a word? In this way, a problem has a well-defined minimum complexity, namely,
the shortest program that solves it (at least, for a given model of computation).

Although other different static measures of complexity have been defined and
interesting results obtained (see Notes), we shall focus our attention on the more
familiar dynamic measures. A natural example of such measures is time; generally,
time is the number of ‘elementary steps’ of a computation, if such a computation
halts, otherwise it is considered to be undefined (observe that a precise definition
of an elementary step depends on the characteristics of the model of computation).

In Section 3.1 we present the complexity measures which we are going to use. We

33

34 Complexity classes

then define in Section 3.2 classes of languages and present some general techniques
to prove inclusion relations between such classes. In Section 3.3 we show the close
connection between combinatorial problems and languages and we investigate how
changes in problem encodings and alphabets affect the complexity of a problem.
Finally in Section 3.4 we restrict our attention to time-complexity classes, that is,
classes defined by means of the time-complexity measure, and present some general
properties of such classes.

3.1 Dynamic complexity measures

Before giving specific examples of dynamic measures of complexity, let us provide
a general definition applicable to all models of computation.

3.1.1 Model-independent dynamic measures

To define a complexity measure on an arbitrary set {Pi} of algorithms, we should
be able to assign to each algorithm Pi a ‘suitable’ resource bound Φi. Since neither
the model of computation nor the resource are known, we can only put abstract
constraints on the Φis.

A dynamic measure of complexity Φ with respect to the set of algorithms {Pi}
is a set of computable functions Φi such that

1. For each i, the domain of Φi coincides with that of Pi and its codomain is a
subset of N .

2. A total computable predicate M exists such that, for all i, x and m,

M(i, x, m) = true↔ Φi(x) = m.

Example 3.1 Let us take the Turing machine as a model of computation and let
TIME = {TIMEi}, where TIMEi(x) denotes the number of steps executed by com-
putation Ti(x); if Ti(x) does not halt, then TIMEi(x) has to be considered undefined.
Clearly, TIME satisfies the above constraints.

The next two examples show that the two previous constraints are independent,
that is, neither of them implies the other.

Example 3.2 Again let us take the Turing machine as a model of computation and let
Φi = Ti, for each i. In this case, the first constraint is obviously satisfied. If the second
is also satisfied, then, for all i, x and m, it can be decided whether Ti(x) = m. For any
i, let Tf(i) be a Turing machine such that Tf(i)(x) = 0 if and only if Ti(x) halts (Tf(i)

can be obtained by slightly modifying the program of Ti). Thus asking whether Ti(x)
halts is equivalent to asking whether M(f(i), x, 0) = true. Since M is computable, it

Dynamic complexity measures 35

follows that the halting problem is decidable. Thus, constraint 2 cannot be satisfied and
the first constraint does not imply the second.

Example 3.3 Let Φi(x) = k, for any i and x, with k constant. In this case, it can
immediately be verified that the first constraint is not satisfied, while the second is
satisfied. Hence constraint 2 does not imply constraint 1.

Although the model-independent approach has yielded some very interesting
results (see Notes), we shall proceed within a more specific and practical setting.

3.1.2 Deterministic TIME and SPACE

Complexity theory has developed mainly on the basis of two measures of complex-
ity, namely time and space. In this section we define such measures with respect
to deterministic Turing machines.

The measure TIME has been already defined in Example 3.1 and basically
consists of counting the number of steps executed by a computation.

The measure SPACE could be defined in a similar way, but it should not be!
In fact, if SPACEi(x) denotes the number of tape cells used by the computation
Ti(x), then SPACE does not satisfy the first of the constraints defined in the
previous section (think of a machine cycling on the same cell). On the other hand,
those constraints are so natural and basic to any concept of complexity measure
that they should hold for any such measure.

To overcome this problem we consider SPACEi(x) as undefined whenever Ti(x)
does not halt. We are now faced with a new problem: how can we decide whether
Ti(x) halts? We already know that this problem is not decidable in the general case.
The following lemma, however, states that the same problem becomes decidable
whenever a bound can be put on the number of tape cells used.

Lemma 3.1 Let T be a k-tape Turing machine and let x be an input such that
T (x) uses, at most, h(x) cells on any of the k tapes. Then either T (x) halts after
N = |Σ|h(x)kh(x)k|Q| steps, where Q and Σ denote the set of the states and the
alphabet of T , respectively, or it does not halt at all.

Proof. It suffices to observe that the value N is an upper bound on the number of
distinct global states of T (x). In fact, for any of the |Σ|h(x)k k-tuples of words of
h(x) symbols on alphabet Σ, each of the k heads can be positioned on any of the
h(x) symbols and the state can be any of the |Q| states of T . 2

We conclude that the modified definition of SPACE satisfies both the con-
straints of a dynamic measure of complexity.

To some extent, the previous lemma also states that an upper bound on space
implies an upper bound on time. Conversely, it is clear that a bound on time implies
a bound on space: in t steps, at most, t tape cells can be scanned! Additional
relationships between time and space will be considered in Chapter 8.

36 Complexity classes

3.1.3 Nondeterministic TIME and SPACE

The measure NTIME for nondeterministic Turing machines is the set of functions
NTIMEi where, for any x, NTIMEi(x) denotes

1. The number of steps in the shortest accepting computation path of NTi(x),
if such a path exists, and all computation paths of NTi(x) halt.

2. The number of steps in the shortest computation path of NTi(x), if all com-
putation paths of NTi(x) halt and reject.

3. Undefined, otherwise (that is, a non-halting computation path of NTi(x)
exists).

The measure NSPACE is defined similarly.

3.2 Classes of languages

According to the general definition of an infinite set (see Section 1.1), a class of
languages C will be defined referring to the class of all languages over an alphabet
Σ and to a predicate π that the members of C must satisfy. In general, a class C is
defined as C = {L : L ⊆ Σ∗ ∧ π(L)} or, equivalently, as C = {L : π(L)} when this
does not give rise to confusion.

Example 3.4 The class T of tally languages (see §1.5) can be defined as T = {L : L ⊆
Σ∗ ∧ π(L)} where Σ = {0, 1} and π(L) = true↔ L ⊆ 0∗.

Example 3.5 The class S of sparse languages (see Section 1.5) can be defined as S =
{L : L ⊆ Σ∗ ∧ π(L)} where Σ = {0, 1} and π(L) = true↔ ∃p∀n[|Ln| ≤ p(n)] where p is
a polynomial.

The complement of a class C = {L : π(L)} is defined as coC = {L : Lc ∈ C} or,
equivalently, as coC = {L : π(Lc)}.

Example 3.6 The complement of the class T contains all languages L such that Lc is
tally. Hence, if L ∈ coT , then L contains both all words 0m that do not belong to Lc

and all words in Σ∗ which include at least a 1.

3.2.1 Comparing classes of languages

Most of this book is devoted to classifying problems in complexity classes, studying
the ‘structure’ of those classes and proving (or conjecturing) relations between
them. In this section we present some general techniques that will be widely used
to prove or disprove inclusion results.

Classes of languages 37

In the following we denote by Ci a generic class of languages defined by means
of the predicate πi. Hence, given two classes C1 and C2, proving that C1 ⊆ C2 is
equivalent to proving that, for any language L, π1(L) = true implies π2(L) = true.
Sometimes this implication is quite straightforward (but, unfortunately, life is not
always so easy).

Example 3.7 We have already observed that the class T is contained in the class S
since if L is a tally language, then, for any n, |Ln| ≤ 1.

Example 3.8 Let C1 be the class of languages decidable by deterministic Turing machines
and let C2 be the class of languages decidable by nondeterministic Turing machines. Since
the latter machines are an extension of the former, it follows that C1 ⊆ C2.

In Example 3.8, the predicates πi specify a property of the Turing machines that
decide the members of the class: in the case of C1 the Turing machines have to
be deterministic, while in the case of C2 they have to be nondeterministic. Most
of the complexity classes we will study have similar predicates. In such cases, the
inclusion relation between classes can be proved by using a simulation technique:
given two classes C1 and C2, C1 ⊆ C2 if any machine satisfying predicate π1 can be
simulated by another machine satisfying predicate π2.

Example 3.9 Theorem 2.1 is an example of simulation: it states that any nondetermin-
istic Turing machine can be simulated by a deterministic one. Hence classes C1 and C2
of Example 3.8 coincide.

Once we have proved that a class C1 is contained in a class C2, a natural question
arises: is this inclusion strict? Intuitively, proving that C2 is not contained in C1
consists of finding a separator language, that is, a language L such that L ∈ C2 but
L 6∈ C1. Once again, such a language is sometimes easy to derive.

Example 3.10 We have seen that T ⊆ S. It is easy to define a separator language: one
of the infinitely many such languages is L = 0∗ ∪ 1∗.

In complexity theory the few known separation results were not obtained in such
an easy way but rather by applying the diagonalization technique (see Section 1.3)
in order to derive a language outside of C1. In those cases, it is also necessary to
prove that the diagonal language satisfies predicate π2 (see Notes and Problems).

If we do not succeed in proving that a class C1 is strictly contained in a class C2,
we can still hope to obtain a somewhat weaker result along the same lines. Indeed,
our next step will be looking for languages that are likely candidates for separator
languages.

Formally, let C be a class of languages and let ≤r be a ‘resource-bounded’ re-
ducibility, that is, a generalization of the m-reducibility where f can be any function
computable within some predefined resource bounds. A language L is C-complete
with respect to ≤r if L ∈ C and for any language L′ ∈ C, L′ ≤r L.

38 Complexity classes

Example 3.11 Let R be the class of decidable languages over an alphabet Σ. From
Lemma 2.4, it follows that any language B ∈ R such that B 6= ∅ and B 6= Σ∗ is
R-complete with respect to m-reducibility.

A class C is closed with respect to reducibility ≤r if for any pair of languages L1

and L2 such that L1 ≤r L2, L2 ∈ C implies L1 ∈ C.

Lemma 3.2 Let C1 and C2 be two classes of languages such that C1 ⊂ C2 and C1 is
closed with respect to a reducibility ≤r. Then, any language L that is C2-complete
with respect to ≤r does not belong to C1.

Proof. Since C1 ⊂ C2, then a language L1 ∈ C2 − C1 exists. Let L be a C2-complete
language with respect to ≤r; it follows that L1 ≤r L. If L ∈ C1, then L1 ∈ C1
(recall that C1 is closed with respect to ≤r). This contradicts the hypothesis that
L1 ∈ C2 − C1. 2

The previous lemma has two possible applications: ‘as-it-is’ and ‘as-it-should-
be’. In the first case, if we know that C1 ⊂ C2, the lemma supplies another way,
apart from diagonalization, of obtaining separator languages. In the second case,
if we are only able to conjecture that C1 ⊂ C2 (this will happen quite often!), then
the lemma states that any C2-complete language is likely to be in C2 − C1.

Classes which admit complete languages with respect to specific reducibilities
are of special interest. On the one hand, it is possible to isolate problems for those
classes which capture their computational complexity; on the other, such classes
seem to be more useful since they allow us to characterize the complexity of solving
specific problems. However, complexity classes which do not have such properties
(or at least it is conjectured that they do not) will also be considered, although
the lack of complete languages makes a class less useful from a practical point of
view, and, in a certain sense, more artificial.

3.3 Decision problems and languages

So far we have defined classes of languages. What of our original goal, that is, to
classify the complexity of problems? In this section we can see how the study of a
broad class of problems arising in different areas can be led back to the study of
languages. To this end we define the class of decision problems and show how an
appropriate language can be associated with a specific problem.

Intuitively, a decision problem is one whose instances admit either a ‘yes’ or a
‘no’ answer. The basic ingredients of a decision problem are: the set of instances
or input objects, the set of possible solutions or output objects and the predicate
that decides whether a possible solution is a feasible one. The problem consists of
deciding whether, given an instance, a feasible solution exists.

Thus, a decision problem Π is a triple 〈I, S, π〉 such that

Decision problems and languages 39

1. I is a set of words that encode instances of the problem.

2. S is a function that maps an instance x ∈ I into a finite set S(x) of words
that encode possible solutions of x.

3. π is a predicate such that, for any instance x and for any possible solution
y ∈ S(x), π(x, y) = true if and only if y is a feasible solution.

Solving a decision problem 〈I, S, π〉 consists of deciding, for a given instance
x ∈ I, whether the set {y : y ∈ S(x) ∧ π(x, y)} is not empty.

Example 3.12 shortest path: given a graph G = (N,E), two nodes n1, n2 ∈ N and
a natural number k, does a path between n1 and n2 exist whose length is, at most, k?

In this case, I is the set of words encoding graphs along with two nodes n1 and n2 and
a natural number k; given an instance I, S(I) is the set of words encoding subgraphs of
G; and, for any instance I and for any possible solution G′ ⊆ G, π(I, G′) = true if and
only if G′ is a path between n1 and n2 of length, at most, k.

It should be clear that the above definition depends on how a graph is encoded as a
sequence of symbols. Even though several different ways to describe a graph are known,
they are all interchangeable, namely, given one of them, it is possible to switch quickly
to any other. In other words, all those descriptions are ‘reasonable’ in a sense that we
will specify later.

Example 3.13 knapsack: given a finite set U , two functions c, p : U → N and two
natural numbers k, b ∈ N , does a subset U1 ⊆ U exist such that

∑
u∈U1

p(u) ≥ k and
∑

u∈U1

c(u) ≤ b?

Example 3.14 Game theory has been a rich source of decision problems; the following
is a simple example.

chess: given an initial configuration on the chessboard and a natural number k, can
the white player win in less than k moves independently of the strategy followed by the
black player. More precisely, does a white player’s first move exist such that, for any
black player’s move, a white player’s second move exists such that, for any black player’s
move, . . ., a white player’s hth winning move exists with h ≤ k?

The above definition of a decision problem did not specify the alphabet over
which the words are built. However, since we want to compare problems arising
in different areas and using different alphabets, it seems necessary to ‘translate’
words over an arbitrary alphabet into words over a fixed one. Such a translation
has to be ‘parsimonious’ in the sense that the new word should not be much longer
than the original one. For instance, you should avoid translating binary into unary
numbers. The unary representation would be exponentially longer than the binary
one and the analysis of the algorithms receiving unary numbers as input could
result in unrealistically good bounds. Moreover, the translation has to be efficiently
computable. We do not want to develop efficient algorithms that solve problems

40 Complexity classes

over a fixed alphabet Σ without being sure that representing such problems over
Σ is almost without cost.

The next result shows that the unary alphabets, that is, the alphabets consisting
of exactly one symbol, are, in practice, the only ones to be discarded.

Lemma 3.3 For any pair of alphabets Σ and Γ such that |Γ| ≥ 2, an injective
function f : Σ∗ → Γ∗ exists such that f and f−1 are computable in linear time
and, for any x, |f(x)| = dlog|Γ| |Σ|e|x|.

Proof. Let k be the smallest natural number such that the number of words on Γ
of length k is greater than or equal to |Σ|. It hence suffices to take k = dlog|Γ| |Σ|e.
The function f associates the ith word over Γ of length k to the ith symbol of Σ
(in lexicographic order). Finally, for any word x ∈ Σ∗, f(x) is the concatenation of
the images of the symbols of x. It is clear that, for any x, |f(x)| = dlog|Γ| |Σ|e|x|,
f is injective and both f and f−1 are computable in linear time. 2

Example 3.15 Let Σ = {0, 1, . . . , 9} and Γ = {0, 1}. In this case, k = 4 and, for any
d ∈ Σ, f(d) is the binary representation of d itself (eventually filled with some leading
0s). For instance, f(2) = 0010, f(3) = 0011 and f(32) = 00110010.

The previous discussion allows us to fix an alphabet once and for ever. It also
enables us to use additional symbols whenever they make the exposition clearer.

Let Σ = {0, 1} and let Π be a decision problem. Select any binary encoding of
Π, that is, a function from instances of Π to binary words. With respect to such
an encoding, any word x ∈ Σ∗ belongs to exactly one of the following three sets:

1. The set RΠ of words that do not encode any instance.
2. The set YΠ of words that encode yes-instances.
3. The set NΠ of words that encode no-instances.

The language L(Π) associated to Π is defined as YΠ. This correspondence will
allow us to define complexity classes as classes of languages (instead of problems).
Informally, however, we will speak of the complexity of a problem and will say that
a problem belongs to a given complexity class. In other words, we will identify the
decision problem with its associated language.

Before going further with the definition of time-complexity classes, let us make
a final observation on the representation of a decision problem. We have already
noticed in Example 3.12 that the instances of a problem can be represented in
many different ways. If the fixed representation is ‘unreasonable’ the complexity
of the problem could be hidden in the representation itself. A simple example
should clarify this point.

Example 3.16 longest path: given a graph G = (N,E), two nodes n1, n2 ∈ N and a
natural number k, does a path between n1 and n2 exist having a length of at least k?

Time-complexity classes 41

If an instance of such a problem is represented by listing all the paths in the graph
G, then it is easy to derive an efficient algorithm that solves it: we have merely to look
for the longest path between n1 and n2 and check whether its length is greater than or
equal to k.

On the other hand, if the graph G is represented in a more familiar way, for instance,
by its adjacency matrix, no subexponential time-complexity algorithm that solves the
longest path problem is known.

The previous example shows that we have to be careful in selecting the represen-
tation of a decision problem. Even though any formal definition of a ‘reasonable’
representation would be unsatisfiable, some standard rules can be fixed. For in-
stance, we shall make the following assumptions. Numbers are represented in base
k > 1, sets are represented as sequences of elements delimited by appropriate sym-
bols and, whenever possible, the rules to generate a set will be given instead of the
set itself. Using such standard encodings allows us to assume that all reasonable
representations of a problem are interchangeable, namely, given one of them, it is
possible to quickly switch to any other. In conclusion, we can avoid specifying the
representation of a problem, implicitly assuming that it is reasonable.

3.4 Time-complexity classes

We are now ready to define resource-bounded complexity classes. Intuitively, such
classes are sets of languages that can be decided within a specific time (or space)
bound. In this section, we will focus on time-complexity classes, postponing the
study of the space-complexity ones to a later chapter.

To analyse the complexity of solving a specific problem, we must determine the
amount of resource that an algorithm requires to solve instances of the problem. It
is natural to think that the ‘larger’ the instances, the more resource units the algo-
rithm requires, that is, the bound on the resource should be an increasing function
of the ‘size’ of the instance. In imposing such bounds, we will not consider additive
and multiplicative constants because they depend mostly on the characteristics of
the computation model (alphabet size, number of states, number of tapes, and so
on), while our goal is to develop a theory as general as possible and capable of
capturing the inherent complexity of a problem. For this reason, we shall focus
our attention on the ‘rate of growth’ of the resource requirements rather than on
their precise evaluation.

First, however, note that an algorithm with a rapid growth rate could be more
efficient, for small instances, than another with a smaller growth rate. For instance,
an algorithm whose complexity is 1024n is less efficient than one whose complexity
is 2n, for any instance of size n less than 14. In practice, whenever we know that
the instances to be solved do not exceed a fixed size, an algorithm with a rapid rate
of growth could be preferable to another with a smaller rate of growth. However,
we are theoreticians (more than algorithm developers) and our main concern is

42 Complexity classes

to study how the complexity of problems increases as the instance sizes become
larger.

To formalize the previous discussion, we will define the following notation. Let g
be a total function from N to N . The class O[g(n)] (pronounced ‘big oh’) consists
of all functions f : N → N for which a constant c exists such that, for any n,
f(n) ≤ cg(n).

Example 3.17 Let f(n) = a0 + a1n + a2n
2 + . . . + a6n

6 where a0 . . . , a6 are constants.
It is easy to verify that f(n) 6∈ O[n5], f(n) ∈ O[n6] and f(n) ∈ O[2n].

All upper bounds on the amount of resource units needed to solve a problem
will then be conveniently expressed as O[g(|x|)] where |x| denotes the length of
the word encoding an instance of the problem and g : N → N . Note that since an
instance of a problem is a word over a given alphabet, we have chosen the length of
such a word as representative of the ‘size’ of the instance. Can the reader imagine
any more natural measure of size?

To justify further our use of the O-notation, we finally present an intriguing
result of the theory of computational complexity which states that, with respect
to time, any Turing machine can be ‘speeded up’ by a constant factor. This rather
unintuitive result can be better explained by an example.

Example 3.18 A word x is a palindrome if x = σ1σ2 . . . σnσn . . . σ2σ1 with σi ∈ Σ. Let
L = {x : x is a palindrome}. To decide whether a word x (for instance, x = 3726886273)
belongs to L we can devise a one-tape Turing machine T that scans the leftmost symbol
of x (3) and erases it, moves to the rightmost symbol (3) and checks whether it is equal
to the previously read symbol. If this is not the case, then T (x) rejects, otherwise it
erases the rightmost symbol, moves to the leftmost one and starts the cycle again. If
there are no more symbols, then T (x) accepts.

A more efficient one-tape Turing machine is based on reading pairs of symbols instead
of single symbols. The machine scans simultaneously the two leftmost symbols (3 and
7) and erases them, moves to the two rightmost symbols (3 and 7) and checks whether
they are equal to the previously read symbols. The time-complexity of the new machine
is approximately half that of the original, for almost all inputs.

The basic idea of the previous example is that of memorizing two symbols instead
of one. Let us extend it to all possible algorithms, that is, all possible Turing
machines. Proving that any arbitrary machine can be ‘speeded up’ consists of
showing that another machine exists which simulates the first and executes half
the number of steps. The technique of the previous example is based on the
characteristic of the algorithm in hand (for instance, that the algorithm erases a
symbol once it has been read). To generalize, we can think of a ‘preprocessor’ phase
that compresses the input by substituting any pair of symbols with a symbol of
a richer alphabet. Hence, the faster machine (with a suitable larger set of states)
is able to simulate in one step the original machine’s two steps. Note that if only
one tape is available, then the input compression takes quadratic time, while if at

Time-complexity classes 43

least two tapes are available, then the compression can be realized in linear time.
(Can the reader imagine the consequences of this observation?)

The reader should now be in a position to prove the following speed-up theorem
(see Problem 3.8).

Theorem 3.1 Let L be a language decided by a k-tape Turing machine operating
in TIME(x) ≤ t(|x|). Then, for any natural m, a (k + 1)-tape Turing machine
exists that decides L in TIME(x) ≤ d 1

2m t(|x|)e+ |x|.

In conclusion, the asymptotic complexity seems to be the correct basis on which
we can build our theory of complexity.

3.4.1 Time-constructible functions

To prevent the complexity classes behaving unintuitively, we will impose some
constraints on the functions that bound the resource units. First, it is reasonable
to assume that such functions are at least total and computable. But this is not
enough: strange situations can still be found (see Problem 3.12).

Intuitively, the definition of ‘step-counting’ functions we are going to give is
motivated by the following. Whenever we know that a Turing machine accepts
a language in a given time, it should be desirable to have another machine that
simulates the former machine and is able to decide the same language. In order to
obtain this, we need a ‘clock’ that informs the latter machine when it has to halt
the simulation (otherwise, how could it avoid simulating an infinite computation?).
Clearly, the number of steps made for managing the clock should be negligible
with respect to the number of simulated steps. This brief discussion leads to the
following definition.

A time-constructible function t is a function mapping natural numbers onto nat-
ural numbers such that a multitape Turing machine exists which, for any input
x, halts after exactly t(|x|) steps. It is easy to verify that any time-constructible
function is total and computable (see Problem 3.10). Using such functions makes
setting a ‘timer’ on Turing machines very easy and some hierarchical inclusion
results have been proved between complexity classes defined by means of time-
constructible functions (see Notes and Problems). Even though we do not present
such results, we will still make use only of time-constructible functions. In fact,
all the complexity classes we shall define use either a polynomial function or an
exponential one and, as we shall see in the next example, such functions are time-
constructible ones.

Originally, the time-constructible functions were defined in a slightly different
way. t is a time-constructible function if a multitape Turing transducer T exists
such that, for any natural number n, T (1n) outputs 1t(n) in no more than ct(n)
steps, where c is a constant. It can be shown that the two definitions are equivalent
for a broad class of functions, namely, for all functions f for which an ε > 0 exists

44 Complexity classes

such that f(n) > (1+ ε)n almost everywhere. The second definition is found to be
an easier tool for proving that a function is a time-constructible one.

Example 3.19 For any constant k ≥ 1, the following functions are time-constructible:

1. t(n) = nk.

2. t(n) = 2kn.

3. t(n) = 2nk
.

The proof is based on the above discussion and is left as a problem (see Problem 3.11).

We conclude this section with a lemma showing that time-constructible functions
can grow as fast as any other total computable function (this lemma will also be
used in a later chapter).

Lemma 3.4 For any total computable function f : N → N , a time-constructible
function t exists such that, for any n, t(n) > f(n).

Proof. Let T be a Turing transducer that computes f . Without loss of generality, we
assume that T computes f in unary notation, that is, for any n, T (1n) outputs 1f(n).
Let T1 be a Turing transducer that, for any input x, produces the word y = 1|x|

and then simulates T (y). Obviously, for any input x of length n, the number of
steps executed by the computation T1(x) is always the same. Furthermore, such a
number is greater than f(n) since at least f(n) steps are necessary to output 1f(n).
Thus the function t = TIME1 is a time-constructible function such that, for any
n, t(n) > f(n). 2

3.4.2 Deterministic time-complexity classes

Given a time-constructible function t, the time-complexity class DTIME[t(n)] is
defined as

DTIME[t(n)] = {L : ∃Ti[L = L(Ti) ∧ TIMEi(x) ∈ O[t(|x|)]]}

(Note that since the number of steps is bounded by a time-constructible function,
we can assume that Ti halts for every input.)

The first three lemmas of this section show three properties of deterministic
time-complexity classes. The first states that such classes are closed with respect
to the complement operation.

Lemma 3.5 For any time-constructible function t,

DTIME[t(n)] = coDTIME[t(n)].

Time-complexity classes 45

Proof. It suffices to observe that, for any deterministic Turing machine which de-
cides a language L within a given time, a deterministic Turing machine deciding Lc

within the same time can be obtained by simply reversing the roles of the accepting
and rejecting states. 2

The next lemma states that deterministic time-complexity classes are closed
under finite variations and it will be widely used (either explicitly or implicitly) in
the rest of the book.

Lemma 3.6 For any time-constructible function t such that t(n) ≥ n and for any
pair of languages L1 and L2 which differ for finitely many words, L1 ∈ DTIME[t(n)]
if and only if L2 ∈ DTIME[t(n)].

Proof. Since L1∆L2 is finite, we can use the hardware of a machine, that is, a
finite number of quintuples to decide words in that set. More precisely, given a
deterministic Turing machine T1 which decides L1, we derive a deterministic Turing
machine T2 which decides L2 within the same time as the former machine by adding
a finite number of states specialized in deciding words in L1∆L2. Initially, T2 scans
the input x to check whether either x ∈ L1−L2 (and thus rejects x) or x ∈ L2−L1

(and thus accepts x). If this is not the case, then T2 merely simulates T1. Since
the pre-simulation phase can be executed in linear time and by our assumption on
t, it follows that if L1 ∈ DTIME[t(n)], then L2 ∈ DTIME[t(n)].

By a similar argument, we can prove that if L2 ∈ DTIME[t(n)], then L1 ∈
DTIME[t(n)]. 2

An immediate consequence of the previous lemma is the following corollary.

Corollary 3.1 For any finite language L and for any time-constructible function
t such that t(n) ≥ n, L ∈ DTIME[t(n)].

Proof. It is clear that, for any time-constructible function t, the empty set belongs
to DTIME[t(n)]. Since, for any finite language L, L∆∅ is finite, the corollary
follows from the previous lemma. 2

The third and last lemma shows that deterministic time-complexity classes are
constructively enumerable.

Lemma 3.7 For any time-constructible function t, an enumerable set {Ti : i ≥ 1}
of deterministic Turing machines exists such that

1. DTIME[t(n)] = {L : ∃i[L = L(Ti)]}.
2. A Turing machine T exists such that, for any i and x, T (i, x) = Ti(x), that

is, the enumeration is effective.

Proof. Let T ′
1, T

′
2, . . . be any enumeration of all deterministic Turing machines and

let Tt be a deterministic Turing machine witnessing the time-constructibility of t,
that is, for any input x, Tt(x) halts after exactly t(|x|) steps.

46 Complexity classes

For any pair of natural numbers j and c, let T〈j,c〉 be the Turing machine operating
as follows. For any x, simulate ct(|x|) steps of T ′

j(x); if T ′
j(x) does not halt in such

a time, then halt in the rejecting state, otherwise halt according to T ′
j(x). Note

that since t is time-constructible, T〈j,c〉 can be implemented so that it works in time
O[t(|x|)]. The following is a general description of the machine:

1. Initialize a counter to c (even in unary, if that is more convenient).
2. Simulate one step of T ′

j(x) and if T ′
j(x) halts, then halt accordingly.

3. Simulate one step of Tt(x). If Tt(x) does not halt, then go to step 2. Otherwise
if the counter is equal to 1, reject; otherwise decrement the counter, ‘restart’
Tt and go to step 2.

The ith machine of the effective enumeration is then defined as Ti = T〈j,c〉 where j
and c are the numbers encoded by i (see Section 1.3.2).

If a language L belongs to DTIME[t(n)], then a pair of natural numbers j and
c exists such that L is decided by T ′

j and, for any x, T ′
j(x) halts in a time of, at

most, ct(|x|). It follows that L = L(Ti) where i is the natural number associated
to j and c. Hence, DTIME[t(n)] ⊆ {L : ∃i[L = L(Ti)]}.

Conversely, let L = L(Ti) for some i. Since Ti works in time O[t(|x|)], it follows
that L ∈ DTIME[t(n)]. Hence, {L : ∃i[L = L(Ti)]} ⊆ DTIME[t(n)] and condition
1 is satisfied.

Finally, it is easy to derive a Turing machine such that, for any i and x, T (i, x) =
Ti(x). Indeed, such a machine has to extract from i the two numbers j and c and
by making use of the universal Turing machine as a subroutine (see Section 2.1.1)
it has to simulate T ′

j(x) for, at most, ct(|x|) steps. 2

Note that while Lemmas 3.5 and 3.6 do not rely on the time-constructibility of
function t, Lemma 3.7 depends heavily on it. However, it is possible to obtain the
same result even if t is assumed to be merely total and computable (see Problem
3.15).

Note also that in the hypothesis of Lemma 3.6 we have assumed that the bound-
ing function grows at least linearly. But let us consider the following question:
which are the most elementary time-complexity classes? It should be clear that,
according to the reasonable encoding assumption (see Section 3.3), all machines
must read all input symbols since systematically ignoring some of them would im-
ply an unreasonable encoding of the input. Thus the smallest class consists of
languages decidable in linear time and the hypothesis of the lemma is not at all
restrictive (this result is no longer valid for other models of computation such as
RAMs for which sublinear time-complexity classes can be defined).

3.4.3 Nondeterministic time-complexity classes

Since the nondeterministic Turing machines are an extension of the deterministic
ones, it seems reasonable to extend our definition of the time-complexity class by

The pseudo-Pascal language 47

replacing the decidability by deterministic Turing machines with the decidability
by nondeterministic Turing machines.

Given a time-constructible function t, the time-complexity class NTIME[t(n)]
is defined as

NTIME[t(n)] = {L : ∃NTi[L = L(NTi) ∧NTIMEi(x) ∈ O[t(|x|)]]}

(Note that, since the number of steps in a computation is bounded by a time-
constructible function, we can assume that, for any input x, all computation paths
of NTi(x) halt.)

The reader can easily verify that Lemmas 3.6 and 3.7 still hold true in the case of
nondeterministic time-complexity classes. One of the main open questions in com-
plexity theory, however, is whether Lemma 3.5 holds true in the nondeterministic
case. The reader should try to understand why the proof of that lemma cannot be
generalized for nondeterministic Turing machines.

3.4.4 Relativized time-complexity classes

In the following, given a complexity class C (either deterministic or nondetermin-
istic), CX denotes the complexity class defined by making use of Turing machines
with oracle X. For instance, the class DTIMEX [t(n)] denotes the set of languages
L for which a deterministic Turing machine with oracle X exists such that TX de-
cides L in TIME(x) ∈ O[t(|x|)]. The importance of such classes will be clarified
in later chapters.

3.5 The pseudo-Pascal language

Although our basic model of computation is the Turing machine, we do not want
to describe our algorithms in terms of such primitive machines but we shall prefer
to make use of a high-level programming language, called pseudo-Pascal. Such a
language uses such familiar programming language constructs as if-then-else or
while-do. It also makes use of two special ‘halt’ instructions, that is, accept and
reject. Moreover, plain English sentences or familiar mathematical notations will
often be used inside statements and that is why we call such a language pseudo-
Pascal. The goal of this informal notation is only to provide a more succinct
description of algorithms. All pseudo-Pascal programs which will be introduced
can be translated into RAM programs.

Assuming that the size of the numbers to be dealt with is polynomially related
to the length of the input, from Theorem 2.2 it follows that any RAM program can
be translated into a Turing machine with only a polynomial loss of efficiency (that
is, t steps executed by the RAM can be simulated with ctk steps of the Turing
machine, where c and k are constants).

48 Complexity classes

Finally, to describe nondeterministic algorithms we will make use of an additional
construct:

guess variable in finite set.

Intuitively, this statement causes a nondeterministic algorithm to branch into as
many computation paths as the cardinality of the finite set, with the value of the
variable along the ith computation path being equal to the ith element of the finite
set. Once again, if for any i, the ith element of the finite set can be generated in
polynomial time, such a statement can be simulated by a nondeterministic Turing
machine with a polynomial loss of efficiency.

Problems

3.1. Given a dynamic measure Φ, consider a new measure Φ′ defined as Φ′
i(x) =

Φi(x)f(i, x) where f is any total computable function. Is Φ′ a dynamic measure?

3.2. Given a deterministic one-tape Turing machine Ti, let mi denote the function which
computes, for any x, the maximum number of consecutive moves of the head in the same
direction during the computation Ti(x). Furthermore, let si denote the function which
computes, for any x, the maximum number of times a cell has been scanned during
the computation Ti(x). Is the set Φ = {Φi} a dynamic measure, where, for any x,
Φi(x) = max{mi(x), si(x)}?

3.3. Define mi and si as in the previous problem and let ri denote the function which
computes, for any x, the reversals of the computation Ti(x) (the reversals associated with
a computation correspond to the number of times the tape heads changes direction). Is
Φ = {Φi} a dynamic measure, where, for any x, Φi(x) = max{mi(x), si(x), ri(x)}?

3.4. Show that dynamic measures do not differ greatly from each other. In particular,
prove that, for any two dynamic measures Φ and Φ′, a total computable function f exists
such that f(x, Φ′

i(x)) ≥ Φi(x) and f(x, Φi(x)) ≥ Φ′
i(x) for all i and almost all n. [Blum

(1967a)]

3.5. Given two classes of languages C1 and C2, prove that C1 ⊆ C2 if and only if coC1 ⊆
coC2.

3.6. Show that, for any class C, if L is any C-complete language with respect to m-
reducibility, then Lc is coC-complete.

3.7. Given two alphabets Σ and Γ, derive an injective function f which maps pairs of
words over Σ onto words over Γ and such that both f and f−1 are linear-time computable.
[Hint: Consider a symbol not in Σ in order to associate a single word of the enriched
alphabet with each pair of words over Σ, and then make use of Lemma 3.3.] Further,
generalize the previous pairing function in order to encode tuples of fixed length. [Hint:
define the encoding of k-tuples by means of the encoding of (k − 1)-tuples.] Finally,

Notes 49

derive an encoding for tuples of varying length. [Hint: note that, in this case, it is also
necessary to know the length of the sequence.]

3.8. Prove Theorem 3.1.

3.9. Prove the tape compression theorem. Let L be a language decided by a k-tape
Turing machine operating in SPACE(x) ≤ s(|x|). Then, for any natural m, a k-tape
Turing machine exists that decides L in SPACE(x) ≤ d 1

2m s(|x|)e.

3.10. Show that any time-constructible function is total and computable.

3.11. Given two time-constructible functions t1 and t2, prove that functions t1 + t2,
t1t2 and 2t1 are also time-constructible. [Hint: compute the constituent functions first
and then compose the results in a suitable way.] By making use of this result, prove
that all functions in Example 3.19 are time-constructible. [Hint: prove that t(n) = n is
time-constructible.]

3.12. Prove that a computable function f : N → N exists such that DTIME[f(n)] =
DTIME[2f(n)]. This result, called the gap theorem, shows that whenever the complexity
classes are not defined by means of time-constructible functions, very unintuitive phe-
nomena can occur. [Hint: define f so that no Turing machine with an input of a length
n halts after a number of steps between f(n) and 2f(n).]

3.13. Given a time-constructible function t1, derive a time-constructible function t2 such
that DTIME[t1(n)] ⊂ DTIME[t2(n)]. [Hint: consider the language Lhalt−f = {〈i, x〉 :
Ti(x) accepts in, at most, f(|x|) steps} where f is a time-constructible function.] Two
immediate consequences of this result are: (a) an infinite hierarchy of deterministic time-
complexity classes exists and (b) no time-constructible function t exists such that any
decidable language belongs to DTIME[t(n)].

3.14. Show that no algorithm exists which, for any time-constructible function t and for
any language L, decides whether L ∈ DTIME[t(n)]. [Hint: derive a reduction from Lhalt

by associating a language L to any pair 〈i, x〉 such that L ∈ DTIME[t(n)] if and only if
Ti(x) halts. Make use of the previous problem and of Lemma 3.6.]

3.15. In the text it is stated that Lemma 3.7 still holds if the bounding function is only
total and computable. Prove that statement. [Hint: derive an enumeration of languages
which either are finite or belong to the complexity class. This exercise is not a waste of
time: similar proof techniques will be used in the rest of the book.]

3.16. Prove that, for any time-constructible function t, NTIME[t(n)] ⊆ DTIME[2t(n)].

Notes

At the very beginning of the 1960s it was clear that a general theory that studied
the difficulty of computing functions had to be developed. Indeed, the first attempt
to make a systematic approach to computational complexity was made by Rabin

50 Complexity classes

(1960). Since then this area of research has been an essential part of the theoretical
work in computer science. It would be impossible to mention all the papers and
results that have influenced this discipline during the last thirty years. Our choices
will inevitably be incomplete and unsatisfactory. Hence, whenever possible, we will
mention surveys and reviews which can be used for further references.

The size of programs was studied in Blum (1967b). For other examples of static
measures of complexity, the reader should also see Li and Vitany (1990).

The axiomatic study of model-independent dynamic measures of complexity (as
presented in this book) was formulated by Blum (1967a). In this work, influenced
by Rabin (1960), the two constraints that a dynamic measure must satisfy were de-
fined, and on the basis of these constraints some interesting results were obtained.
Hartmanis and Hopcroft (1971) and Machtey and Young (1978) provide two good
overviews of the results obtained using this line of research. A more recent presen-
tation of machine-independent complexity theory is contained in Seiferas (1990)
which is also a good pointer to the literature to date.

The discussion on reasonable representations and, in general, on the relation
between decision problems and languages was partly influenced by the pioneering
textbook of Garey and Johnson (1979).

The O-notation was proposed by Knuth (1968) in his ‘bible’ on the design and
analysis of algorithms and is based on well-known mathematical notations.

The first systematic analysis of specific complexity measures, namely time and
space, is due to Hartmanis and Stearns (1965) and to Stearns, Hartmanis and Lewis
(1965). But almost at the same time the papers by Cobham (1964) and Edmonds
(1965) appeared which were both concerned with the study of quantitative aspects
of computation.

The paper by Hartmanis and Stearns (1965) contains almost all we know about
inclusion relations between time-complexity classes (see the problems section).
Most of these results have already appeared in textbooks on theoretical computer
science and for this reason, we have decided not to present them here, leaving the
choice of the preferred presentation to the reader.

The main grounds for considering time-constructible functions instead of total
computable ones is the so-called Gap Theorem mentioned in Problem 3.12. Intu-
itively such a theorem states that a total computable function f exists such that
an arbitrarily large gap exists beyond f in which no function’s complexity can lie.
This rather unintuitive phenomenon was proved in Borodin (1972) and in a slightly
weaker form in Constable (1972) and Young (1973). The equivalence between the
two definitions of time-constructibility appeared in Kobayashi (1985).

Chapter 4

The class P

In this chapter we shall consider a first complexity class, called P, which includes
all problems solvable in polynomial time. The importance of such a class derives
from the fact that it includes all ‘simple’ problems, that is, those that are com-
putationally tractable. Let us try to understand why this is so. In practice, we
are saying that all problems solvable by algorithms requiring an hyperpolynomial1

number of steps must be considered, in the general case, to be computationally
untractable.

The following example which compares the performance of polynomial-time and
exponential-time algorithms makes the difference quite clear.

Example 4.1 Consider a problem and assume that five algorithms A1 through A5 exist
to solve it whose complexity are illustrated in Table 4.1. Assume also that the machine
running them requires 10−9 seconds to execute a single step. The execution times of the
five algorithms are represented in the table in terms of increasing instance sizes.

Table 4.1 An example of polynomial and exponential times
versus instance sizes

Instance Algorithm/complexity
size n A1/n2 A2/n3 A3/n5 A4/2n A5/3n

10 0.1 µs 1 µs 0.01 ms 1 µs 59 µs
30 0.9 µs 27 µs 24.3 ms 1 s 2.4 days
50 2.5 µs 0.125 ms 0.31 s 13 days 2.3× 105 centuries

By choosing a somewhat more favorable time bound, for instance a subexpo-
nential one such as klogh(n) with h and k constant, the differences would be less

1A function is hyperpolynomial if it grows faster than nk for any fixed k.

51

52 The class P

significant for small values of n but they would reappear as n becomes larger. We
can then conclude that, if our objective is to use a computer to solve a problem
whose description includes relatively many elements, a necessary condition for ob-
taining an acceptable computation time is to solve the problem by making use of
a polynomial-time algorithm. We shall see in Section 4.1.1 that this condition is
necessary albeit not sufficient.

A formal definition of the class P is given in Section 4.1 with some significant
examples of problems included in such a class. In Section 4.2 it is shown how the
definition of P is relatively invariant with respect to the model of computation con-
sidered. Next, we introduce a restriction of the m-reducibility called polynomial-
time reducibility which will be a basic tool in studying the properties of complexity
classes. Finally, in Section 4.4, we will extend the diagonalization technique in-
troduced in Section 1.3.3 to more than one class. More precisely, we will show
how a diagonal language which does not belong to the union of two classes can be
obtained and still be polynomially reducible to two languages known a priori not
to be included in those classes.

4.1 The class P

Let pk(n) = nk and let DTIME[pk(n)] be the corresponding deterministic time-
complexity class. The class P is defined as

P =
⋃
k≥0

DTIME[pk(n)]

Since polynomials q(n) = a0 + a1n+ a2n
2 + . . .+ akn

k of degree k belong to O[nk],
class P coincides with the infinite union of all time-complexity classes DTIME[t(n)]
where t is a polynomial having a finite degree.

Informally, we shall say that an algorithm requires polynomial time if it runs in
O[nk] steps where n denotes the problem size and k is a constant. Similarly, we
shall define the class FP as the class of all functions computable in polynomial-time
by a deterministic transducer Turing machine.

Let us introduce a few initial members of P and FP. Tens of thousands of fasci-
nating polynomial-time algorithms have been designed to solve problems arising in
many different areas. We refer the reader to appropriate texts on algorithmics (see
Notes) for an exhaustive treatment and we shall content ourselves with describing
three significant problems.

Example 4.2 The greatest common divisor (GCD) of two integers a and b is defined to
be the largest integer that divides both a and b. For example, the GCD of 24 and 30
is 6. We may derive an algorithm for GCD by observing that, if r is the remainder of
a divided by b (a ≥ b), then the common divisors of a and b coincide with the common
divisors of b and r. In symbols, GCD(a, b) = GCD(b, r) with r = a mod b.

The algorithm can then be stated as follows:

The class P 53

function GCD(a, b): integer;
begin

if b = 0 then GCD := a else GCD := GCD(b, a mod b)
end;

We have to show that GCD halts for all pairs a, b. In fact, we shall prove that, at
most, log(b) recursive calls are needed.

Let 〈ak−1, bk−1〉, 〈ak, bk〉, 〈ak+1, bk+1〉 be three successive pairs in the reduction process;
let us show that bk−1 ≥ bk + bk+1. First note that ak = qbk + bk+1 for some integer q ≥ 1.
Thus, ak ≥ bk + bk+1. Since bk−1 = ak, then bk−1 ≥ bk + bk+1. From this last inequality
it is easy to see that b = b0 ≥ 2k/2bk for any even k ≥ 2 (see Problem 4.8). Therefore,
the number of steps k must be less than the logarithm of b. Hence, the time complexity
of GCD is logarithmic with respect to the value of the numbers and linear with respect
to the input length. This concludes the proof that GCD belongs to FP.

The next example refers to a problem introduced in Example 3.12.

Example 4.3 Recall that the shortest path problem consists of determining whether
a path of length, at most, k exists between a pair of nodes n1 and n2 of an input graph
G. We are now able to prove that this problem belongs to P.

The proposed algorithm makes use of a dynamic programming technique. Denote by
n the number of nodes of G and let Ah(i, j) be the length of the shortest path from node
i to node j going through no node with an index greater than h. We then obtain

Ah+1(i, j) = min{Ah(i, h + 1) + Ah(h + 1, j), Ah(i, j)},

that is, either a shortest path from i to j going through no node of index greater than
h + 1 passes through node h + 1 or it does not. By construction, the entry An(n1, n2)
yields the value of the shortest path between n1 and n2. If the value is not greater than
k, then the shortest path instance admits a yes answer. The algorithm can then be
described as follows:

begin {input:G, n1, n2, k}
n := number of nodes of G;
for all i, j ≤ n do
{derive adjacency matrix A1 from G}
if G includes an edge 〈i, j〉 then A1[i, j] := 1 else A1[i, j] := ∞;
for h := 2 to n do

for all i, j ≤ n do
Ah[i, j] := min(Ah−1[i, h] + Ah−1[h, j], Ah−1[i, j]);

if An(n1, n2) ≤ k then accept else reject;
end.

Clearly, the number of steps required by the algorithm is O[n3].

54 The class P

The last example is a decision problem related to a basic property of Boolean
formulas called satisfiability.

Example 4.4 Let U = {u1, u2, . . . , un} be a set of n Boolean variables. A Boolean
formula f is said to be in conjunctive normal form if it can be expressed as a conjunction
of m clauses Ci such as

f = C1 ∧ C2 ∧ . . . ∧ Cm

where each clause Ci, in turn, is a disjunction of literals such as

Ci = (li1 ∨ li2 ∨ . . . ∨ lik).

Finally, each literal lij denotes either a Boolean variable or a negated Boolean variable
in U .

An assignment of values for U is a function t : U → {true, false} which assigns to
each variable the Boolean value true or false. A literal l is true if either l = uh and
t(uh) = true or l = ¬uh and t(uh) = false. A clause is satisfied by an assignment if at
least one literal included in it is true. The formula f is satisfied if all the m clauses are
satisfied.

We are now ready to define the 2-satisfiability problem. Given a Boolean formula
f in conjunctive normal form such that each clause contains exactly two literals, does
an assignment of values satisfying f exist? The objective is to guess the value of an
arbitrary variable and to deduce the consequences of this guess for other variables of f .

Initially, all clauses are declared unsatisfied. A starting variable x is selected arbitrar-
ily and x and ¬x receive the values true and false, respectively. The assignment is
then extended to as many variables as possible by repeated applications of the following
elementary step:

Take an arbitrary unsatisfied clause (lh∨lk). If one of the two literals has the
value true, then declare the clause satisfied. Otherwise, if one of the literals,
say lh, has the value false, then assign to lk and ¬lk the values true and
false, respectively. Declare the clause (lh ∨ lk) satisfied.

Three exclusive cases may occur:

1. During the execution of any step, a conflict takes place while the algorithm at-
tempts to assign the value true to a literal which is already false. This means
that the initial guess of the value of the starting variable was wrong. Thus all
the steps starting from the assignment of the value true to x are cancelled. This
time x and ¬x receive the values false and true, respectively, and the assignment
procedure starts again. If a second conflict occurs, the algorithm stops and f is
declared unsatisfiable.

2. No conflict occurs and all variables receive a value. Then the formula is satisfiable.

The class P 55

3. No conflict occurs but some variables remain unassigned. This may only happen
when, for every unsatisfied clause, literals appearing in that clause are unassigned.
In this case, we may ignore the clauses already satisfied and work on the reduced
formula consisting only of the remaining unsatisfied clauses. Clearly, the reduced
formula is satisfiable if and only if the previous one is also satisfiable. A guess is
then made for an arbitrary variable, and the assignment procedure is again applied
to the reduced formula.

The algorithm can then be stated as follows:

begin {input: f}
C := set of clauses of f ;
declare the clauses of C unsatisfied;
V := set of variables of f ;
declare the variables of V unassigned;
while V contains a variable x do
begin

assign the value true to x;
firstguess := true;
while C contains an unsatisfied clause c = (l1 ∨ l2) with
at least one assigned literal do
begin

if l1 = true ∨ l2 = true then
declare c satisfied

else if l1 = false ∧ l2 = false then
begin

if not firstguess then reject
else
begin

declare the clauses of C unsatisfied;
declare the variables of V unassigned;
assign the value false to x;
firstguess := false;

end
end
else if l1 = false then assign the value true to l2
else assign the value true to l1;

end;
delete from C the satisfied clauses;
delete from V the assigned variables;

end;
accept;

end.

It is easy to verify that the previous algorithm decides 2-satisfiability in O[nm]
steps. The 2-satisfiability problem may be considered to be the simplest of a series
of satisfiability problems which will be considered in the following chapters.

56 The class P

4.1.1 Polynomial-time untractable problems

Although the class P is usually associated with the class of computationally tracta-
ble problems, it also includes many ‘natural’ problems which cannot in practice be
solved by computers. Let us examine why this occurs.

The first reason is the high degree of the polynomial. While it is correct to state
that the majority of the existing polynomial-time algorithms are characterized by
a low degree (not higher than 5 or 6), it is also true that many problems exist for
which the only known algorithms run in O[nk] steps with k constant but arbitrarily
large.

Example 4.5 Given a graph G = (N,E), the problem k-clique consists of deciding
whether G admits a complete k-node subgraph, that is, a clique of size k with k constant.

The only algorithm known to solve this type of problem consists of considering exhaus-
tively all possible k-node subsets of G, checking, for each subset, whether the induced
subgraph is a clique. The running time of the algorithm grows with the number of dis-
tinct subsets to be considered and is O[nk] where n denotes the number of nodes of
G.

Thus, for a sufficiently large k, this problem must be considered computationally
untractable.

The second reason is the high values of the constants. Remember that the exact
number of steps of a polynomial-time algorithm is bounded by c1n

k with c1 and k
constants. On the other hand, it is true that the great majority of such algorithms
make use of relatively small constants so that the dominant time-complexity factor
is nk, but we cannot rule out a priori the existence of algorithms with very large
constants.

The third and even more important reason why not all problems in P can be
considered computationally tractable is now briefly outlined. Remember that,
according to the definition of time-complexity classes introduced in Section 3.4, a
language belongs to a given class if a Turing machine exists which decides that
language within the given time bounds. In most cases it is possible to prove in a
constructive way that a language belongs to that class, that is, we can describe
the characteristics of the Turing machine which decides it.

Could there be occurrences where we are only able to state that such a machine
must exist although we are unable to describe it? In other words, do languages
exist for which it is only possible to prove that they belong to a given class in
a non-constructive way ? The answer is yes, although we will not be able to
present the lengthy proofs of the series of fascinating theorems which establish the
above results. The interested reader will find in this chapter’s Notes an exhaustive
bibliography for this research field.

For the sake of curiosity, we limit ourselves in the next example to presenting
a decision problem which can be shown to belong to P in a non-constructive way,
although no constructive algorithm, no matter how time consuming, is currently
known to solve this problem.

The robustness of the class P 57

w
w

w

w
w

�
��
�

HH
HH

B
B
BB

C
CQ

Q
Q
Q
Q
Q

!!! w
w

w
w

w

w
w

w
,
,
,
,
,
,T
TT

�
�

�
�
��

PPPPPP

J
J
JJ

�
��

��
��
�
��
�B
B
B
B
B
BB

JJ

Trivial knot Non-trivial knot

Figure 4.1 Examples of knots

Example 4.6 An embedding of a graph G into three-dimensional space R3 is a corre-
spondence which associates nodes with points and edges between pairs of nodes with
lines connecting the corresponding points. Furthermore, lines must not have points in
common (except those corresponding to edges with a common node which have exactly
one end point in common).

Consider an embedding of G in R3; any cycle in G becomes a closed line in R3.
Informally, a closed line represents a knot if it cannot be stretched into a circle (also
called a trivial knot). Figure 4.1 illustrates two embedded cycles corresponding to a
trivial and a non-trivial knot, respectively.

The knotlessness decision problem consists of deciding whether an arbitrary graph
G can be embedded without knots.

In conclusion, it is fair to say that the class P has a much richer structure than
was initially considered and that much work remains to be done to characterize
the untractable problems in P from a theoretical point of view.

4.2 The robustness of the class P

An important characteristic of class P is that it is, to some extent, large enough to
accomodate not only the basic Turing machines and RAMs described in Sections
2.1 and 2.1.5, respectively, but also several variations of such models. In other
words, it is always possible to transform a polynomial-time algorithm obtained for
one of these latter models into a polynomial-time algorithm applicable to a basic
model.

We already know from Theorem 2.2 how to simulate t steps of a RAM in O[t3]
steps on a three-tape Turing machine. Conversely, we discussed in Problem 2.13

58 The class P

how to simulate t steps of a Turing machine in O[t] steps on a RAM. Thus the two
basic models of computation considered in Chapter 2 are polynomially related.

Let us consider a first variation relative to the number of tapes used by the
Turing machine.

Lemma 4.1 Given any k-tape Turing machine T with k > 1, it is always possible
to derive from it an equivalent one-tape Turing machine T ′ which simulates the
first t steps of T in O[t2] steps.

Proof. We dedicate k consecutive cells of the single tape of T ′ to storing the set of
symbols contained in the ith cells (i = 0, 1, . . .) of the k tapes of T . The k tape
heads of T ′ are simulated by making use of suitable marked symbols. If the hth
tape head is scanning the symbol a, then the tape of T ′ will contain the marked
symbol ah. By convention, after a quintuple of T has been simulated, the (real)
tape head of T ′ is assumed to be positioned on the leftmost marked symbol. The
simulation of a quintuple of T proceeds as follows. First, the k marked symbols are
scanned sequentially rightward to determine the quintuple of T to be simulated.
Next, the tape is scanned k times rightward to replace the old symbols with the
new ones and to simulate the k tape moves. Assume that a left (respectively,
right) move must be simulated relative to tape h. This is accomplished by shifting
the tape head k positions to the left (respectively, right) and by replacing the
symbol currently scanned, say a, with the marked symbol ah. Some caution must
be exercised when simulating a left move since the tape is semi-infinite. These
situations are easier to deal with by making use of special end-of-tape symbols, say
#, so that whenever the symbol to be marked is a #, T ′ shifts back k positions
to the right and marks the new symbol currently scanned in agreement with the
convention that a left move from cell 0 is replaced by a still move.

Figure 4.2 illustrates a simple example on a two-tape machine; the tape heads
are positioned on symbols c and f , respectively, as shown in (a). The quintuple to
be simulated replaces c with x, f with y and then performs a left move on tape 1
and a right one on tape 2. As a result, the tape heads will be positioned as shown
in (b). The simulation on a single tape is shown in (c) and (d).

Since the simulation of one step of T requires O[t] steps of T ′, the O[t2] bound
is achieved. 2

Another interesting variation concerns the characteristics of the tape. A tape is
said to be two-way infinite if it extends arbitrarily both to the left and to the right
of the tape head. We assume that the cells of a two-way infinite tape are indexed
as . . . ,−2,−1, 0, 1, 2, . . . and that cell 0 is the cell scanned at the beginning of the
computation.

Lemma 4.2 Given a two-way infinite k-tape Turing machine T2w, it is always
possible to derive from it an equivalent k-tape Turing machine T that simulates
the first t steps of T2w in O[t] steps.

The robustness of the class P 59

?

?

?

?

Tape 1

Tape 2

?

?

(a) (b)

(c)

(d)

a b c d 2 # a b x d 2

e f g h 2 # e y g h 2

a e b f2 c1 g d h 22

a e2 b y x g d1 h 22

Figure 4.2 Compacting two tapes into one

Proof. For simplicity, we shall consider one-tape machines although the construc-
tion can be readily extended to k-tape machines. Let us map the indices i of the
two-way infinite tape in the order 0,−1, 1,−2, 2,−3, 3, . . . on the indices j of the
one-way infinite tape. For any state q of T2w, T includes two states qp and qn

which, intuitively, discriminate positive from negative cells. The simulation of a
right move is then made according to the following rules. If the state is a ‘positive’
one, then the head is moved two positions to the right; otherwise it is moved 2
positions to the left. Once again, some caution must be exercised on the boundary
between positive and negative cells. When the right move is made from cell −1
(that is, in a negative state), T scans the end-of-tape symbol while attempting to
perform two left moves. In this case, it will move one cell rightward and enter a
positive state (see Figure 4.3). Similar rules apply to the simulation of a left move.
2

Variations of RAMs can also be considered. In fact, it could be observed that
the set of instructions listed in Section 2.1.5 is rather too strict to allow an easy
formulation of complex algorithms.

The following example introduces a few useful new RAM instructions which
transform the basic RAM model into an extended one polynomially related to the
first.

60 The class P

? ?

0 -1 1 -22 # 0 -1 1 -22

After the right moveBefore the right move

Figure 4.3 A right move from cell -1

Example 4.7 The instruction Mi ← 1 can be replaced by the more general one Mi ← c
where c denotes a constant (we did not do this previously in order to simplify the proof
of Lemma 2.2).

The division by 2 instruction Mi ← bMj/2c can also be replaced by a general division
operation of the form Mi ← bMj/Mkc since this last instruction can be simulated by
executing O[|mk|] divisions by 2 of Mj where mk denotes the contents of Mk.

Some caution must be exercised, however, in adding multiplication instructions of the
form Mi ← Mj ∗Mk because the length of the product may be twice as large as the
length of the multiplicands. Clearly, it is possible to derive a number as large as 22n

by
performing only n multiplications. Thus a polynomial number of multiplications may
yield, in the general case, a number whose length is exponential with respect to the input
length. Only if this does not occur, that is, only if we are certain that the RAM program
does not make such an unconventional use of multiplications, are we allowed to claim
that the extended model is polynomially related to the basic one.

Many more examples of variations could be added to the basic Turing and RAM
models but by now the reader should be convinced of the robustness of class P.

4.3 Polynomial-time reducibility

How can we prove (constructively) that a problem belongs to P? The most natural
way is to derive a polynomial-time algorithm solving the problem (this has been
done in Examples 4.2–4.4). An alternative way consists of reducing the problem to
another one already known to be in P. Clearly, some polynomial-time restrictions
to the reducibility introduced in Section 2.3.1 have to be added. We then introduce
the following definition.

Given two languages L1 and L2, L1 is polynomially reducible to L2, in symbols,
L1 ≤ L2,

2 if a function f ∈ FP exists such that

x ∈ L1 ↔ f(x) ∈ L2.

2Although the correct notation should be L1 ≤p
m L2, we shall prefer the simpler one ≤,

omitting both subscript and superscript.

Polynomial-time reducibility 61

The following lemma shows that the ≤-reducibility can effectively be applied to
prove the P membership of problems.

Lemma 4.3 Let L1 and L2 be two languages such that L1 ≤ L2 and L2 ∈ P.
Then L1 ∈ P.

Proof. It suffices to compose the Turing transducer that computes the reduction
with the Turing machine that decides L2. Since a composition of polynomials is
still a polynomial, the lemma follows. 2

As a first trivial application of the previous lemma, let us consider the following
example.

Example 4.8 Given a graph G = (N,E), the 2-colorability problem consists of
deciding whether a total function f : N → {1, 2} exists such that f(u) 6= f(v) whenever
〈u, v〉 ∈ E. Suppose we do not want to design a polynomial-time algorithm to solve that
problem (we do not wish to solve Problem 4.12) but we prefer to rely on the algorithm
given in Example 4.4 to solve 2-satisfiability. We then have to set up a polynomial-
time reduction between the two problems. This can be done quite easily by associating a
Boolean variable xi with each node ni of the graph and by associating the pair of clauses
(xi∨xj) and (¬xi∨¬xj) with each edge (ui, uj). These two clauses express the fact that
the two variables cannot be simultaneously true or simultaneously false.

More interesting applications of Lemma 4.3 have been obtained. One example
is the reduction of the maximum matching problem in bipartite graphs to the
maximum flow one which yields an efficient algorithm to solve the first problem
(see Notes). However, the main applications of polynomial-time reducibilities will
be described in the following chapters, which deal with classes of far more difficult
problems than those in P. In such cases, the cost of a polynomial-time reduction
is found to be negligible with respect to the cost of applying a decision algorithm,
and polynomial-time reductions represent a basic tool to study the structures of
complexity classes. The next result shows that this last statement does not apply
to the class P.

Lemma 4.4 Let B be any language such that B 6= ∅ and B 6= Σ∗. Then, for any
language A included in P, A ≤ B.

Proof. Revisit the proof of Lemma 2.4 replacing ‘computable’ with ‘polynomial-
time computable’ and ‘decidable’ with ‘polynomial-time decidable’. 2

The previous result clearly indicates that additional quantitative refinements
must be added to reducibilities in order to investigate the inner structure of class
P in more detail. This analysis will be carried out in Chapter 8.

62 The class P

4.4 Uniform diagonalization

In Section 1.3.3 we introduced the diagonalization technique as a tool for deriving
languages not included in a given class. In this section we extend this technique
in order to derive languages not included in the union of two or more classes.

We observe that, according to Lemma 3.7, all time-complexity classes are con-
structively enumerable. Thus, the diagonalization technique can be readily ex-
tended to unions of such classes. However, the next theorem yields a much stronger
result since it allows, under suitable assumptions, a diagonal language to be de-
rived which is not ‘too difficult’, that is, polynomially reducible to the join (see
Section 1.1.2) of two languages known a priori not to be in the two classes.

Theorem 4.1 Let C1 and C2 be two classes of languages such that

1. C1 and C2 are constructively enumerable.
2. C1 and C2 are closed with respect to finite variations.
3. Two decidable languages L1 and L2 exist with L1 6∈ C1 and L2 6∈ C2.

It is then possible to define a third language L such that L 6∈ C1 ∪ C2 with L ≤
L1 ⊕ L2.

Proof. Intuitively, the language L will be defined as L1 for some word lengths and
as L2 for the remaining word lengths, so that it will not belong either to C1 or to
C2. In particular, L is defined as

L = (G ∩ L1) ∪ (Gc ∩ L2)

where G is a language which is alternatively ‘full’ and ‘empty’ depending on the
word lengths. In the simple example illustrated in Figure 4.4, the words of Σ∗

are partitioned according to some sequence of lengths x0, x1 The words of G
consist of all words of Σ∗ having length included between x2i−1 and x2i (the solid
lines in the figure).

What properties should G have in order for L to satisfy the theorem?
First, note that, in order to prove that L ≤ L1 ⊕ L2, we can define a function

f as follows. If x ∈ G then f(x) = 1x, otherwise f(x) = 0x. It follows from the
definition of the join operation that x ∈ L if and only if f(x) ∈ L1 ⊕ L2. To have
f ∈ FP, G should belong to P.

Second, we require that L 6∈ Ci for i = 1, 2. Denote by T i
1, T

i
2, . . . the enumeration

of Turing machines which ‘present’ Ci and let Li
j be the language decided by T i

j .
Thus, we are requiring, for any j, a word zi to exist such that zi ∈ L∆Li

j. In
particular, this is satisfied whenever, for any j, a word z1 exists such that z1 ∈
L1∆L1

j ∧ z1 ∈ G and a word z2 exists such that z2 ∈ L2∆L2
j ∧ z2 ∈ Gc. Indeed, if

this is the case it follows from the definition of L that zi ∈ L∆Li
j for i = 1, 2.

The rest of the proof is devoted to defining G so that it satisfies the above two
conditions.

Uniform diagonalization 63

0 x0 x1 x2 x3

Σ∗
-t t t t t
-t t t t t
G

Figure 4.4 The language G

Denote by zi,n
1 the smallest word z such that |z| ≥ n and z ∈ L14L1

i . Define zi,n
2

in a similar way. Then consider the two following functions:

r1(n) = max
i≤n
{|zi,n

1 |}+ 1

and

r2(n) = max
i≤n
{|zi,n

2 |}+ 1.

Let us show that the functions r1 and r2 are total and computable. If L1 6∈ C1,
then L1 6= L1

j for all j. By assumption, C1 is closed with respect to finite variations.
Given any j and n ≥ j, a word z of a length at least equal to n included in the
symmetric difference of L1 and L1

j must exist. Furthermore, note that the predicate
z ∈ L14L1

j is decidable since both L1 and L1
j are decidable. In conclusion, r1 is

total and computable. The same reasoning can be applied to show that r2 is total
and computable.

Denote by r a time-constructible function such that r(n) ≥ max(r1(n), r2(n))
(we know from Lemma 3.4 how to derive such a function). The language G is then
defined as

G = {x : r2n(0) ≤ |x| < r2n+1(0), n ≥ 0}

(in other words, in Figure 4.4 we let xi be ri+1(0)).
First we shall prove that G ∈ P. Let T be a Turing machine witnessing that r

is a time-constructible function, that is, a machine that halts in exactly r(|x|) for
all x.

A simple algorithm for deciding G consists of computing the pair of values rh(0)
and rh+1(0) until the first pair for which rh(0) ≤ |x| < rh+1(0) is found. However, if
r is a rapidly growing function, for instance an exponential one, computing rh+1(0)
while |x| is close to rh(0) may require a hyperpolynomial number of steps. We

64 The class P

must therefore use a more complex algorithm that causes T to halt as soon as |x|
steps have been executed.

Let us consider the following algorithm where the variable h denotes the number
of the iteration considered minus one, while the variable j contains the value rh(0):

begin {input: x}
if |x| = 0 then accept; {e ∈ G}
j := 0;
h := 1;
while j < |x| do
begin
{check if r(j) > |x|}
simulate |x| steps of T (1j);
if T (1j) has not terminated then
{r(j) > |x|, thus rh(0) > |x| ≥ rh−1(0)}
if h is odd then accept else reject;

m := number of steps executed by T (1j);
{m = r(j) = rh(0)}
if m = |x| then

if h is even then accept else reject;
j := m;
h := h + 1;

end;
end.

It can immediately be verified that the previous algorithm decides G in polynomial
time.

It remains to prove that, for any j, a word z1 exists such that z1 ∈ L1∆L1
j∧z1 ∈ G

and a word z2 exists such that z2 ∈ L2∆L2
j ∧ z2 ∈ Gc. Let n be a large enough

integer such that r2n(0) ≥ j and let z1 be the smallest word for which |z1| ≥ r2n(0)
and z1 ∈ L14L1

j (the closure of C1 with respect to finite variations ensures that
such a z1 must exist). Since r2n+1(0) = r(r2n(0)) ≥ r1(r

2n(0)), it follows from the
definition of r1 that r2n+1(0) > |z1|. Thus z1 ∈ G. Similarly, we can prove the
existence of z2.

In conclusion, L 6∈ C1 ∪ C2 and L ≤ L1 ⊕ L2. 2

In the next chapter we shall consider an important application of the previous
theorem.

Problems

4.1. Show that the class P is closed with respect to union and intersection.

4.2. Given a language L, the language L∗ is defined as the set of all words x such that
x is the concatenation of words of L. Show that if L belongs to P, then L∗ also belongs
to P. [Hint: use the dynamic programming technique.]

Problems 65

4.3. Show that P is constructively numerable. More generally, derive an enumeration
T1, T2, . . . of oracle Turing machines such that, for any oracle X:

1. PX = {L : L = L(TX
k) for some k}.

2. For any k and for any input x, TX
k (x) halts after, at most, nk + k steps.

4.4. Let f be a function in FP and L be a language in P. Define the set f−1(L) = {x :
f(x) ∈ L} and show that such a set belongs to P.

4.5. A function is said to be honest if, for any y in the codomain of f , an x exists such
that f(x) = y and |x| ≤ p(|y|) for a given polynomial p. Show that if a function f admits
a right inverse function computable in polynomial time, then f is honest (g is a right
inverse function of f if, for any y in the codomain of f , f(g(y)) = y).

4.6. Let f be an honest function computable in polynomial time. Then a nondeter-
ministic polynomial-time Turing machine NT exists such that L(NT) coincides with the
codomain of f .

4.7. Let L be a language decidable in polynomial time by a deterministic Turing machine
with oracle L′. Prove that if L′ ∈ P, then L ∈ P.

4.8. Refer to Example 4.2. Prove that b = b0 ≥ 2k/2bk for any even k ≥ 2. Prove the
following more refined bound: b = b0 ≥ Fib(k) where k and Fib(k) denote the number of
recursive calls of function GCD and the kth Fibonacci number, respectively (remember
that Fib(0) = 0, Fib(1) = 1, and Fib(i) = Fib(i− 1) + Fib(i− 2) for any i ≥ 2).

4.9. Show that any Boolean formula f can be transformed in polynomial-time into a
Boolean formula g in conjunctive normal form such that f is satisfiable if and only if g is
satisfiable. [Hint: any formula f1 ∨ f2 can be transformed into (f1 ∨ y)∧ (f2 ∨¬y) where
y is a new variable.]

4.10. A Boolean formula is said to be a tautology if it satisfied by any assignment
of values. Give a polynomial-time algorithm to decide whether a Boolean formula in
conjunctive normal form is a tautology.

4.11. A Boolean formula in conjunctive normal form is said to be Horn if each clause
contains, at most, one non-negated variable. Describe a polynomial-time algorithm to
decide whether a Boolean Horn formula is satisfiable. [Hint: start assigning the value
false to all variables and then proceed ...]

4.12. Describe a polynomial-time algorithm to solve 2-colorability. [Hint: color the
first node white, the adjacent nodes black and proceed.]

4.13. linear equations with integer coefficients: given a linear equation ax +
by + c = 0 with integer coefficients, does a pair of integers x∗ and y∗ exist which satisfies
it? Show that such a problem belongs to P. [Hint: when a, b, c 6= 0 the problem can be
reduced to solving the congruence c ≡ yb (mod a).]

4.14. k-bounded partition: given a finite set A of n integers whose sum is 2b ≤ nk,
does A admit a subset B of integers whose sum is exactly b? Show that this problem

66 The class P

admits an algorithm requiring O[nk+1] steps. [Hint: use the dynamic programming
technique.]

4.15. Consider a variation of Turing machine in which the tape is replaced by a two-
dimensional tape, that is, an unbounded plane which is subdivided into squares by
equidistant sets of vertical and horizontal lines. In addition to left and right moves,
the variation will have up and down moves, permitting its head to move vertically in
the plane as well as horizontally. Show that a standard multitape Turing machine can
simulate such a variation with a quadratic loss of efficiency. [Hint: Use one tape to
memorize the entire history of the two-dimensional tape.]

4.16. A multihead Turing machine is a variation of Turing machine in which we allow
the possibility of having several heads on each tape with some appropriate rule to prevent
two heads from occupying the same cell and giving conflicting instructions. Show that a
one-tape two-head machine can be simulated by a multitape one-head machine without
loss of efficiency. [Hint: Use three tapes, one containing the left-hand information, one
the right-hand information, and one keeping count of the number of tape cells that are
stored on both the previous two tapes.]

4.17. Let t be a total function and let T be a two-tape Turing transducer such that, for
any natural number n, T (1n) outputs 1t(n) in, at most, ct(n) steps, where c is a constant.
Show that any k-tape nondeterministic Turing machine NT working in time t(n) admits
an equivalent two-tape nondeterministic Turing machine NT ′ working in time O[t(n)].
[Hint: for any input x, guess an entire sequence of t(|x|) global states of NT (x).]

4.18. Prove that the polynomial m-reducibility is transitive.

4.19. Prove that for any pair of languages L1 and L2, L1 ≤ L1 ⊕ L2 and L2 ≤ L1 ⊕ L2.

4.20. Show that an infinite language L exists such that Lc is infinite, L 6≤ Lc, and
L ∈ DTIME[2n]. [Ladner, Lynch, and Selman (1975)]

Notes

The importance of classes P and FP was first realized by Cobham (1964) and Ed-
monds (1965). In particular, in the latter paper polynomial-time solvable problems
were first proposed as a theoretical equivalent to the informal concept of ‘tractable’
problems.

A wide range of combinatorial problems are known to be either in P or in FP,
and researchers are continually attempting to identify new members. The book by
Cormen, Leiserson, and Rivest (1990) provides an excellent description and analysis
of most significant algorithms, data structures, and programming techniques.

The algorithm for GCD introduced in Example 4.2 is commonly referred to as
Euclid’s algorithm since it was first described by Euclid about 2300 years ago: it
may be considered as one of the oldest non-trivial algorithms.

Notes 67

The algorithm for shortest path described in Example 4.3 appeared in Ford
and Fulkerson (1962). In fact, this algorithm solves the ‘all-pairs’ shortest path
problem since it succeeds in finding the shortest paths between any pair of nodes.
For simplicity, we preferred it to the algorithm by Dijkstra (1959) which applies to
the ‘single-source’ version of the problem. For further references on this and many
other graph problems, see van Leeuwen (1990).

The algorithm for 2-satisfiability of Example 4.4 is due to Deming (1979).
The best algorithm for the same problem has time-complexity O[n + m] and was
presented in Aspvall, Plass, and Tarjan (1979). Many other algorithms were pro-
posed (and this problem is still receiving considerable attention). An experimental
comparison of four such algorithms appeared in Petreschi and Simeone (1991).

Non-constructive polynomial-time is discussed in Fellows and Langston (1988)
from which the knotlessness problem was obtained. Further information on this
problem can be found in Conway and Gordon (1983). The basic research, however,
has been carried out since 1983 by Robertson and Seymour in a series of papers ap-
pearing in the Journal of Combinatorial Theory (series B) entitled ‘Graph Minors
N :...’ with N ranging from I to XVI or more. Up to 1993, the two main results
needed to establish non-constructive polynomial-time for graph problems, namely
a positive solution to Wagner’s conjecture and a (constructive) polynomial-time
algorithm for a graph problem denoted as H minor containment, were proved
for graphs embeddable on surfaces of limited genus and for fixed planar graphs
H, respectively. General proofs for arbitrary graphs were merely announced. In
Friedman, Robertson, and Seymour (1987), by using a metamathematical proof
technique it was shown that no algorithm capable of determining the minimum
elements of an arbitrary class of graphs can be formulated in a significant subset
of the system of second order arithmetic known as ATR0 (the original proof refers
to trees and a different minor relation). The above results motivated Abrahamson,
Fellows, Langston, and Moret (1988) to propose a more restrictive and inherently
constructive definition of the class P.

The simulation of a k-tape by a one-tape Turing machine (see Lemma 4.1) was
first obtained in Hartmanis and Stearns (1965), while a proof of the simulation
of a two-way infinite tape by a one-way infinite tape Turing machine (see Lemma
4.2) can be found in several textbooks. See, for instance, Lewis and Papadimitriou
(1981).

Polynomial-time reducibility was first introduced by Karp (1972) as a special
kind of m-reducibility. In that paper, several polynomial-time reductions between
difficult combinatorial problems were shown, strongly suggesting, but not implying,
that these problems, as well as many others, will remain perpetually intractable.
Most reducibilities introduced in computability theory have a polynomial-time
bounded version. In Ladner, Lynch, and Selman (1975) various forms of such
reducibilities were compared and the effect of introducing nondeterminism into
reduction procedures was also examined.

The simple reduction from the maximum matching problem to the maximum
flow one is described in several textbooks on algorithms such as that by Cormen,

68 The class P

Leiserson, and Rivest (1990).
The theorem on uniform diagonalization was first proved for a specific case

in Ladner (1975a). The definition of Gr and its application was introduced in
Landweber, Lipton, and Robertson (1981), while the full Theorem 4.1 was proved
in Schöning (1982a). Finally, further generalizations of such a theorem are consid-
ered in Schmidt (1985).

Chapter 5

The class NP

Here we are concerned with an important complexity class called NP that includes
problems that are harder to solve than those considered in the previous chapter.
This new class is a natural extension of class P obtained by replacing deterministic
algorithms with nondeterministic ones.

Clearly, P ⊆ NP (deterministic algorithms can be considered a restriction of
nondeterministic ones). Is it correct to state that P is properly included in NP?
This problem, the P 6= NP conjecture, was raised about 20 years ago and is still
unsolved. In fact, solving it in the near future seems rather remote.

Intuitively, nondeterministic polynomial-time algorithms appear to be more pow-
erful than deterministic ones since they make use of a machine capable of per-
forming several (deterministic) computations at the same time. It is true that,
according to Theorem 2.1, any nondeterministic polynomial-time algorithm can
be transformed into a deterministic one. However, the resulting algorithm has an
exponential-time complexity.

If P = NP, then, for any nondeterministic polynomial-time algorithm, an equiv-
alent deterministic polynomial-time one exists. This statement, which is much
more powerful than Theorem 2.1, is unfortunately contradicted by experimental
evidence. In fact, for hundreds of NP problems arising in numerous areas such as
graph theory, network design, algebra and number theory, game theory, logic, au-
tomata and language theory, no deterministic polynomial-time algorithm capable
of solving any of them, without exploring the entire space of possible solutions or
an exponentially sized part of it, is known.

In any case, proving or disproving the P 6= NP conjecture would be of great
significance from a practical point of view. On the one hand, a disproof of the con-
jecture would mean that any exhaustive search algorithm solving an NP problem in
exponential time can be systematically replaced by a sophisticated polynomial-time
algorithm and we have already observed how substantial is the difference between
the two approaches (in other words, proving P = NP implies a ‘low’ upper bound
on the complexity of hundreds of problems). On the other hand, if P 6= NP, then

69

70 The class NP

a superpolynomial lower bound would follow for as many problems, that is, the
‘most difficult’ ones in NP.

In Section 5.1 the new class NP is defined and a few examples of NP problems
are given. In Section 5.2 problems in NP which are complete with respect to
polynomial-time reducibility, in short NP-complete problems, are introduced and
some of the structural properties of such problems are analysed. In Section 5.3
it is proved that if P is properly included in NP, then NP must include a class
of languages which are neither in P nor NP-complete. In Section 5.4 the relative
complexities of computing and verifying a function are investigated. Finally, in
Section 5.5 extensions of the P 6= NP conjecture to oracle Turing machines are
considered which bring some insight into the intrinsic difficulty of solving this
conjecture.

5.1 The class NP

Let NTIME[pk(n)] be the nondeterministic time-complexity class with pk(n) = nk.
The class NP is defined as

NP =
⋃
k≥0

NTIME[pk(n)]

Many problems of practical importance, which have been extensively investigated
by researchers and for which no deterministic polynomial-time algorithm has been
found, belong to NP.

Example 5.1 satisfiability is a generalization of 2-satisfiability introduced in Ex-
ample 4.4 where each clause Ci may include any number of literals rather than exactly
two.

A nondeterministic algorithm for satisfiability can be obtained by guessing any of
the 2n assignments of values to the n variables of f and verifying whether it satisfies f :

begin {input: f}
guess t in set of assignments of values to the n variables of f ;
if t satisfies f then accept else reject;

end.

Since both the guessing and the checking of the ith assignment can be done in poly-
nomial time, it turns out that such a nondeterministic algorithm is a polynomial-time
one.1

Example 5.2 3-colorability is a generalization of 2-colorability introduced in
Example 4.8 where the colours available are three instead of two.

1A nondeterministic algorithm is said to be polynomial-time if the required number of steps
is O[nk] with k constant.

The class NP 71

A polynomial-time nondeterministic algorithm for 3-colorability can be obtained
by guessing any of the 3n colourings of a graph of n nodes and verifying whether it has
the required property.

Example 5.3 traveling salesman: given a complete weighted graph G and a natural
number k, does a cycle exist passing through all nodes of G such that the sum of the
weights associated with the edges of the cycle is, at most, k?

A polynomial-time nondeterministic algorithm for traveling salesman can be ob-
tained by guessing any of the n! permutations of n nodes and verifying whether it cor-
responds to a cycle whose cost is, at most, k.

The richness of the class NP is justified by the following theorem. This intuitively
states that a problem belongs to this class if and only if the possible solutions are
words of a length polynomially related to the length of the instance and it is
polynomial-time decidable whether a possible solution is a feasible one. (Note that
most of the combinatorial problems we usually encounter share this property.)

Theorem 5.1 A language L belongs to NP if and only if a language Lcheck ∈ P
and a polynomial p exist such that

L = {x : ∃y[〈x, y〉 ∈ Lcheck ∧ |y| ≤ p(|x|)]}.

Proof. If L = {x : ∃y[〈x, y〉 ∈ Lcheck ∧ |y| ≤ p(|x|)]} where Lcheck ∈ P and p is a
polynomial, then the following nondeterministic algorithm decides L in polynomial
time:

begin {input: x}
guess y in set of words of length, at most, p(|x|);
if 〈x, y〉 ∈ Lcheck then accept else reject;

end.

Conversely, let L be a language in NP. Then a nondeterministic Turing machine
NT exists which decides L in polynomial time. It is easy to verify that, for any
x, each computation path of NT (x) can be encoded into a word of a length of,
at most, p(|x|) where p is a polynomial (see Problem 2.7). The language Lcheck

is then defined as follows. 〈x, y〉 ∈ Lcheck if and only if y encodes an accepting
computation path of NT (x). It is clear that Lcheck ∈ P and that, for any x,

x ∈ L↔ ∃y[|y| ≤ p(|x|) ∧ 〈x, y〉 ∈ Lcheck].

This concludes the proof. 2

Our aim is to identify within NP problems that are inherently more complex.
For this, we need the basic concept of an NP-complete problem.

72 The class NP

5.2 NP-complete languages

We have already introduced the polynomial-time reducibility ≤ in Section 4.3. We
now show that NP includes some languages that are complete with respect to ≤,
in short, NP-complete languages. As usual, we shall say informally that a problem
is NP-complete if the corresponding language is also NP-complete.

By reasoning as in Section 3.2.1, we can identify NPC, the class of NP-complete
problems, with the set of problems which are likely members of NP − P. Since P
is closed with respect to ≤, even if only one of them were solvable in polynomial
time by means of a deterministic Turing machine, then all problems in NP would
share this property.

How does one show that a problem is NP-complete and, more generally, how does
one prove that a complexity class C admits a complete language L with respect
to a given reducibility? Since C is defined by referring to a model of computation
with some resource bound (in the case of NP, the model is the nondeterministic
Turing machine and the resource bound is polynomial time), then, for any language
L′ ∈ C, we are allowed to refer to a resource-bounded machine M which decides L′.
The approach taken is then the following. We derive a reduction f which, given
M and an input x, computes a word f(M, x) such that M accepts x if and only
if f(M, x) ∈ L. We can then claim that L′ is reducible to L and since L′ is an
arbitrary language in C, L is C-complete.

That is the general aim. Let us now fill in the details by presenting our first
completeness proof. The following important theorem obtained by Cook in 1971
shows that NP admits a complete language (with respect to polynomial-time re-
ducibility).

Theorem 5.2 satisfiability is NP-complete.

Proof. Let L be a language in NP and NT be a nondeterministic Turing machine
which decides L in time bounded by a polynomial p. Thus NT accepts a word x
of L in, at most, p(|x|) steps.

Denote the symbols of the tape alphabet used by NT by σ1, σ2, . . . , σh and the
states by q1, q2, . . . , qk. Without loss of generality, we assume that q1 is the initial
state, q2 is the accepting state and q3 is the rejecting one. We shall also assume
that, initially, the input x is contained in the first n = |x| leftmost cells.

Denote also the maximum number of steps that can be executed by the compu-
tation NT (x) with t∗ = p(n). Thus, no cell beyond the t∗th will ever be scanned
during the computation.

The basic aim is to construct, for any x, a Boolean formula fx whose assignments
of values are, in a certain sense, able to ‘simulate’ the computation NT (x). In
particular, fx will be satisfiable if and only if NT accepts x.

The formula fx will make use of the following Boolean variables:

1. P i
s,t is true if and only if the sth cell contains the symbol σi at time t, that

is, when the tth instruction is executed (1 ≤ i ≤ h, 1 ≤ s ≤ t∗, 1 ≤ t ≤ t∗).

NP-complete languages 73

2. Qi
t is true if and only if NT is in state qi at time t (1 ≤ i ≤ k, 1 ≤ t ≤ t∗).

3. Ss,t is true if and only if the tape head of NT scans the sth cell at time t
(1 ≤ s ≤ t∗, 1 ≤ t ≤ t∗).

Formula fx is a conjunction of eight main subformulas:

fx = A ∧B ∧ C ∧D ∧ E ∧ F ∧G ∧H.

Subformula A states that, at any time t, the tape head scans exactly one cell. Thus

A = A1 ∧ A2 ∧ . . . ∧ At∗

where2

At = (S1,t ∨ S2,t ∨ . . . ∨ St∗,t) ∧ (
⋂
(i,j)

: 1 ≤ i < t∗, i < j ≤ t∗)[Si,t → ¬Sj,t].

Subformula B states that, at any time t, each cell s contains exactly one symbol.
Thus

B = B1,1 ∧ . . . ∧Bt∗,1 ∧B1,2 ∧ . . . ∧Bt∗,2 ∧ . . . ∧B1,t∗ ∧ . . . ∧Bt∗,t∗

where

Bs,t = (P 1
s,t ∨ . . . ∨ P h

s,t) ∧ (
⋂
(i,j)

: 1 ≤ i < h, i < j ≤ h)[P i
s,t → ¬P j

s,t].

Subformula C states that, at any time t, the machine NT must be in exactly one
internal state. Thus

C = C1 ∧ C2 ∧ . . . ∧ Ct∗

where

Ct = (Q1
t ∨ . . . ∨Qk

t) ∧ (
⋂
(i,j)

: 1 ≤ i < k, i < j ≤ k)[Qi
t → ¬Qj

t].

Subformula D states that, initially, the input is contained in the first n cells of the
tape, the head is positioned on the leftmost cell and the internal state of NT is
the initial one. Thus

D = Q1
1 ∧ S1,1 ∧ P i1

1,1 ∧ . . . ∧ P in
n,1 ∧ P h

n+1,1 ∧ . . . ∧ P h
t∗,1

where x = σi1σi2 . . . σin .
Subformula E states that, at any time t, the values Qi

t are correctly updated
according to the control (the quintuples) of NT .

2For clarity, we make use of the → connective defined as u→ v ≡ ¬u ∨ v.

74 The class NP

Subformulas F and G state that, at any time t and for each of the t∗ cells, the
values P i

s,t and Ss,t are updated correctly according to the control of NT .
Subformulas E, F , and G depend on the control of NT and cannot be expressed
in a general way. Let us show with an example how they can be derived.

Example 5.4 Assume that the control of NT includes two quintuples 〈qi, σj , σj1 ,m1, qi1〉
and 〈qi, σj , σj2 ,m2, qi2〉 which have the first two elements in common. Such quintuples are
modeled by the implication (qi, σj)→ (σj1 ,m1, qi1) ∨ (σj2 ,m2, qi2). Since the quintuples
of Turing machines are invariant with respect to the time and the scanned cell, this im-
plication must be instantiated for each t and s with 1 ≤ s, t ≤ t∗, yielding corresponding
clauses of subformulas E,F , and G.

With respect to a given time instant t and a given tape cell s, the subformula of E
referring to the two above-mentioned quintuples is

Qi
t ∧ P j

s,t ∧ Ss,t → [(W 1
i,j,t ∧Qi1

t+1) ∨ (W 2
i,j,t ∧Qi2

t+1)] ∧ (W 1
i,j,t → ¬W 2

i,j,t)

where W k
i,j,t denotes the fact that NT has chosen the kth tuple at time t. Similarly, the

subformula of F referring to the two above-mentioned quintuples is

Qi
t ∧ P j

s,t ∧ Ss,t → [(W 1
i,j,t ∧ P j1

s,t+1) ∨ (W 2
i,j,t ∧ P j2

s,t+1)] ∧ (W 1
i,j,t → ¬W 2

i,j,t).

Moreover, we also have to say that any unscanned cell does not change its content, that
is,

P j
s,t ∧ ¬Ss,t → P j

s,t+1.

Finally, if we assume m1 = L and m2 = R, the subformula of G is

Qi
t ∧ P j

s,t ∧ Ss,t → [(W 1
i,j,t ∧ Ss−1,t+1) ∨ (W 2

i,j,t ∧ Ss+1,t+1)] ∧ (W 1
i,j,t → ¬W 2

i,j,t).

Finally, subformula H states that NT reaches the accepting state q2 at the latest
at time t∗, that is, within t∗ instructions. Thus

H = Q2
1 ∨Q2

2 ∨ . . . ∨Q2
t∗ .

If x is accepted by NT within t∗ instructions, then it is easy to derive from
the computation NT (x) an assignment of values to the sets of variables P i

s,t, Q
i
t

and Ss,t which satisfies fx. Such an assignment gives the value true to Q1
1, S1,1,

P i1
1,1, . . . , P

in
n,1, P h

n+1,1, . . . , P
h
t∗,1. The value false is assigned to any other variable

whose time index is equal to 1. For any t > 1, the values of the variables are then
assigned according to the tth step of the computation NT (x). Since NT accepts
x within t∗ steps, a t ≤ t∗ exists such that the variable Q2

t has been assigned the
value true.

Conversely, from an assignment of values satisfying the formula, it is easy to
derive an accepting computation path of NT (x).

The time required to compute fx from x is clearly polynomial with respect to
the length of x; thus, L ≤ satisfiability. Since L is an arbitrary language in
NP, it follows that satisfiability is NP-complete. 2

NP-complete languages 75

Let us add a few comments to the theorem just proved. Even if satisfiability
was the first NP problem to which it was possible to reduce polynomially all deci-
sion problems in NP, several other problems have been discovered for which such
a reduction can be carried out in a simple and natural way (see Notes).

Following Cook’s result, several other proofs of completeness with respect to
different complexity classes have been obtained. In Chapters 7 and 8 we shall
encounter other completeness proofs of the same type.

5.2.1 NP-completeness proofs

Now that a first NP-complete problem has been derived, it is possible to prove
the NP-completeness of other problems by exploiting the transitive property of
polynomial-time reducibility. More precisely, an alternative way to prove the NP-
completeness of a problem Π is the following:

1. Show that Π belongs to NP.

2. Find a problem Π′ already known to be NP-complete such that Π′ ≤ Π.

Starting from satisfiability and using the above approach, hundreds of deci-
sion problems, which are significant from both a practical and a theoretical point
of view, have been shown to be NP-complete.

Due to lack of space, we will give only a few examples of NP-completeness proofs.
The first is a typical example of a ‘component design’ reduction from satisfiabil-
ity. In such reductions, the instance of the new problem is generally formed by
three kinds of components: a truth-assignment component, a satisfaction-testing
component and a communication component between the two previous ones.

Example 5.5 node cover: given a graph G = (N,E) and a natural number k, does G
include a cover of, at most, k nodes, that is, a subset M ⊆ N of, at most, k nodes such
that, for each edge 〈i, j〉 ∈ E, at least, one of the two nodes i and j is included in M?

It is clear that node cover belongs to NP. To prove the NP-completeness of such
a problem, we will define a polynomial-time reduction from satisfiability to node
cover. This reduction transforms a conjunctive normal form Boolean formula f into a
graph G along with a natural number k so that f is satisfiable if and only if G admits a
cover of, at most, k nodes.

Denote by x1, x2, . . . , xn the variables of f , with m the number of clauses and ni (1 ≤
i ≤ m) the number of literals of the ith clause. Let us derive a graph G = (N,E) from
f as follows:

1. For any variable xi in f , G contains a pair of nodes xt
i and xf

i which are joined
by an edge. Thus, to cover such an edge one of the two nodes is necessary and
sufficient: intuitively, the chosen node will denote the value assigned to the variable
xi.

76 The class NP

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
EE

�
�
�
�
�
�
�
�
�
�
�
�

B
B
B
B
B
BB

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%%

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

@
@
@
@
@
@�

�
�
�
�
�

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
EE

f = (x ∨ ȳ ∨ w) ∧ (z ∨ v̄) ∧ (v ∨ y ∨ z ∨ w)

xt xf yt yf zt zf vt vf wt wf

C1 C2 C3

t t t t t t t t t t

tt

t ttttt

t

E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
EE

c
c
c

c
c
c

c
c
c

c
c
c

c
c

c

Figure 5.1 An example of reduction from satisfiability to node cover

2. For any clause Cj , G contains a complete subgraph Gj of nj nodes, each node
corresponding to a literal of the clause. Thus, to cover the edges of such a clique
nj − 1 nodes are necessary and sufficient. Intuitively, the remaining node will
denote a literal of the clause that has been assigned the value true.

3. Finally, some connection edges between pairs and cliques: for any variable xi and
for any clause Cj , if xi (respectively, ¬xi) is a literal contained in Cj , then G

contains the edge between xt
i (respectively, xf

i) and the node of Gj corresponding
to that literal.

Figure 5.1 shows an application of the above transformation to a simple example.
It is easy to verify that the transformation can be done in polynomial time and that

f is satisfiable if and only if G admits a cover of k nodes where

k = n + (n1 − 1) + (n2 − 1) + . . . + (nm − 1).

Indeed, if f is satisfiable, then a cover can be derived by an assignment of values satisfying
f in the following way:

1. For any variable xi, select node xt
i if xi has been assigned the value true, otherwise

select node xf
i .

NP-complete languages 77

2. For each clause Cj , select all the nj nodes of Gj except one among those joined
by an edge to a node already selected in the previous step (since the assignment
satisfies f , it follows that, at least, one such node must exist).

Conversely, if G admits a cover of k nodes, then an assignment of values satisfying f
can be derived by giving, for any variable xi, the value true to xi if xt

i belongs to the
cover, otherwise the value false. To confirm that such an assignment satisfies f , note
that, for any clause Cj , only nj − 1 connection edges can be covered by a node in Gj .
The remaining one must be covered by a node of some pair. But this implies that the
corresponding literal has been assigned the value true, hence clause Cj is satisfied.

A simpler kind of reduction is so-called ‘local replacement’ in which distinct
basic components of the original problem are transformed independently of each
other. The following example should clarify this point.

Example 5.6 3-satisfiability: given a Boolean formula in conjunctive normal form
such that each clause contains exactly three literals, does an assignment of values exist
which satisfies f?

Once again, it is clear that such a problem belongs to NP. To prove that it is
NP-complete, we will define a local replacement reduction from satisfiability to 3-
satisfiability. In this case, the basic components of the original problem are the
clauses of the instance of satisfiability which will be transformed in a set of ‘equiva-
lent’ clauses containing exactly three literals. More precisely, let Ci be any clause of the
instance of satisfiability. Then Ci is tranformed into the following subformula C ′

i:

1. If Ci = li1 , then C ′
i = li1 ∨ li1 ∨ li1 .

2. If Ci = li1 ∨ li2 , then C ′
i = li1 ∨ li2 ∨ li1 .

3. If Ci = li1 ∨ li2 ∨ li3 , then C ′
i = li1 ∨ li2 ∨ li3 .

4. If Ci = li1 ∨ li2 ∨ . . .∨ lik with k > 3, then C ′
i = (li1 ∨ li2 ∨ yi1)∧ (¬yi1 ∨ li3 ∨ yi2)∧

. . . ∧ (¬yik−4
∨ lik−2

∨ yik−3
) ∧ (¬yik−3

∨ lik−1
∨ lik), where the y variables are new

ones.

Clearly, such a reduction can be done in polynomial time.
First, we will show that any assignment t of values satisfying Ci can be extended

to an assignment t′ of values to the new variables satisfying C ′
i (note how we use the

locality of the reduction). This is trivially true whenever Ci contains, at most, three
literals. Suppose Ci = li1 ∨ li2 ∨ . . . ∨ lik with k > 3. Since t satisfies Ci then a literal lij
exists which has been assigned the value true. We then assign values to the additional
variables depending on the index j:

1. j = 1, 2: lij occurs in a clause with the form (li1 ∨ li2 ∨ yi1); in this case, all the ys
are assigned the value false.

2. j = k− 1, k: lij occurs in a clause with the form (¬yik−3
∨ lik−1

∨ lik); in this case,
all the ys are assigned the value true.

78 The class NP

3. 2 < j < k − 1: lij occurs in a clause with the form (¬yij−2 ∨ lij ∨ yij−1); in this
case, the first j − 2 variables ys are assigned the value true while the remaining
ones are assigned the value false.

It is easy to verify that such an extension satisfies all the clauses in C ′
i. Conversely,

given an assignment of values which satisfies C ′
i, it is easy to verify that the same assign-

ment, when restricted to the original variables, satisfies the clause Ci.
In conclusion, the original formula is satisfiable if and only if the transformed formula

is satisfiable. That is, 3-satisfiability is NP-complete.

As has already been stated, hundreds of NP-complete languages have been found.
It is not surprising therefore that some of the new problems which arise in practice
appear to be very similar to NP-complete problems already known.

Example 5.7 clique: given a graph G = (N,E) and a natural number k, does G
include a clique of, at least, k nodes?

An easy polynomial-time reduction from node cover to clique is based on the
following observations. Given a graph G = (N,E), let Gc = (N,Ec) be the complement
graph of G with Ec = {〈u, v〉 : u, v ∈ N ∧ 〈u, v〉 6∈ E}. It is easy to verify that, for any
subset N ′ of N , N ′ is a node cover for G if and only if N −N ′ is a clique in Gc. Thus the
reduction transforms an instance 〈G, k〉 of node cover into the instance 〈Gc, |N | − k〉
of clique. In conclusion, this latter problem is NP-complete.

Finally, sometimes the new problem is simply a more complicated version of
an already known problem. The NP-completeness of the latter is thus a proof of
the NP-completeness of the former: this kind of reduction is called reduction by
‘restriction’.

Example 5.8 hitting set: given a collection C of subsets of a set A and an integer
k, does A contain a subset A′ with |A′| ≤ k such that A′ contains, at least, one element
from each subset in C?

This problem belongs to NP and it can be restricted to node cover. Indeed, it
is sufficient to allow instances where each subset in C contains exactly two elements
(intuitively, A corresponds to the set N of nodes of the graph and C to set E of edges).

In conclusion, whenever the NP-completeness of a new problem needs to be
proved a tentative strategy could be the following. First, look for an NP-complete
problem which is very similar to the one in hand (if not the same!). Second, if one
is not found, look for a similar problem and try a reduction by local replacement.
Finally, if neither of the two previous steps has been successful, then try a compo-
nent design reduction (which in most cases considers the satisfiability problem
as the starting one). Obviously, sometimes even this latter step does not succeed.
If this is the case, remember that the problem could be polynomial-time solvable,
after all!

NP-complete languages 79

5.2.2 Isomorphism among NP-complete languages

In spite of a rich variety of NP-complete languages from different areas, an impor-
tant result of complexity theory states that all these languages are substantially
identical, namely, they are identical up to a polynomial-time computable permu-
tation of their elements. In this section we will investigate this in detail.

Two languages A and B are p-isomorphic when a function f exists such that

1. x ∈ A↔ f(x) ∈ B.
2. f is bijective.
3. f, f−1 ∈ FP.

Note that if A and B are two NP-complete languages, then A ≤ B through f and
B ≤ A through g where both f and g are polynomial-time computable functions.
In general, however, g 6= f−1, that is, the existence of f and g does not imply that
A and B are p-isomorphic. In which cases does such p-isomorphism exist? Before
answering this question, let us introduce a preliminary definition.

A function f : Σ∗ → Γ∗ is length-increasing if, for each x ∈ Σ∗, |f(x)| > |x|.
Similarly, f is length decreasing if, for each x ∈ Σ∗, |x| > |f(x)|.

The following theorem gives a set of sufficient conditions for the p-isomorphism
between pairs of languages.

Theorem 5.3 Consider two languages A ⊆ Σ∗ and B ⊆ Γ∗ with two polynomial-
time computable functions f : Σ∗ → Γ∗ and g : Γ∗ → Σ∗ which implement A ≤ B
and B ≤ A, respectively. If f and g are length increasing and if they admit
polynomial-time computable inverse functions f−1 and g−1, then A and B are
p-isomorphic.

Proof. Our goal is to derive a polynomial-time reduction h : Σ∗ → Γ∗ from f
and g which admits a polynomial-time inverse reduction h−1 : Γ∗ → Σ∗. For this
purpose, let us partition Σ∗ into R1 and R2 and Γ∗ into S1 and S2 in the following
way.

Given a word x ∈ Σ∗, x ∈ R1 if an integer k ≥ 0 exists such that the composition
(f−1 ◦ g−1)k applied to x is defined while, for the same x, g−1 ◦ (f−1 ◦ g−1)k is
undefined.3 Conversely, x ∈ R2 if an integer k ≥ 0 exists such that the composition
g−1 ◦ (f−1 ◦ g−1)k applied to x is defined while, for the same x, (f−1 ◦ g−1)k+1 is
undefined. As shown in Figure 5.2, x belongs to R1 (respectively, R2) if the longest
feasible composition of g−1 and f−1 transforms it into a word in Σ∗ (respectively,
Γ∗). In fact, the figure also suggests one of the basic properties of this procedure.
If we leave R1 (respectively, R2) we never enter R2 (respectively, R1). The reader
should try to understand why this is so (we are going to prove it in any case!).

3Remember that if a function h is undefined for a given input, then the corresponding com-
putation does not terminate. Thus if h is polynomial-time computable, it is possible to decide in
polynomial time, for each x, whether h(x) is undefined.

80 The class NP

'

&

$

%

-�
���

���
���

���� -������������9

-HH
H
HH

H
HH

H
HH

H
HY -XXX

XXX
XXX

XXXyHHH
HHH

HHH
HHH

Hj

g−1

g−1

f−1

f−1

R2

g−1

g−1

f−1

f−1
R1

g−1

'

&

$

%

S2

S1

Σ∗ Γ∗

Figure 5.2 Partition of Σ∗ and Γ∗

Similarly, given a word y ∈ Γ∗, y ∈ S1 if an integer k ≥ 0 exists such that the
composition (g−1 ◦ f−1)k applied to x is defined while, for the same x, f−1 ◦ (g−1 ◦
f−1)k is undefined. Conversely, y ∈ S2 if k ≥ 0 exists such that the composition
f−1 ◦(g−1 ◦f−1)k is defined while (g−1 ◦f−1)k+1 applied to the same x is undefined.

Since f and g are length-increasing f−1 and g−1 are length-decreasing, thus, for
each x ∈ Σ∗, we can decide in polynomial time whether x belongs to R1 or to R2.
Similarly, for each y ∈ Γ∗, we can decide in polynomial time whether y belongs to
S1 or to S2.

We are now ready to define function h as

h(x) =

{
f(x) if x ∈ R1,
g−1(x) if x ∈ R2,

while the inverse function h−1 will be defined as

h−1(y) =

{
g(y) if y ∈ S1,
f−1(y) if y ∈ S2.

NP-complete languages 81

By assumption, f and g implement A ≤ B and B ≤ A, respectively. Then, for
any x, x ∈ A ↔ h(x) ∈ B. Furthermore, since f, g, f−1 and g−1 are polynomial-
time computable and since R1, R2, S1 and S2 are polynomial-time decidable, then
h and h−1 are polynomial-time computable.

Let us now show that, for each x ∈ Σ∗, h−1(h(x)) = x and that, for each
y ∈ Γ∗, h(h−1(y)) = y. Note that if x ∈ R1, then f(x) ∈ S2. Indeed, if f(x) ∈
S1, then an integer k ≥ 0 exists such that (g−1 ◦ f−1)k[f(x)] is defined while
f−1 ◦ (g−1 ◦f−1)k[f(x)] is undefined. This, in turn, implies that g−1 ◦ (f−1 ◦g−1)k−1

applied to x is defined while, for the same x, (f−1 ◦ g−1)k is undefined, that is,
x ∈ R2 contradicting the hypothesis on x. By the same argument, we can show
that if x ∈ R2 then f(x) ∈ S1, that if y ∈ S1 then g(y) ∈ R2 and that if y ∈ S2 then
g(y) ∈ R1 (that is why the figure has been drawn that way). By the definitions of
h and h−1, it thus follows that h−1 is the inverse function of h.

Thus, A and B are p-isomorphic. 2

The following theorem shows how to derive polynomial-time reductions which
admit polynomial-time inverse functions.

Theorem 5.4 Given two languages A, B and a polynomial-time reduction f from
A to B, assume that B admits two polynomial-time computable functions pB and
dB such that

1. (∀x, y)[pB(x, y) ∈ B ↔ x ∈ B].

2. (∀x, y)[dB(pB(x, y)) = y].

Then the function g(x) = pB(f(x), x) is a polynomial-time reduction from A to B
which admits a polynomial-time computable inverse function.

Proof. Function pB is a ‘padding’ function used to encode any word y along with x
in such a way that the compound word belongs to B if and only if x belongs to B;
dB plays the role of a ‘decoding’ function able to extract y from the composition
of x and y through pB.

We first show that g is actually a polynomial-time reduction from A to B. Indeed,
x ∈ A if and only if f(x) ∈ B if and only if pB(f(x), x) = g(x) ∈ B. Furthermore,
in accordance with our assumptions on f and pB, it follows that g is polynomial-
time computable.

Next, it is clear that g is injective. Indeed, if g(x) = g(y) then

x = dB(pB(f(x), x)) = dB(g(x)) = dB(g(y)) = dB(pB(f(y), y)) = y.

Finally, let us define g−1 as follows:

g−1(x) =

{
dB(z) if z = pB(f(dB(z)), dB(z)),
undefined otherwise.

82 The class NP

It is easily verifiable that, for each x, g(x) = pB(f(dB(g(x))), dB(g(x))) and
thus g−1(g(x)) = dB(g(x)) = x. Conversely, for any z = g(x), g(g−1(z)) =
g(dB(g(x))) = g(x) = z. Since both f, pB and dB are polynomial-time computable,
then g−1 is polynomial-time computable. 2

By combining Theorems 5.3 and 5.4, we have a powerful tool for proving the
p-isomorphism between pairs of NP-complete languages.

Corollary 5.1 Two NP-complete languages A and B are p-isomorphic if both of
them admit a polynomial-time computable length-increasing padding function and
a corresponding polynomial-time computable decoding function.

Example 5.9 Let us show that satisfiability and node cover are p-isomorphic.
Let y = b1b2 . . . bq be the word to encode (without loss of generality, we assume that y
consists of q binary symbols bi).

A padding function for satisfiability can be obtained by transforming an n-variable
Boolean formula f into an (n + q + 1)-variable Boolean formula f ′ in the following way:

f ′ = f ∧ (xn+1 ∨ ¬xn+1) ∧ l1 ∧ . . . ∧ lq

where, for any i ≤ q, li = xn+1+i if bi = 1, otherwise li = ¬xn+1+i. It is clear that f
is satisfiable if and only if f ′ is satisfiable. Note also that the new clauses are attached
to f so that they can be easily distinguished from the original ones and thus decoding y
from the padded formula is ensured.

Analogously, a padding function for node cover can be obtained by transforming an
n-node graph G into an (n + 2q + 3)-node graph G′ in the following way:

E′ = E ∪ {〈xn+1, xn+2〉, 〈xn+1, xn+3〉, 〈xn+2, xn+3〉} ∪ {〈xn+2i+2, xn+2i+3〉 : bi = 1}.

It is clear that G admits a cover of, at most, k nodes if and only if G′ admits a cover of,
at most, k + n1 + 2 nodes where n1 denotes the number of 1s in y. As in the previous
case, decoding y from the padded graph is ensured.

What has been shown for satisfiability and node cover is true for all known
NP-complete languages. Indeed, all such languages admit pairs of padding and
decoding functions which are polynomial-time computable. At the same time,
no NP-complete language has been found having the property of being not p-
isomorphic to other known NP-complete languages. This fact induced Hartmanis
and Berman to formulate the so-called p-isomorphism conjecture: all NP-complete
languages are p-isomorphic.

The next theorem shows, however, that proving such a conjecture is not an easy
task.

Theorem 5.5 If all NP-complete languages are pairwise p-isomorphic, then P 6=
NP.

NP-complete languages 83

Proof. Assume P = NP and, in particular, P = NPC; then every non-empty
finite set (which belongs to P) would be NP-complete. But a finite set cannot be
isomorphic to an infinite one (such as satisfiability). 2

The p-isomorphism conjecture might also be found to be false and NP-complete
languages which are not p-isomorphic to satisfiability may exist (although they
are not likely to be ‘natural’ languages). In fact, the counter-conjecture has also
been formulated along with some convincing arguments (see Notes).

Finally, note that even if we focused our discussion on NP-complete languages,
the above considerations can also be applied to simpler languages, namely lan-
guages in P. Although some languages in P seem too ‘poor’ to admit padding
and decoding functions (for example, no finite language can admit such functions),
languages do exist in P which admit them (see Problem 5.17).

5.2.3 NP-completeness of sparse languages

All known NP-complete languages are ‘dense’ languages. In fact, the census func-
tion of any known NP-complete language grows exponentially with the word length
(see Problem 5.18 as an example). On the other hand, the p-isomorphism conjec-
ture holds only if the census functions of all NP-complete languages are polynomi-
ally related as clarified by the following lemma.

Lemma 5.1 Let L1 and L2 be two p-ismorphic languages. Then two polynomials
p1 and p2 exist such that, for any n,

cL1(n) ≤ cL2(p1(n)) and cL2(n) ≤ cL1(p2(n)).

Proof. Denote by f the p-isomorphism between L1 and L2 and let p1 be the poly-
nomial limiting the computation time of f . Then, for any word x of length n,
|f(x)| ≤ p1(n). Since f is injective, it follows that the number of words in L1 of
length, at most, n cannot be greater than the number of words in L2 of length,
at most, p1(n), that is, cL1(n) ≤ cL2(p1(n)). The second inequality follows in a
similar way. 2

The previous lemma suggests a good way to disprove the p-isomorphism conjec-
ture (if that is our goal): just look for a sparse NP-complete language. Furthermore,
it would be useful from a practical point of view to have a sparse NP-complete
language. Denote it by S and let L be any language in NP. According to the
assumption, a polynomial-time reduction f from L to S exists. Then, for any
given n, we could build a table containing all words of S of length, at most, q(n)
where q is a polynomial limiting the length of f . The size of such a table is, at
most, p(q(n)) where p denotes a second polynomial witnessing the sparsity of S.
We would then have obtained a polynomial size table including the images in S of
all words in L of length, at most, n.

84 The class NP

Once this table has been derived (the time required to build it is exponential in
n since we have to test an exponential number of words), it would then become
possible to decide in polynomial time whether any word of length, at most, n
belongs to L.

Unfortunately, the result presented in this section shows that the existence of
sparse NP-complete languages is very unlikely, and thus also that the existence of
polynomial table-lookup algorithms for subsets of languages in NP is doubtful.

Theorem 5.6 If an NP-complete sparse language exists such that its census func-
tion is computable in polynomial time, then P = NP. (A census function cL is said
to be computable in polynomial time if a Turing transducer T exists which reads
0n as input and computes cL(n) in polynomial time.)

Proof. Let S be an NP-complete sparse language whose census function cS is com-
putable in polynomial time. Denote by NT the nondeterministic Turing machine
which decides S in polynomial time.

The following nondeterministic algorithm shows that the complement language
Sc of S also belongs to NP:

begin {input: x}
n := |x|;
k := cS(n);
guess y1, . . . , yk in set of k-tuples of distinct words
each of which has length, at most, n;
{check whether the guessed k-tuple coincides with S≤n}
for i = 1 to k do

if NT (yi) rejects then reject;
{check if x ∈ S≤n}
for i = 1 to k do

if yi = x then reject;
accept;

end.

It is easy to verify that the previous algorithm is a polynomial-time one and that
it decides Sc. Thus Sc ∈ NP.

Since S is NP-complete, then satisfiability≤ S and Sc ≤ S. According to the
properties of polynomial-time reducibility (see Section 2.3.2 and Problem 4.18) it
follows that satisfiabilityc ≤ S. The remaining part of the proof exploits this
fact to show that satisfiability ∈ P.

Let x be an instance of satisfiability. Consider the binary tree Ax defined as
follows:

1. The root of Ax is labeled with x.
2. If a node is labeled with y, then its children’s labels y0 and y1 are the two

formulas obtained by setting the value of a variable of y, respectively, to false
and to true and by performing all simplifications on y (see Figure 5.3).

NP-complete languages 85

�
���

���
�

�
�
�
�

@
@
@
@

H
HHH

HHH
H

�
�
�

�

@
@
@
@

�
�
�
�

A
A
A
A

false true false

false true

x1 = t x1 = f

x2 = t x2 = fx2 = tx2 = f

x3 = t x3 = f

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x2) ∧ (¬x2 ∨ x3)

(¬x2) ∧ (¬x2 ∨ x3) (x2 ∨ ¬x3) ∧ (¬x2) ∧ (¬x2 ∨ x3)

(¬x3)

Figure 5.3 An example of a binary tree associated with a Boolean formula

Clearly x is satisfiable if and only if, at least, one leaf of Ax is labeled with true.
However, Ax can contain up to 2n+1 − 1 nodes where n denotes the number of
variables of x. Thus visiting such a tree starting from the root and reaching all
leaves would require exponential time in n.

For that reason, we shall use a ‘pruning’ strategy. Let f be a polynomial-time
reduction from satisfiabilityc to S. Whenever we visit a node labeled with y
such that f(y) ∈ S, we can infer that y is not satisfiable and it serves no purpose
to continue visiting the subtree having that node as root (for this reason, function
f is also called a pruning function).

However, S is NP-complete and it is not obvious how to decide efficiently whether
f(y) ∈ S. Indeed, we shall not decide it directly but we shall progressively build a
list of words of S as the visiting of the tree proceeds. Instead of deciding whether
f(y) ∈ S, we shall ask whether f(y) belongs to that list.

Initially, the list contains only f(false). Successively, for each y such that both
f(y0) and f(y1) belong to the list (thus neither y0 nor y1 are satisfiable), f(y) is
added to the list (since y is not satisfiable either). Note that since S is sparse, the
list contains, at most, a polynomial number of words with respect to the length of
x.

The algorithm to decide satisfiability is the following:

begin {input: x} {main program}
list := {f(false)};
if sat(x) then accept else reject;

end.

86 The class NP

where the recursive function sat is defined as

function sat(y): Boolean;
begin

if y = true then sat := true;
if f(y) ∈ list then sat := false
else
begin

derive y0 and y1 from y;
if ¬sat(y0) ∧ ¬sat(y1) then
begin
{if both y0 and y1 are not satisfiable
then y is not satisfiable}

list := list ∪ {f(y)};
sat := false;

end
else sat := true;

end;
end;

Since all nodes of Ax are visited except those belonging to a subtree whose root
is labeled with a formula already known to be not satisfiable, it follows that the
algorithm correctly decides satisfiability.

To prove that the algorithm requires a polynomial number of steps, consider
two unsatisfiable formulas y and z such that f(y) = f(z) and such that the corre-
sponding nodes are inner ones of the visited subtree, that is, they are not leaves of
such a subtree. These two nodes must be contained in a common path from the
root to one of the leaves. In fact, in the opposite case, one of them, for instance
the node labeled y, would have been visited first, f(y) would have been computed
and added to the list and the search would have stopped at the node labeled z,
contrary to the assumption that such a node is an inner one of the visited subtree.

As a consequence, the number of distinct paths from the root to the inner nodes
of the visited subtree is, at most, p(q(|x|)) where p is a polynomial witnessing the
sparsity of S and q is a polynomial limiting the length of f . Since Ax has height n,
the visited subtree has, at most, np(q(|x|)) inner nodes labeled with non-satisfiable
formulas. An assignment satisfying x may require the visit of n−1 additional inner
nodes, thus the visited subtree includes, at most, np(q(|x|))+n− 1 inner nodes. If
we also consider the leaves, the number of visited nodes is twice as high but still
polynomial. 2

The proof of the previous theorem can be summarized by the following main
points:

1. Given a census function for S computable in polynomial time, prove that
Sc ∈ NP.

NP-complete languages 87

2. Using the previous result, reduce satisfiabilityc to Sc and thus to S.
3. Using a reduction from satisfiabilityc to S as a pruning function, visit the

tree Ax of possible assignments for x and show that the pruning is drastic
enough to cut the number of visited nodes from an exponential number to a
polynomial one.

Notice how important the fact is that cS, the census function of S, is computable
in polynomial time.

Now assume that the first assumption of the previous theorem still holds but
that it is no longer possible to compute cS in polynomial time. Does the theorem
still hold? The answer is yes and the approach taken to prove this stronger result
consists of ‘guessing’ the correct value of the census function.

Theorem 5.7 If a sparse NP-complete language exists, then P = NP.

Proof. Let S be a sparse NP-complete language, p a polynomial witnessing the
sparsity of S and NT a nondeterministic Turing machine which decides S in poly-
nomial time.

Define the pseudo-complement of S as the set PC(S) of triples 〈x, k, 0n〉 accepted
by the following algorithm:

begin {input: x, k, 0n}
if |x| > n ∨ k > p(n) then reject;
guess y1, . . . , yk in set of k-tuples of distinct words
each of which is of length, at most, n;
for i = 1 to k do

if NT (yi) rejects then reject;
for i = 1 to k do

if yi = x then reject;
accept;

end.

Note that, for each triple 〈x, k, 0n〉 such that |x| ≤ n and k ≤ p(n), the previous
nondeterministic algorithm accepts if k < cS(n) or k = cS(n) ∧ x ∈ Sc, otherwise
it rejects. Thus, intuitively, if k is the correct value of cS(n), then the algorithm
decides the complement of S. Furthermore, it is easy to verify that it requires
polynomial time, that is, PC(S) ∈ NP.

Let us consider next how to select a suitable pruning function. In the proof of
Theorem 5.6, the visited tree was pruned by using the polynomial-time reduction
from satisfiabilityc to S. Now, we shall use not just one but a polynomially
sized set of pruning functions, one of which will be correct.

Let h and g be two reductions to S from satisfiability and from PC(S),
respectively (such reductions must exist since S is NP-complete). Denote by ph

and pg two polynomials limiting the lengths of h and g, respectively.
Let x be an instance of satisfiability and let m = ph(|x|). For each formula

y contained in the tree Ax, |y| ≤ |x|, thus |h(y)| ≤ m.

88 The class NP

Notice that if k = cS(n), then for each unsatisfiable y of length, at most,
n, g(h(y), k, 0m) must be included in S and we have obtained a reduction from
satisfiabilityc to S for words of up to length |x|. If, on the other hand, k 6= cS(n),
then we cannot be certain that g(h(y), k, 0m) belongs to S.

For each n and for each k ≤ p(n), let us define fn,k(y) = g(h(y), k, 0ph(n)).
Clearly, for each k, function fn,k is computable in polynomial time with respect to
the length of y. Furthermore, it follows from the previous considerations that y is
not satisfiable if and only if fn,cS(n)(y) ∈ S.

If k = cS(n), then a constant c1 depending on p and an integer n0 exists such that
|〈h(y), k, 0ph(n)〉| ≤ 2n + c1 log n ≤ 3n, for all n ≥ n0. The unsatisfiable formulas of
length, at most, n are then transformed from fn,k in, at most, p(pg(3n)) distinct
words of S, for each n ≥ n0.

The tree-visiting algorithm described in the proof of Theorem 5.6 is thus modified
so that all possible pruning functions fn,k with k ≤ p(n) are considered. If the
revised algorithm visits more than |x|p(pg(3|x|)) + |x| − 1 inner nodes, then it
infers that k 6= cS(n) and starts to consider the next value of k.

The new algorithm is thus the following:

begin {input: x}
for k = 0 to p(|x|) do
begin

execute the tree-visiting algorithm described in the
proof of Theorem 5.6 using f|x|,k as a pruning function
and visiting, at most, |x|p(pg(3|x|)) + |x| − 1 inner nodes;
if the algorithm accepts then accept;

end;
reject;

end.

Clearly the above algorithm requires polynomial time and decides satisfiability.
Thus satisfiability ∈ P and P = NP. 2

5.3 NP-intermediate languages

In this section we shall make use of Theorem 4.1 to show that if P 6= NP, then the
difference set NP − (P ∪ NPC) is not empty. Languages in such a set are called
NP-intermediate, since they are in neither P or NPC, and the corresponding class
is denoted as NPI.

Theorem 5.8 If P 6= NP then a language L ∈ NP − P exists which is not NP-
complete.

Proof. Let us first note that both P and NPC are constructively numerable (see
Problems 4.3 and 5.20) and closed with respect to finite variations.

NP-intermediate languages 89

@
@
@
@

�
�
�
�

NP

NPC NPI P

Figure 5.4 The structure of class NP, if P 6= NP

Let L2 = ∅, L1 = satisfiability, C1=P and C2 = NPC. If P 6= NP, then the
assumptions of Theorem 4.1 are satisfied and the language L defined in the proof
of that theorem is in neither P nor NPC.

Since L ≤ L1 ⊕ L2 = satisfiability and since NP is closed with respect to
polynomial-time reducibility (see Problem 5.1), then L ∈ NP. 2

The results obtained so far concerning the structure of NP are shown in Figure
5.4.

Returning to NPI, note that the separator language obtained by means of The-
orem 5.8 is, in a certain sense, an artificial language. Does NPI admit languages
corresponding to natural problems? To a certain extent the answer is affirmative:
problems exist in NP for which neither an NP-completeness proof nor a polynomial-
time algorithm has been found so far. It is thus reasonable to conjecture that such
problems belong to class NPI.

Typical examples of problems exhibiting the above characteristics are those re-
lated to isomorphism between pairs of structures such as graphs, groups, semi-
groups and latin squares.

5.3.1 Group isomorphism

Let us examine in detail group isomorphism, the problem of deciding whether
two finite groups are isomorphic. We shall prove that this problem can be solved
in time strictly less than exponential.

A (finite) group G is a pair 〈S, ∗〉 where S is a finite set of elements and ∗ is a
binary operation such that

1. S is closed with respect to ∗, i.e. ∗ : S × S → S.
2. The binary operation ∗ is associative, i.e. for any x, y, z ∈ S, (x ∗ y) ∗ z =

x ∗ (y ∗ z).
3. There is an element u in S such that u ∗ x = x ∗ u = x for all x ∈ S.
4. Each x ∈ S admits an element y ∈ S called the inverse of x such that

x ∗ y = y ∗ x = u.

90 The class NP

A group G of n elements is defined by means of a table of n2 elements whose
entries specify the values of all possible operations x ∗ y with x, y ∈ S.

Two groups G = 〈S, ∗〉 and G′ = 〈S ′, ∗′〉 are isomorphic if an isomorphism f
exists between them, that is, a bijective function f : S → S ′ such that f(x ∗ y) =
f(x) ∗′ f(y) for all x, y ∈ S.

The algorithm for group isomorphism is based on the following well-known
property of groups (see Notes). Each n-element group admits a system X of, at
most, m = blog(n)c generators (X ⊆ S is a system of generators for G if all
elements of S can be obtained by repeatedly composing elements of X). By using
this property, it is possible to obtain, in subexponential time, a system of generators
for a group G = 〈S, ∗〉 by considering all possible m-combinations (subsets of size
m) of S until we find a combination that is a system of generators for G.

Since checking whether an m-combination is a system of generators can be done
in O[n2m] steps (see Problem 5.21), the procedure requires O[n2mnm] steps.

group isomorphism can then be solved by the following procedure:

1. Derive a system of generators g1, g2, . . . , gm for G.
2. Associate with each element x ∈ S its representation x = gi1 ∗ gi2 ∗ . . . ∗ gih .
3. For each m-permutation z1, z2, . . . , zm of S ′, check whether the following func-

tion f : S → S ′ is an isomorphism between G and G′.

f(x) =

{
zi if x = gi,
zi1 ∗′ . . . ∗′ zih if x = gi1 ∗ . . . ∗ gih .

4. If, at least, one m-permutation exists for which f is an isomorphism then
accept, otherwise reject.

Checking whether f is an isomorphism requires O[n2m] steps while the number
of m-permutations is

O[nmm!] ⊆ O[nm2mlog(m)] ⊆ O[nm2m2

] ⊆ O[n2m].

The number of steps required is thus

O[n2mnm + n2mn2m] ⊆ O[n2mn2m] ⊆ O[n2log(n)+3].

We conclude by observing that even if we have proved that group isomorphism
can be solved in time strictly less than exponential (but not polynomial), the
problem could still be NP-complete, although this seems quite unlikely (see Notes).

5.3.2 Do sparse languages exist in NPI?

Since sparse languages which are NP-complete do not seem to exist, the next
reasonable question is: do sparse languages exist in NPI?

NP-intermediate languages 91

We will not be able to answer this question immediately but we shall content
ourselves in this section with showing that the existence of sparse languages in NPI
depends on the existence of tally languages in the same class.

Given a binary language L, the tally language associated with L is defined as

TL = {u(x) : x ∈ L}

where u : {0, 1}∗ → 0∗ is a function such that, for any x, u(x) = 0n(1x)−1 with n(z)
denoting the natural number represented by the binary word z.

Lemma 5.2 If a sparse language S belongs to NP−P, then a tally language exists
which belongs to NP− P.

Proof. Let S be a sparse language in NP − P and p a polynomial witnessing the
sparsity of S. For each n and for each finite set X of words of length n, let us
put the words of X into lexicographic order and let us denote by yn,j the jth word
according to such ordering. Consider the binary language

L = {〈n, k, i, j, b〉 : ∃X ⊆ Sn[|X| = k and the i-th bit of yn,j is b]}

and consider the tally language TL associated with L.
We will now show that TL ∈ NP. Since S ∈ NP, then a nondeterministic

Turing machine NT exists which decides S in polynomial time. The following
nondeterministic algorithm decides TL in polynomial time:

begin {input: x}
if x = 0t ∧ t = 〈n, k, i, j, b〉 then
begin
{derive a possible subset X of Sn}
guess y1, . . . , yk in set of k-tuples of words of length n
which are lexicographically ordered;
{check whether the generated k-tuple is contained in Sn}
for h = 1 to k do

if NT (yh) rejects then reject;
{check whether 〈n, k, i, j, b〉 ∈ L}
if ith bit of yj is b then accept else reject;

end
else reject;

end.

To prove TL 6∈ P, we show that S is decidable in polynomial time by a determin-
istic Turing machine with oracle TL. Since S 6∈ P, this clearly implies that TL 6∈ P
(see Problem 4.7). The following algorithm describes a deterministic Turing ma-
chine with oracle TL which decides S in polynomial time:

92 The class NP

begin {input: x}
n := |x|;
k := p(n);
{compute k = |Sn|}
while k > 0 ∧ u(〈n, k, 1, 1, 0〉) 6∈ TL ∧ u(〈n, k, 1, 1, 1〉) 6∈ TL do k := k − 1;
{Sn is empty }
if k = 0 then reject;
{a single X ⊆ Sn exists with |X| = |Sn| = k}
for j = 1 to k do
begin
{construct the words of Sn symbol by symbol }
z := e;
for i = 1 to n do

if u(〈n, k, i, j, 0〉) ∈ TL then z := z0 else z := z1;
if x = z then accept;

end;
reject;

end.

We have thus proved TL ∈ NP− P. 2

From Lemma 5.2 and from the fact that each tally language is also sparse we
derive the following theorem.

Theorem 5.9 A sparse language exists in NP− P if and only if a tally language
exists in NP− P.

Finally, by combining the previous theorem and Theorem 5.7, we get the follow-
ing result.

Corollary 5.2 If P 6= NP, then a sparse language exists in NPI if and only if a
tally language exists in NPI.

We will apply the above corollary in Chapter 7 to show that the existence of
sparse languages in NPI is closely related to the separation of exponential-time
complexity classes and it is then considered a likely event.

5.4 Computing and verifying a function

In this section we analyse the difference between computing and verifying a func-
tion. Computing a function f means defining an algorithm which derives an output
y = f(x) from input x, while verifying f consists of deciding the predicate R(x, y)
which assumes the value true if and only if f(x) = y.

First, let us note that if a function f is computable within some time bound,
then f is verifiable within the same time bound. Indeed, given x and y, if one wants

Computing and verifying a function 93

to verify whether f(x) = y, it is sufficient to compute f(x) and then to make a
comparison of symbols between f(x) and y. Since the comparison can be performed
in linear time with respect to y, the time of the overall procedure depends, basically,
on that time required to compute f(x). In other words, computing a function is
never easier, in terms of computational complexity, than verifying the function
itself. In some cases the cost of verifying can be significantly lower than that of
computing.

Example 5.10 Consider the function f(x) = 02|x| . The time required to compute f
cannot be less than its length and is thus exponential with respect to the input length.

At the same time, it is possible to verify the same f in polynomial time with respect to
the combined length of x and y. The verification algorithm simply determines whether
y does not contain 1’s and whether log |y| = |x|. Both tests can be done in polynomial
time.

The existence of functions which are simpler to verify than to compute can also
be proved in a much broader framework, such as in the theory of recursive functions
(see Notes).

The next result we are going to present is more closely related to complexity
theory, even if it can be applied only to a restricted class of functions called multi-
valued.

A multi-valued function f associates a set of values If (x) = {y1, y2, . . .} with
an input x. A multi-valued function f is computable if a Turing transducer exists
which can read x and output a value y ∈ If (x) (we can assume that if If (x) = ∅,
then the transducer does not halt). It is verifiable if a computable predicate R(x, y)
exists which assumes the value true if and only if y ∈ If (x). Finally, a multi-valued
function f is polynomially limited if a polynomial p exists such that, for each x and
for each y ∈ If (x), |y| ≤ p(|x|), that is, the length of the output is not much greater
than that of the input (note that the function of Example 5.10 is not polynomially
limited).

The problem we shall consider is the following. Given a multi-valued function
verifiable in polynomial time, is it true that it is also computable in polynomial
time? The next theorem shows that the answer is yes, if and only if P = NP.

To state this result, we first need to introduce two new classes of functions.
The class PCp includes all multi-valued polynomially limited functions that are
computable in deterministic polynomial time while the class PV p includes all multi-
valued polynomially limited functions verifiable in deterministic polynomial time.

Note that all functions included in FP are verifiable in polynomial time while a
similar result cannot be extended to multi-valued functions. In general, knowing
how to compute a single value of f does not suffice for verifying f . In fact, it is
possible to prove that PCp 6⊆ PVp by simply defining a two-valued function whose
first output value is ‘easy’ to compute while the second one is ‘hard’ to verify (see
Problem 5.22). Furthermore, we shall show that the inclusion PVp ⊆ PCp is not
likely. Therefore it is plausible that PCp and PVp are not comparable.

94 The class NP

Theorem 5.10 PVp ⊆ PCp if and only if P = NP.

Proof. Assume PVp ⊆ PCp and consider an arbitrary language L ∈ NP. From
Theorem 5.1, it follows that a language Lcheck ∈ P and a polynomial p exist such
that

L = {x : ∃y[〈x, y〉 ∈ Lcheck ∧ |y| = p(|x|)]}.

Let f be a multi-valued function defined as follows. For each x, If (x) includes
as values all words y of length p(|x|) such that 〈x, y〉 ∈ Lcheck; if there are none,
then If (x) includes a single special value denoted as Ω.

Such a function f is clearly polynomially limited and belongs to PVp because,
for any x and y, it is sufficient to verify whether 〈x, y〉 ∈ Lcheck and Lcheck ∈ P.
Thus, having assumed PVp ⊆ PCp, f also belongs to PCp.

By construction, x ∈ L if and only if f(x) 6= Ω. For any x, we can then use the
polynomial-time deterministic algorithm which computes f and examine the value
f(x) to decide in polynomial time whether x ∈ L. Since L is an arbitrary language
in NP, it follows that P = NP.

Now assume that P = NP. Let f be a function in PVp and T the deterministic
Turing machine which decides in polynomial time the predicate associated with f
(for simplicity, we assume that both x and the words of If (x) are binary words).

By assumption, f is polynomially limited, thus an integer h exists such that, for
all x and for all y ∈ If (x), |y| ≤ |x|h. First, we derive a nondeterministic Turing
machine NT1 which decides in polynomial time, given any x, if If (x) 6= ∅.

begin {input: x}
guess y in set of words of length, at most, |x|h;
if T (x, y) accepts then accept else reject;

end.

Since P = NP holds, a deterministic machine T1 exists which decides in polyno-
mial time, given any x, if If (x) 6= ∅.

Next we derive a nondeterministic Turing machine NT2 which decides in poly-
nomial time, given any x and z, if z is the prefix of one of the words in If (x).

begin {input: x, z}
guess y in set of words of length, at most, |x|h − |z|;
if T (x, zy) accepts then accept else reject;

end.

In the same way as for NT1, denote by T2 the polynomial-time deterministic
machine equivalent to NT2.

We are now ready to describe a third and last deterministic machine T3 which,
for any x, computes bit by bit a value z ∈ If (x) in polynomial time:

Relativization of the P 6= NP conjecture 95

begin {input: x; output: z}
if T1(x) rejects then cycle {If (x) = ∅}
else
begin

z := e;
i := 1;
found := false;
{derive z bit by bit}
while i ≤ |x|h and not found do
begin

if T2(x, z0) accepts then
z := z0

else
if T2(x, z1) accepts then

z := z1
else found := true;

i := i + 1;
end;

end;
end.

We have thus proved PVp ⊆ PCp and this concludes the proof. 2

The proof of the previous theorem relies heavily on the fact that f is a multi-
valued function; in fact, no similar result is known for conventional (single-valued)
functions.

5.5 Relativization of the P 6= NP conjecture

So far, only two main complexity classes have been defined (but there are more in
subsequent chapters!) and yet we are already faced with a difficult open problem:
is the P 6= NP conjecture true?

In an effort to solve this conjecture, researchers have also investigated the corre-
sponding relativized conjecture, that is, deciding whether PX 6= NPX or PX = NPX

for some oracle X.
The rationale for such a research effort is that if a result is obtained for a class of

oracles, then one might hope to solve the unrelativized conjecture by successively
refining the proof until the relativization refers to a trivial oracle language (in fact,
the P 6= NP conjecture may be viewed as a special case of PX 6= NPX with X = ∅).

Let us turn now to the relativized conjecture PX 6= NPX .
The next two theorems are quite striking. Indeed, they state that

1. An oracle A exists such that PA = NPA.

2. An oracle B exists such that PB 6= NPB.

96 The class NP

Before proving them, let us briefly consider their implications. Intuitively, they
state that proving or disproving the P 6= NP conjecture requires proof techniques
which do not relativize, that is, which cannot be readily extended to all oracles.
Unfortunately, the main techniques we have used so far, namely diagonalization
and simulation, do not seem to be oracle-dependent.

Suppose that we want to prove that P ⊂ NP using a diagonalization technique,
that is, a separator language L included in NP − P. It is found that such a tech-
nique seems directly applicable to separate the corresponding relativized classes,
for any oracle. Thus, if we could separate NP from P by using the diagonalization
technique, we could also prove the same separation for any oracle, contradicting
the first result.

On the other hand, simulation seems to be the best way to prove that P = NP.
In this case, we look for a general method to simulate nondeterministic polynomial-
time algorithms by deterministic polynomial-time ones. Once again, the simulation
technique seems applicable to relativized classes so that if we could prove P = NP
by simulation, then we could also prove the same result for any oracle, contradicting
the second result.

The reader should be warned that the previous discussion is rather informal:
many concepts have not been precisely defined, such as that of a proof technique
which does not relativize, and, indeed, some results (see Notes) seem to weaken
the previous interpretation. Nevertheless, we think that the argument was worth
mentioning in order to emphasize the subtlety of the P 6= NP question.

We are now ready to prove the first theorem which states that an oracle exists
such that P and NP relativized to that oracle are the same. The basic idea is to
use as an oracle a language so powerful that nondeterminism is no longer more
useful than determinism (essentially, all the work is done by the oracle).

Theorem 5.11 Let A be the language defined as

A = {〈T, x, 0k〉 : T (x) accepts and uses, at most, k tape cells}.

Then PA = NPA.

Proof. Obviously, PA ⊆ NPA since the same argument used to state that P ⊆ NP
holds for oracle machines. We must now prove that NPA ⊆ PA.

Let L ∈ NPA. An oracle nondeterministic Turing machine NT exists such that
NT with oracle A decides L in, at most, p(|x|) steps where p denotes a polynomial.

Our objective will be to derive a deterministic Turing machine T ′ using, at most,
q(|x|) cells for a polynomial q and equivalent to NT with oracle A. Once this has
been done, it becomes easy to derive a deterministic Turing machine with oracle A
which decides L. Given any input x, such a machine writes on the query tape the
word 〈T ′, x, 0q(|x|)〉 and halts according to the answer of the oracle. Thus L ∈ PA

and since L is an arbitrary language in NPA, NPA ⊆ PA follows.
Let us now show how to derive T ′ from NT with oracle A. The simulation

of each computation path requires, at most, a polynomial number of tape cells

Relativization of the P 6= NP conjecture 97

and each simulation can be carried on by using the same tape cells, that is, by
recycling the space. What of the queries? Assume that NT queries the oracle A
on the word 〈T ′′, y, 0k〉: T ′ can answer this query by simulating the k cells space
bounded computation T ′′(y). Clearly, k ≤ p(|x|), otherwise NT would not succeed
in writing the query onto the oracle tape. In conclusion, T ′ is able to answer any
query of the form 〈T ′′, y, 0k〉 in polynomial space, thus T ′ decides L using, at most,
q(|x|) cells for a polynomial q. 2

In Chapter 8 we will show that the oracle A introduced in the previous theorem
is a complete language for an important complexity class, namely the class of
languages which can be decided in polynomial space.

The next theorem shows instead how to derive an oracle which separates P from
NP by diagonalization. As usual, in order to diagonalize a suitable enumeration
of oracle Turing machines must be available. In particular, according to Problem
4.3, let T1, T2, . . . be an enumeration of oracle Turing machines such that, for any
oracle X,

1. PX = {L : L = L(TX
k) for some k}.

2. For any k ≥ 0 and for any input x, TX
k (x) halts after, at most, nk + k steps

(the same integer k is used both as index of the machine and as degree of
the bounding polynomial).

Then, for any language X, let us define a new language LX as

LX = {0n : ∃x[x ∈ X ∧ |x| = n]}.

Intuitively, LX captures a property of language X, that is, the non-emptiness
property when restricted to words of a given length. It is easy to verify that
LX ∈ NPX for any oracle X. Indeed, in order to check whether 0n belongs to LX ,
it is sufficient to guess in a nondeterministic way all words of length n and verify
whether the oracle X includes, at least, one of them. The next theorem shows that
an oracle B exists such that no deterministic Turing machine using that oracle is
able to decide LB in polynomial time.

Theorem 5.12 An oracle B exists such that PB 6= NPB.

Proof. The proof consists of deriving by diagonalization an oracle B such that
LB 6∈ PB. Since we know that LB ∈ NPB, the theorem will then follow.

The diagonalization process consists of associating with each polynomial-time
bounded oracle Turing machine T in the enumeration an integer n such that either
TB(0n) accepts and Bn = ∅ or TB(0n) rejects and Bn 6= ∅. This, in turn, implies
that no polynomial-time deterministic Turing machine with oracle B exists deciding
LB.

The language B is constructed in stages. Let B(i) denote the finite set of words
added to B after the ith stage and let ni be an upper bound on the length of

98 The class NP

the words of B(i). Initially we let B(0) be ∅ and n0 be 0. The set B(i) is then
computed by the following algorithm which assumes that oracle Turing machines
are enumerated as previously described:

begin {input: B(i− 1), ni−1}
ni := min{m : m > ni−1

i−1 + i− 1 ∧ 2m > mi + i};
simulate T

B(i−1)
i (0ni);

if T
B(i−1)
i (0ni) accepts then B(i) := B(i− 1)

else
begin

y := smallest word of length ni not queried by T
B(i−1)
i (0ni);

B(i) := B(i− 1) ∪ {y};
end;

end.

The above algorithm is well defined. Indeed, the first step always succeeds in
finding the value ni (after all, it only looks for an integer greater than a finite set

of integers). The second step is also meaningful since the computation T
B(i−1)
i (0ni)

always halts. The only point which remains to be proved is that a word y of length
ni which has not been queried by T

B(i−1)
i (0ni) always exists. For that purpose,

notice that, at most, ni
i + i words can be queried by such a computation while the

number of distinct words of length ni is 2ni > ni
i + i.

We may then define the oracle language B as B =
⋃

i>0 B(i).
Note that for any i, the behavior of Ti on input 0ni with oracle B(i − 1) is

precisely the same as its behavior on the same input with oracle B. In fact, the
word eventually added to B at the ith stage is one of those not queried by Ti on
input 0ni while those added in the successive stages have a length greater than
ni

i + i.
To conclude the proof we have to show that LB 6∈ PB. Conversely, assume that

a polynomial-time Turing machine with oracle B exists deciding LB. Then an
integer i exists such that LB = L(TB

i). How does TB
i (0ni) halt? If it accepts, this

means that B does not contain any word of length ni, that is, 0ni 6∈ LB. On the
other hand, if TB

i (0ni) rejects, then B contains exactly one word of length ni, that
is, 0ni ∈ LB. In both cases, Ti fails to decide whether 0ni belongs to LB and we
conclude that no such TB

i can exist. 2

5.5.1 Strong separation

In the proof of the previous theorem an oracle B was derived such that the cor-
responding language LB differs from any language in PB by, at least, one word.
However, the language LB obtained could be ‘approximately’ included in PB, that
is, an infinite subset of it could belong to that class. A much stronger result con-
sists of obtaining an oracle E such that LE ∈ NPE and such that no infinite subset
of LE belongs to PE.

Relativization of the P 6= NP conjecture 99

Formally, given a class of languages C, an infinite language L is said to be C-
immune if no infinite subset of L belongs to C.

Theorem 5.13 An oracle E exists such that NPE contains a PE-immune lan-
guage.

Proof. Once again the proof consists of deriving by diagonalization an oracle E
such that the corresponding language LE is PE-immune. In order to obtain this
result a more sophisticated kind of diagonalization is necessary. In fact, saying that
LE is PE-immune is equivalent to saying that, for any infinite language L ∈ PE,
L∩Lc

E 6= ∅. This, in turn, implies that the diagonalization process has to determine
at some stage a word x such that x ∈ L − LE. The construction in the proof of
Theorem 5.12 is not able to determine such words since it looks for words that
belong either to LE or to L but not to both (x ∈ L∆LE does not imply x ∈ L−LE).

It then becomes necessary to slow down the diagonalization technique so that an
oracle Turing machine in the enumeration is not freed until a word accepted by that
machine is found. If such a word is found, then it is not added to LE! Of course,
we cannot continue to analyse the behavior of a single machine because we may
never find a word accepted by it (this occurs, for instance, when the set of words
produced by the diagonalization has a null intersection with the language decided
by that machine). We overcome this problem by simply keeping in a reserve list
all machines which have not yet accepted any word and we check every one at each
stage. That is why such a process is called a slow diagonalization.

As in the proof of Theorem 5.12, the language E will be constructed in stages.
Let E(i) denote the finite set of words placed into E after the ith stage and let ni be
an upper bound on the length of all strings in E(i). Furthermore, denote by R(i)
the set of indices of oracle Turing machines that are candidates for diagonalization
at stage i + 1 (this is the reserve list). Initially we let E(0) be ∅, n0 be 0 and
R(0) be {1}. The set E(i) is then computed by the following algorithm where,
once again, the enumeration of oracle Turing machines defined in Problem 4.3 is
assumed:

begin {input: E(i− 1), ni−1, R(i− 1)}
ni := min{m : m > ni−1

i−1 + i− 1 ∧ 2m >
∑

j≤i(m
j + j)};

k := min{j : j ∈ R(i− 1) ∧ T
E(i−1)
j (0ni) accepts (if such a k exists)};

if such a k exists then
begin {case 1: T

E(i−1)
k accepts 0ni}

E(i) := E(i− 1);
R(i) := (R(i− 1)− {k}) ∪ {i};

end
else
begin {case 2: no Tj with oracle E(i− 1) accepts 0ni}

E(i) := E(i− 1)∪ least word of length ni not queried
by any T

E(i−1)
j (0ni), for j ∈ R(i− 1)};

R(i) := R(i− 1) ∪ {i};

100 The class NP

end;
end.

Define E as E =
⋃

i>0 E(i). Reasoning as in the proof of Theorem 5.12, it is easy
to see that the previous algorithm is well defined and that the behavior of machines
Tj with oracle E(i − 1) on input 0ni is precisely the same as their behavior with
oracle E on the same input, for any i and for any j ≤ i.

First we prove that LE is infinite. Clearly, LE is infinite if and only if E is
infinite. Suppose, on the contrary, that E is finite. Then an integer i0 exists such
that, for any i > i0, case 1 occurs so that, at each stage i > i0, the cardinality of
R(i) remains constant, that is, equal to R(i0). Since there is an infinite number
of oracle Turing machines which do not accept any word and the index of each
of those machines is never cancelled from the set of candidates, the cardinality of
such a set cannot remain constant from a certain stage onwards, contradicting the
assumption that E is finite.

To conclude the proof, it remains to show that no infinite subset of LE belongs
to PE. By way of contradiction, assume that an infinite subset L of LE exists
such that L ∈ PE. Thus, a polynomial-time deterministic Turing machine with
oracle E, say TE

i , which decides L must exist. Since L ⊆ LE, there are infinitely
many n such that 0n ∈ L and such that TE

i accepts 0n. The index i was put into
the set of candidates at the end of stage i. Since there is only a finite number of
indices less than i, a stage j > i must exist such that 0nj ∈ L and case 2 with
k = i occurs. Hence, no word of length nj is put into E at that stage and none
will be inserted during later stages because of the first step of the algorithm. Thus
0nj 6∈ LE, contradicting L ⊆ LE.

Hence LE is PE-immune. 2

5.5.2 Positive relativization

So far, the results obtained for the relativized P 6= NP conjecture do not look
very encouraging. The time has come to illustrate some of the ‘positive’ results
associated with relativization.

Intuitively, our goal is to look for results which unequivocally bind the relations
between two complexity classes to the relations between the corresponding rela-
tivized classes. The results of the previous section tell us that if we want to obtain
this type of connection we have to place some restrictions on the oracles to be
considered. This can be carried out by bounding either the number of queries to
the oracle or the power of the oracle.

Bounding the number of queries
The proof of Theorem 5.12 is based on the fact that, for any oracle X, the language
LX belongs to NPX . In particular, we recall that LX is decided by the following
polynomial-time nondeterministic algorithm with oracle X:

Relativization of the P 6= NP conjecture 101

begin {input: x}
if x 6∈ 0∗ then reject
else
begin

guess y in set of words of length equal to |x|;
if y ∈ X then accept else reject;

end;
end.

Note that even though each computation path makes, at most, a polynomial
number of queries (actually, at most, one), the whole computation may perform
an exponential number of such queries. In other words, the algorithm can analyse
a subset of the oracle of exponential size in a nondeterministic way. Intuition
suggests that a deterministic oracle Turing machine cannot perform such a search
in polynomial time and Theorem 5.12 confirms that intuition.

What if we restrict the global number of queries? Once again, intuition suggests
that a nondeterministic oracle Turing machine cannot decide LX whenever the
global number of queries is bounded by a polynomial (and, clearly, P 6= NP). The
next theorem bears this out. In order to prove it, we first have to introduce some
notation and preliminary results.

Let NT be a nondeterministic oracle Turing machine. For any oracle X and
for any input x, let Q(NT, X, x) denote the set of words y such that in a given
computation path of NTX(x) the oracle is queried about y. Such a set can be
further partitioned into two disjoint sets depending on the oracle answers. For
any oracle X and for any input x, let Y (NT, X, x) = Q(NT, X, x) ∩ X, that
is, Y (NT, X, x) contains all queries for which the answer relative to X is ‘yes’.
Analogously, we let N(NT, X, x) be Q(NT, X, x) ∩Xc.

Given two finite languages Y and N , an oracle X is said to be compatible with
Y and N if Y ⊆ X and N ∩X = ∅. Intuitively, the oracle is compatible with the
two sets if those sets can be correctly used to answer a finite subset of queries.

Let NT be any polynomial-time nondeterministic oracle Turing machine and
let 〈x, Y,N,S〉 be quadruples where x is an input, Y and N are disjoint finite
languages, and S is a global state of NT (x). Consider the language LNT consisting
of all quadruples 〈x, Y,N,S〉 such that, for any oracle X compatible with Y and N ,
a computation path of NTX(x) starting from global state S exists which queries
a word y 6∈ Y ∪N .

Lemma 5.3 Let NT be a polynomial-time nondeterministic oracle Turing ma-
chine. Then, LNT ∈ NP.

Proof. The main characteristics of a polynomial-time nondeterministic Turing ma-
chine NT1 which decides LNT are the following (the details are left to the reader).
On input 〈x, Y,N,S〉, NT1 simulates the computation NT (x) starting from global
state S. Whenever a computation path queries a word in Y (respectively, N),
then the simulation continues in the yes-state (respectively, no-state); whenever

102 The class NP

a computation path queries a word which does not belong to Y ∪ N , then the
simulation accepts; finally, whenever the simulation reaches a final state, then it
rejects. It should be clear that such a machine decides LNT in polynomial time,
that is, LNT ∈ NP. 2

For any oracle X, let NPX
b be the class of languages which can be decided

by a polynomial-time nondeterministic machine NT with oracle X performing a
polynomially bounded number of queries to oracle X. More precisely, we require
that, for any x, |Q(NT, X, x)| ≤ p(|x|) where p denotes a polynomial.

Theorem 5.14 P = NP if and only if, for any oracle X, PX = NPX
b .

Proof. Assume that for any oracle X, PX = NPX
b . Choose X = ∅. In such a case,

P∅ = P = NP∅
b = NP, thus P = NP follows immediately.

Conversely, assume that P = NP and let X be an arbitrary oracle. Given
L ∈ NPX

b , let NT be a polynomial-time nondeterministic Turing machine with
oracle X which decides L and such that, for any input x, |Q(NT, X, x)| ≤ q(|x|)
where q denotes a polynomial.

The basic idea is to derive a polynomial-time deterministic Turing machine with
oracle X which, for any input x, computes the two disjoint sets Y (NT, X, x) and
N(NT, X, x). Once these two subsets are available, the computation NTX(x) can
be simulated without making use of the oracle (indeed, it suffices to look at the
two sets), and, since P = NP, L ∈ PX will follow.

The sets Y (NT, X, x) and N(NT, X, x) will be derived word by word by repeat-
edly using the fact that, since P = NP and because of Lemma 5.3, the language
LNT belongs to P. Intuitively, we will perform a binary search through the com-
putation tree of NT with input x by making use of LNT to decide which direction
has to be followed.

Without loss of generality, we can assume that the degree of nondeterminism of
NT is 2, namely, every global state has, at most, two successors (see Problem 2.8).
In fact, we can also assume that every global state S (except the final ones) has
exactly two successors: let us denote them as Sl and Sr. Furthermore, if S is a
global state in which a query is performed, we denote by Sy and Sn the global states
reached if the queried word, respectively, belongs and does not belong to the oracle.
The following polynomial-time algorithm with oracle X computes the two finite
sets Y (NT, X, x) and N(NT, X, x) associated with the computation NTX(x):

begin {input: x; output: Y ,N}
Y := ∅;
N := ∅;
while 〈x, Y, N,S0〉 ∈ LNT do
begin {there are still some unknown queries}
S := S0;
while S is not querying a word not in Y ∪N do
{decide which path has to be followed}

Relativization of the P 6= NP conjecture 103

if S is querying a word y ∈ Y ∪N then
if y ∈ Y then S := Sy

else S := Sn

else
if 〈x, Y, N,Sl〉 ∈ LNT then S := Sl

else S := Sr;
{a new query has been found}
y := content of query tape of NT when in global state S;
if y ∈ X then Y := Y ∪ {y}
else N := N ∪ {y};

end;
end.

First, let us prove the correctness of the algorithm. Since Y and N are both
initialized to ∅ and successively modified according to X, it is clear that at each
step of the algorithm X is compatible with Y and N . By the definition of LNT ,
it follows that the test of membership in LNT performed at the beginning of the
outer while loop will correctly tell us whether a query in Q(NT, X, x) exists which
is not yet in Y ∪ N . Furthermore, the other tests in the inner while loop will
correctly guide our search of that query. Thus, at the end of the algorithm Y and
N will coincide with, respectively, Y (NT, X, x) and N(NT, X, x).

Now consider the running time of the procedure. First, observe that, according
to the hypothesis P = NP and because of Lemma 5.3, every test of membership
relative to LNT can be performed in polynomial time. Then, each execution of the
inner while loop takes, at most, polynomial time, since it essentially follows one
computation path and NT is a polynomial-time oracle Turing machine. Finally, the
outer while loop iterates, at most, q(|x|) times, since at the end of each iteration
one new word is added to the set Y ∪N and we know that |Q(NT, X, x)| ≤ q(|x|).
Thus, the entire procedure can be implemented to run in polynomial time relative
to the oracle X.

Let us now consider the language L1 defined as follows. 〈x, Y,N〉 ∈ L1 if and only
if NT Y accepts x and if all words y queried by that computation belong to Y ∪N .
Clearly, such a language is in NP and, since we are assuming P = NP, it is also in P.
Furthermore, note that x ∈ L if and only if 〈x, Y (NT, X, x), N(NT, X, x)〉 ∈ L1.
We have just seen that both Y (NT, X, x) and N(NT, X, x) can be computed in
polynomial time with oracle X, thus L ∈ PX follows.

Since L is an arbitrary language in NPX
b , NPX

b ⊆ PX . The converse is clearly
true and we have thus proved that, for any oracle X, PX = NPX

b . 2

Bounding the oracle
Once again, let us consider the proof of Theorem 5.12. If we look at the definition
of oracle B, we immediately realize that such an oracle is sparse: indeed, for any
length n, at most, one word of such a length belongs to B. What if we demand
that B is tally? Intuitively, this does not seem an easy task since in the algorithm

104 The class NP

deriving B we would no longer be sure that a word y ∈ 0∗ exists which has not
been queried. Once more, the next theorem confirms that intuition.

Theorem 5.15 P = NP if and only if, for any tally oracle T , PT = NPT .

Proof. Clearly, if, for any tally oracle T , PT = NPT then P = NP. In fact, it
suffices to observe that, by taking T = ∅, it holds that P = P∅ = NP∅ = NP.

Conversely, let T be a tally oracle and let L ∈ NPT . In this case, a polynomial-
time oracle Turing machine NT exists which, with oracle T , decides L. Let q be a
polynomial bounding the computation time of NT .

As in the proof of Theorem 5.14, the basic idea is to derive, for any input
x, two finite sets Y (T, x) and N(T, x) of T which can simulate the computa-
tion NT T (x) without making use of the oracle. In particular, any query made
in NT T (x) which has been answered ‘yes’ (respectively, ‘no’) must be in Y (T, x)
(respectively, N(T, x)).

Note that, since computation NT T (x) takes, at most, q(|x|) steps, no word of
length greater than q(|x|) is queried. Thus, the following deterministic algorithm
with oracle T computes the two sets Y (T, x) and N(T, x) in polynomial time:

begin {input: x; output: Y ,N}
Y := ∅;
N := ∅;
for k = 1 to q(|x|) do

if 0k ∈ T then Y := Y ∪ {0k}
else N := N ∪ {0k};

end.

Clearly, the above algorithm computes Y (T, x) and N(T, x) in polynomial time.

Let us now consider the language L1 defined as follows. 〈x, Y,N〉 ∈ L1 if and only
if NT Y on input x accepts x and if y is a string that is queried in the computation,
then y ∈ Y ∪ N . Such a language is in NP and, since we are assuming P = NP,
it is also in P. Note that x ∈ L if and only if 〈x, Y (T, x), N(T, x)〉 ∈ L1. We have
just seen that both Y (T, x) and N(T, x) can be computed in polynomial time with
oracle T , thus L ∈ PT .

Since L is an arbitrary language in NPT , NPT ⊆ PT . The converse is clearly
true.

We have thus proved that, for any tally oracle T , PT = NPT . 2

As a consequence of Theorems 5.14 and 5.15, two approaches in proving P 6= NP
consist of constructing an oracle D such that PD 6= NPD

b or a tally oracle T such
that PT 6= NPT . If diagonalization is used to define these oracles, the relativized
version of NP should be as large as possible so as to make the separation from
the relativized version of P easier. Unfortunately, these considerations, though
interesting per se, have not been fruitful so far.

Problems 105

Problems

5.1. Show that class NP is closed with respect to intersection and union and to polyno-
mial-time reducibility.

5.2. Remember that, given a language L, the language L∗ is defined as the set of all
words x such that x is the concatenation of words of L. Show that if L belongs to NP,
then L∗ also belongs to NP.

5.3. Fix an alphabet Σ with, at least, three symbols. An encoding is a mapping from
Σ to Σ (not necessarily onto). It can be extended to words (map each symbol) and to
languages (map each word). Show that P is closed with respect to encodings if and only
if P = NP. [Hint: for the ‘if’ part, show that NP is closed with respect to encodings. For
the ‘only if’ part, prove that if P is closed with respect to encodings, then satisfiability

belongs to P.]

5.4. An honest function (see Problem 4.5) is said to be one-way if it is computable in
polynomial time but no polynomial-time right inverse function exists for it. Prove that
if P 6= NP, then one-way functions exist. [Balcazar, Diaz, and Gabarro (1988)]

5.5. A nondeterministic Turing machine is said to be unambiguous if no input has more
than one accepting computation path. The class UP is the set of languages decided
by unambiguous machines in polynomial time. Show that if one-way functions exist,
then P 6= UP [Selman (1989)]. Combine this result with the previous one showing that
one-way functions exist if and only if P 6= UP if and only if P 6= NP.

5.6. We have already observed in Chapter 2 that nondeterministic could be defined by
requiring that, for any input x, all halting computation paths compute the same value.
Let FNP be the set of functions computed in polynomial time by such nondeterministic
transducers. Prove that P = NP if and only if FP = FNP. [Hint: for the ‘if’ part, derive
the output value in a bit-by-bit mode.]

5.7. Define the language L as

L = {〈NT, x, 0t〉 : NT accepts x in, at most, t steps}.

Show that L is NP-complete. [Hint: reduce languages in NP to L.]

5.8. Prove that 3-colorability is NP-complete. [Hint: show that 3-satisfiability is
polynomially reducible to 3-colorability.]

5.9. 3-dimensional matching: given three finite sets X, Y and W having the same
cardinality q and a subset M of X × Y × W , does a set M ′ ⊆ M exist such that
all 3q elements of X, Y and W appear in exactly one triple of M ′? Prove that this
problem is NP-complete. [Hint: show that 3-satisfiability is polynomially reducible
to 3-dimensional matching.]

5.10. hamiltonian circuit: given a graph G = (N,E), does G admit a Hamiltonian
circuit, that is, a circuit of |N| nodes? Prove that this new problem is NP-complete.
[Hint: show that node cover is polynomially reducible to hamiltonian circuit.]

106 The class NP

5.11. Prove that traveling salesman is NP-complete. [Hint: show that hamiltonian

circuit is polynomially reducible to traveling salesman.]

5.12. partition: given a finite set A of positive integers whose sum is equal to 2b,
can A be partitioned into two subsets so that the sum of the integers in each subset is
exactly b? Prove that this problem is NP-complete. [Hint: show that 3-dimensional

matching is polynomially reducible to partition.]

5.13. cover: given a finite set A, a collection C of subsets of A, and a constant k, does
C admit a cover of size, at most, k, that is, a subset C ′ such that every element of A

belongs to, at least, one member of C ′? Prove that this problem is NP-complete. [Hint:
show that 3-dimensional matching is polynomially reducible to cover.]

5.14. Prove that knapsack is NP-complete. [Hint: show that partition is polynomi-
ally reducible to knapsack.]

5.15. A language L is self-reducible if a deterministic polynomial-time oracle Turing T

exists such that L = L(TL) and, for any input x of length n, TL(x) queries the oracle
for words of length, at most, n − 1. Show that satisfiability is self-reducible. Is this
result sufficient to state that any NP-complete language is self-reducible?

5.16. Let L be a self-reducible language via the oracle machine T . Prove that, for any
language L′ and for any integer n, if L′

≤n = L(TL′
)≤n, then L≤n = L′

≤n. [Hint: by
induction on n.]

5.17. Find a problem in P which admits a pair of polynomial-time computable padding
and decoding functions satisfying the conditions of Lemma 5.4.

5.18. Show that the census function of satisfiability grows exponentially with the
input size.

5.19. Prove that if satisfiabilityc is decidable in polynomial time by a deterministic
Turing machine T with a tally oracle such that T makes a constant number of queries,
then P = NP.

5.20. Show that NPC is constructively enumerable. [Hint: starting from the standard
enumeration of polynomial-time deterministic transducer Turing machines and from that
of NP, derive a constructive enumeration T1, . . . , Tn, . . . of deterministic Turing machines
such that, for any i, either L(Ti) is NP-complete or it coincides with satisfiability

almost everywhere.]

5.21. system of generators: given a group G = 〈S, ∗〉 of n elements and a log(n)-
combination of S, is such combination a system of generators for G? Describe an algo-
rithm which solves this problem in time O[n2 log(n)]. [Hint: distinguish the elements of
S as: not yet generated, generated but not used, and generated and already used.]

5.22. Prove that PCp 6⊆ PVp. [Hint: define a function f such that, for any x, If (x) al-
ways includes one element which is easy to compute, and eventually includes one element
which is hard to verify.]

Notes 107

5.23. Define the class PCt as the set of multi-valued total functions which are computable
in polynomial time and the class PVt as the set of multi-valued total functions which
are verifiable in polynomial time. Prove that, if P = NP, then PVt ⊆ PCt.

5.24. Prove that an oracle E exists such that NPE 6= coNPE .

5.25. Prove that NP = coNP if and only if, for any oracle D, NPD
b = coNPD

b .

5.26. Prove that NP = coNP if and only if, for any tally oracle T , NPT = coNPT .

Notes

The definition of the class NP has certainly been a breakthrough in the theory of
computational complexity. Although this class and the related P 6= NP conjecture
were first formulated in Karp (1972), it is surprising to observe that Gödel was
probably the first to consider the computational complexity of what is now known
as an NP-complete problem. Indeed, as referred to by Hartmanis (1989), in a 1956
letter, Gödel asked von Neumann how many Turing machine steps are required to
decide if there is a proof of length n for a formula F in predicate calculus. It is
also interesting to note Gödel’s optimism that this NP-complete problem could be
solved in linear or quadratic time!

The proof of Theorem 5.2, which appeared in Cook (1971), placed a powerful
tool at the disposal of researchers who wished to prove the ‘intractability’ of com-
binatorial problems. Since then, attempts to prove NP-completeness results have
been the natural counterpart of developing algorithmic techniques to solve prob-
lems. These two activities interact in such a way that we can hardly imagine them
isolated.

An exhaustive overview of class NP, NP-complete problems, and reduction tech-
niques is contained in Garey and Johnson (1979). In addition to that text, many
new interesting results concerning proofs of NP-completeness and new NP-complete
problems can be found in the review ‘The on-going NP-completeness column’ by
Johnson which appears periodically in the Journal of Algorithms.

An alternative proof of the existence of NP-complete languages can be found in
Lewis and Papadimitriou (1981). Such a proof consists of showing the polynomial-
time reduction of nondeterministic computations to instances of a problem called
tiling which is a rectangle-packing problem with additional constraints on the
orientation and on the affinity between edges of distinct rectangles.

All NP-completeness proofs contained in this chapter are due to Karp (1972),
except those of satisfiability and of 3-satisfiability which appeared in Cook
(1971).

The p-isomorphism among NP-complete problems was studied in Berman and
Hartmanis (1977): in that paper, the results of Section 5.2.2 were first derived.
In Joseph and Young (1985), the p-isomorphism conjecture was related to the
existence of ‘hard to invert’ functions. In particular, it was conjectured that if such

108 The class NP

functions exist, then there is a special class of NP-complete languages, called k-
creative, whose members are not p-isomorphic to satisfiability. Perhaps partly
as a result of this counter-conjecture, there has been intense interest in the p-
isomorphism conjecture in the past few year. We refer the interested reader to the
surveys of Kurtz, Mahaney, and Royer (1990) and Young (1990).

In Berman and Hartmanis (1977), the authors conjectured that no sparse NP-
complete languages exist. The path to solving this conjecture can be summarized
as follows. The pruning technique appearing in the proof of Theorem 5.6 was first
introduced in Berman (1978) and successfully applied in Hartmanis and Mahaney
(1980) in order to obtain the theorem itself. Finally, Theorem 5.7 was obtained in
Mahaney (1982).

As already observed, Theorem 5.8 appeared for the first time in Ladner (1975a)
while our formulation, as an application of Theorem 4.1, is taken from Schöning
(1982a).

A proof that each finite group G of n elements admits a system of generators
of at most log(n) elements can be found in several books on group theory such
as that by Hoffmann (1982), while the algorithm to test group isomorphism was
introduced in Miller (1978). Some evidence that problems related to isomorphism
between structures such as graphs are not NP-complete is given in Schöning (1986).

The study of the relationships between complexity classes using the properties
of tally and sparse sets was initiated in Book (1974); in particular, Lemma 5.2
appeared in Hartmanis (1983).

The existing relationships between computing and verifying a function were con-
sidered in Valiant (1976). In addition to Theorem 5.10, that paper contains other
interesting results along this line of research. The comment about the theory of
recursive functions refers to the following property of general recursive functions.
Given any such function which is not a primitive recursive function (for instance,
Ackermann’s function) the corresponding decision problem is primitive recursive.
For additional information on this topic, we suggest Rogers (1967).

The study of the relativized version of the P 6= NP conjecture started with the
paper by Baker, Gill, and Solovay (1975) where Theorem 5.11 and 5.12 appeared
for the first time. Since then research on relativization of complexity classes has
gone beyond expectation. Even though this chapter considered relativizations only
of the classes P and NP, essentially all complexity classes defined in the literature
were relativized and many other oracle-separation results were obtained. For a
list of such results, we refer to the Notes of the following chapters. Moreover,
in Chapter 10 we shall consider two important complexity classes which coincide
although an oracle exists separating the corresponding relativized classes!

The concept of strong separation was initially studied in Bennett and Gill (1981)
where the existence of an oracle A such that NPA contains a PA-immune language
was proved. In Homer and Maass (1983) and, independently, in Schöning (1982b)
it was shown that such a set A can be taken to be recursive. The proof of Theorem
5.13 is inspired by Schöning and Book (1984) where further generalizations were
also presented.

Notes 109

The concept of ‘positive relativization’ was introduced in Book, Long, and Sel-
man (1985). This paper contains many results based on restricting the number of
oracle queries (one of them is Theorem 5.14). Long and Selman (1986) studied the
bound on the density of the oracle: Theorem 5.15 is inspired by that paper. In Book
(1989) the reader can find an interesting survey on such restricted relativizations.

Chapter 6

The complexity of optimization
problems

An important characteristic of decision problems is that all feasible solutions are
considered equally acceptable. In many practical applications, however, this as-
sumption does not hold and it becomes necessary to rank the solutions according
to some criterion. This is usually done by associating a measure to each solu-
tion. Depending on the application, the best solution is then the one having the
maximum measure or, conversely, the minimum measure.

Problems of this kind are called optimization problems. Some of them, such as
scheduling, routing, and flow control, have been thoroughly investigated in the past
few decades and in many cases heuristic techniques leading to good but suboptimal
solutions have been developed.

In addition to these empirical developments, two main questions have arisen
concerning optimization problems, namely, whether a polynomial-time algorithm
yielding an optimal solution exists, and, in the negative case, whether there is
a polynomial-time algorithm yielding a suboptimal solution with some degree of
accuracy. Complexity theory has provided a set of tools to answer both questions
and we shall present them in this chapter.

First, let us informally introduce the concept of an underlying decision problem.
Instead of requesting the best solution, we content ourselves with determining
whether a solution having a measure, at least, k (or, at most, k) exists. It should
be clear that the computational complexity of an optimization problem cannot be
smaller than that of its underlying decision problem. Assume we have an algorithm
which computes a solution having maximum measure. We can then easily test1

whether its measure is, at least, k and thus solve the underlying decision problem (if
the algorithm computes a solution having minimum measure, we then test whether
its measure is, at most, k).

This chapter is concerned with optimization problems whose underlying decision
problems belong to NP. In Section 6.1 we formally define the concept of an opti-

1Here we are implicitly assuming that computing the measure of a solution is almost without
cost.

110

Optimization problems 111

mization problem and introduce two important classes of such problems, called PO
and NPO. In Section 6.2 we analyse the relation between an optimization problem
and its underlying decision problem while in Section 6.3 we compare the complex-
ity of evaluating the optimum measure, i.e. the measure of an optimum solution,
and that of computing an optimum solution.

In Section 6.4 we introduce the concept of an approximable optimization prob-
lem. The widespread belief that some optimization problems cannot be solved in
polynomial time made researchers look for strategies leading to suboptimal solu-
tions, that is, strategies whose objective is to find a polynomial-time algorithm
which always finds solutions close to the optimum. In this section we define three
classes of problems that admit different kinds of approximation algorithms and
analyse their relations.

Finally, in Section 6.5 we introduce a natural reducibility between optimization
problems and show the existence of NPO-complete problems, that is, problems
which do not admit approximation algorithms unless P = NP.

6.1 Optimization problems

The basic ingredients of an optimization problem are the same as those of a decision
problem along with a function which measures the ‘goodness’ of feasible solutions.
The problem consists of finding a solution with either maximum measure (in the
case of a maximization problem) or minimum measure (in the case of a minimiza-
tion problem). If the measure can only assume two values, e.g. 0 and 1, then the
optimization problem essentially becomes a decision one. In general, however, this
is not true and the measure can assume an arbitrary range of values. In this chap-
ter, we shall consider only optimization problems whose measure assumes positive
integer values.

Thus, an optimization problem is a tuple 〈I, S, π, m,Goal〉 such that

1. I is a set of words that encode instances of the problem.
2. S is a function that maps an instance x ∈ I into a non-empty finite set of

words that encode possible solutions of x.
3. π is a predicate such that, for any instance x and for any possible solution

y ∈ S(x), π(x, y) = true if and only if y is a feasible solution. Furthermore,
we assume that, for any instance x, a feasible solution of x exists.

4. m is a function that associates with any instance x ∈ I and with any feasible
solution y a positive integer m(x, y) that denotes the measure of solution y.

5. Goal = max or Goal = min.

Solving an optimization problem 〈I, S, π, m,Goal〉 consists of finding an opti-
mum solution for a given instance x ∈ I, that is, a feasible solution y such that

m(x, y) = Goal{m(x, z) : z ∈ S(x) ∧ π(x, z) = true}.

112 The complexity of optimization problems

In particular, we say that a Turing transducer T solves an optimization problem
〈I, S, π, m,Goal〉 if, for any x ∈ I, T (x) outputs a word encoding an optimum
solution.

From now on, opt will denote the function that associates the measure of an
optimum solution with any instance x ∈ I.

Example 6.1 minimum cover: given a finite set A and a collection C of subsets of A,
find a minimum size subset C ′ ⊆ C such that every element of A belongs to, at least,
one member of C ′. Thus minimum cover = 〈I, S, π, m, min〉 where

1. I is the set of pairs 〈A,C〉 where A is a finite set and C is a collection of subsets
of A.

2. S associates with any instance 〈A,C〉 ∈ I the set of all subsets C ′ ⊆ C.

3. For any instance 〈A,C〉 ∈ I and for any subset C ′ ∈ S(A,C), π(〈A,C〉, C ′) = true
if and only if the union of the members of C ′ is equal to A.

4. For any instance 〈A,C〉 ∈ I and for any C ′ ∈ S(A,C) such that π(〈A,C〉, C ′) =
true, m(〈A,C〉, C ′) = |C ′|.

Example 6.2 maximum clique: given a graph G, find a maximum size clique contained
in G. Thus, maximum clique = 〈I, S, π, m, max〉 where

1. I is the set of graphs G.

2. S associates with any instance G ∈ I the set of all subgraphs contained in G.

3. For any instance G ∈ I and for any G′ ∈ S(G), π(G, G′) = true if and only if G′

is a clique.

4. for any instance G ∈ I and for any clique G′ ∈ S(G), m(G, G′) = |G′|, that is,
m(G, G′) denotes the number of nodes of G′.

We now introduce two classes of optimization problems, called NPO and PO,
which correspond in some way to the classes of decision problems NP and P.

6.1.1 The class NPO

An optimization problem 〈I, S, π, m,Goal〉 belongs to the class NPO if the fol-
lowing conditions hold.

1. The set I belongs to P.
2. A polynomial p exists such that, for any x ∈ I and for any y ∈ S(x),
|y| ≤ p(|x|).

Optimization problems 113

3. For any x ∈ I and for any y such that |y| ≤ p(|x|), it is decidable in polynomial
time whether y ∈ S(x).

4. The predicate π is decidable in polynomial time.
5. The function m belongs to FP.

Example 6.3 Let us show that the problem minimum cover introduced in Example
6.1 satisfies conditions 1-5 and, thus, belongs to NPO.

1. I ∈ P since, given any x, it suffices to check whether x = 〈A,C〉 where A is a finite
set and C is a collection of subsets of A.

2. For any C ′ ⊆ C, it is clear that |C ′| ≤ |C| ≤ |〈A,C〉|.

3. For any 〈A,C〉 and for any y with |y| ≤ |〈A,C〉|, we can decide whether y is a
possible solution simply checking whether y = C ′ with C ′ ⊆ C.

4. For any 〈A,C〉 and for any C ′ ⊆ C, we can easily check in polynomial time whether
the union of the members of C ′ is equal to A.

5. For any C ′, the cardinality of C ′ can obviously be computed in polynomial time.

Example 6.4 The problem maximum clique introduced in Example 6.2 belongs to
NPO. By choosing S(G) as the set of all subsets of nodes of G, it can be immediately
verified that conditions 2-5 hold.

Example 6.5 minimum node cover: given a graph G = (N,E), find a minimum size
subset N ′ ⊆ N such that, for each edge 〈u, v〉 ∈ E, at least, one of u and v belongs to
N ′. This problem belongs to NPO: by choosing S(G) as in the previous example, it can
be immediately verified that conditions 2-5 hold.

Example 6.6 minimum traveling salesman: given a complete weighted graph G,
find a cycle passing through all nodes of G which minimizes the sum of the weights
associated with the edges of the cycle. This problem belongs to NPO: by choosing S(G)
as the set of all permutations of the node indices of G, it can be immediately verified
that conditions 2-5 hold.

6.1.2 The class PO

An optimization problem in NPO belongs to the class PO if it is solvable in poly-
nomial time by a deterministic Turing transducer.

Example 6.7 bipartite matching: given a bipartite2 graph G = (N,E), find a max-
imum matching in G, that is, a maximum cardinality set of edges E′ ⊆ E such that no
two edges of E′ are incident.

2A graph G = (N,E) is said to be bipartite if the set of nodes can be partitioned into two sets
N1 and N2 such that each edge in E has one node in N1 and one node in N2.

114 The complexity of optimization problems

This is a well-known optimization problem which is solvable in polynomial time by
making use of the augmenting path technique. Given a matching M , an edge belonging
to M is called matched, while the other edges are called free. A node incident to a
matched edge is also called matched, while the other nodes are free. An augmenting path
for M is a path whose edges are alternatively free and matched and whose first and last
nodes are free. We first observe that a matching is of maximum cardinality if and only if
it admits no augmenting path. Indeed, if M has an augmenting path, then reversing the
roles of the matched and free edges in the path results in a new matching of size |M |+1,
that is, M is not maximum. Conversely, let M be a matching which is not maximum,
that is, there is a matching M ′ such that |M ′| > |M |. Consider the edges in M∆M ′.
These edges form a subgraph whose nodes have degree 2 or less and if a node has degree
2 then it is incident to one edge in M and to one edge in M ′. Thus, that subgraph is
formed by either paths or cycles of even length. In all cycles we have the same number
of edges of M as that of M ′. Since |M ′| > |M |, then a path exists with more edges from
M ′ than from M . This path is thus an augmenting path for M .

The algorithm which solves bipartite matching is therefore based on repeatedly
searching augmenting paths (starting from an initial matching M) and is the following:

begin {input G = (N1, N2, E); output: M}
for any node x do set x unlabeled;
M := ∅;
while an unlabeled free node x ∈ N1 exists do

if an augmenting path starting from x exists then
augment M by such a path

else set x labeled;
end.

Note that if no augmenting path starts from a free node x (at any step), then there
never will be an augmenting path from x and that node can be ignored in later steps
(that is, it becomes labeled). From the above discussion it follows that the previous
algorithm correctly computes a matching of maximum cardinality.

Clearly there can be, at most, |N |/2 augmentations (since the number of matched
edges increases by 1 at each augmentation). Furthermore, looking for an augmenting
path starting from a free node in N1 takes O[|E|] time. Indeed, such a process can be
performed by a breadth-first search starting from the free node. Hence, the algorithm
runs in polynomial time and bipartite matching belongs to PO.

Example 6.8 scheduling fixed jobs: given n jobs Jj , each with a starting time sj

and a completion time tj (j = 1 . . . , n) which can be executed by any machine Mi from a
set of identical machines, determine an optimum schedule that minimizes the number of
machines required. A schedule assigns to each Jj a machine Mi from sj to tj ; a schedule
is feasible if the processing intervals (sj , tj) on Mi are non-overlapping for all i; a schedule
is optimal if it is feasible and if it minimizes the maximum completion time of the jobs.
A simple example of optimum schedule is represented in Figure 6.1.

An easy scheme to derive an optimal schedule consists of ordering, first, jobs according
to non-decreasing starting times and of next scheduling each successive job on a machine,
giving priority to a machine that has previously completed another job. It is not hard to

Underlying languages 115

M1

M2

M3

J2

J4

J1 J3

J5

0 1 2 3 4 5 6 7 8 9

j : 1 2 3 4 5 6

sj : 0 0 3 4 7 6

tj : 2 8 6 7 9 8

J6

Figure 6.1 A simple example of an optimum schedule

realize that, at the end, the number of machines to which jobs have been assigned is equal
to the maximum number of jobs that require simultaneous processing. The optimality
of the resulting schedule follows.

Denote by u an array of length 2n containing all starting and completion times in
non-decreasing order. The informal notation uk ∼ sj (respectively, uk ∼ tj) will serve to
indicate that the kth element of u corresponds to the starting (respectively, completion)
time of Jj . The algorithm also uses a stack S of idle machines such that the machine
that has most recently completed a job, if any, is always placed on top of the stack:

begin {input: s1, t1, . . . , sn, tn};
sort the sj , tj in non-decreasing order in (u1, . . . , u2n),
if tj = sk for some j, k then insert tj before sk in u;
S := stack of n machines;
for k = 1 to 2n do
begin

if uk ∼ sj then pop machine from S and assign it to Jj ;
if uk ∼ tj then push machine assigned to Jj on top of S;

end;
end.

Clearly, the number of steps required by the above algorithm is O[n log(n)].

6.2 Underlying languages

We have already observed in the introduction to this chapter how optimization
problems may be considered as an extension of decision problems. Conversely,

116 The complexity of optimization problems

given an optimization problem we can always derive from it an underlying language
(or underlying decision problem) in the following way. Instead of looking for the
best solution of instance x, we ask whether x admits a solution having measure,
at least, k (or, at most, k) and, in the affirmative case we include the pair 〈x, k〉
in the underlying language. Thus, that language consists of all pairs 〈x, k〉, with
x ∈ I and k > 0, such that a feasible solution y exists with m(x, y) ≥ k if Goal
= max and m(x, y) ≤ k otherwise.

Example 6.9 The underlying language of minimum cover, introduced in Example 6.1,
is the set of triples 〈A,C, k〉 such that a cover exists for A of size k or less, that is, it
coincides with node cover which was introduced in Example 5.5.

Example 6.10 The underlying language of maximum clique, introduced in Example
6.2, is the set of pairs 〈G, k〉 such that G contains a clique of size k or more, that is, it
coincides with clique which was introduced in Example 5.7.

The next lemma justifies our interest in the class NPO.

Lemma 6.1 If an optimization problem belongs to NPO, then the underlying
language belongs to NP.

Proof. Let 〈I, S, π, m,Goal〉 be an optimization problem in NPO and let p be the
polynomial limiting the length of the feasible solutions. The following nondeter-
ministic algorithm decides the underlying language:

begin {input: x, k}
if x 6∈ I then reject;
guess y in set of words of length, at most, p(|x|);
if not y ∈ S(x) then reject;
if not π(x, y) then reject;
if Goal = max then

if m(x, y) ≥ k then accept else reject
else if m(x, y) ≤ k then accept else reject;

end.

From conditions 1-5 it follows that the above algorithm works in polynomial
time. 2

We have already observed that the complexity of an optimization problem in
NPO cannot be smaller than that of the underlying language: if an optimum
solution can be computed in polynomial time, then the underlying language also
is polynomial-time decidable. The next lemma formalizes this observation.

Lemma 6.2 If an optimization problem belongs to PO, then the underlying lan-
guage belongs to P.

Optimum measure versus optimum solution 117

Proof. Let 〈I, S, π, m,Goal〉 be an optimization problem in PO. By hypothesis, for
any instance x, the optimum measure opt(x) for that problem can be computed
in polynomial time. Since, for any instance 〈x, k〉, it is possible to compare opt(x)
with k in polynomial time, then the underlying language belongs to P. 2

An immediate consequence of Lemma 6.2 is the next lemma, which says that
if P 6= NP, many optimization problems of practical interest are computationally
intractable.

Lemma 6.3 If P 6= NP, then any problem 〈I, S, π, m,Goal〉 in NPO whose un-
derlying language is NP-complete does not belong to PO.

Proof. Given an optimization problem 〈I, S, π, m,Goal〉 in NPO, let L be the
underlying language. Since L is NP-complete and P 6= NP, then L does not belong
to P. From Lemma 6.2, it follows that 〈I, S, π, m,Goal〉 does not belong to PO.
2

We have already encountered NPO problems whose underlying languages are
NP-complete. Therefore, the following corollary results from the application of
Lemma 6.3.

Corollary 6.1 If P 6= NP, then PO 6= NPO.

6.3 Optimum measure versus optimum solution

Solving an optimization problem means deriving an effective optimal solution for it.
We may also consider a slightly less ambitious objective, namely, that of computing
the optimal measure without producing an optimum solution. For example, instead
of determining the nodes of a maximum clique of a given graph, we may content
ourselves with computing the size of a maximum clique.

In the case of optimization problems in NPO, the measure function is com-
putable in polynomial time. Hence, a polynomial-time algorithm which computes
the optimum measure can immediately be derived from a polynomial-time algo-
rithm yielding an optimum solution. What of the reverse case? In general, it does
not seem possible to obtain an optimum solution, even if we know its measure.
Even if we could evaluate the optimum measure of arbitrary instances in polyno-
mial time, the problem of obtaining an optimum solution is not likely to be solvable
in polynomial time. In other words, it seems that optimum solutions are harder to
obtain, since they yield additional information.

In some cases, however, optimum solutions can be derived from optimum mea-
sures as we shall see in the remaining part of this section.

Given a problem 〈I, S, π, m,Goal〉 in NPO, the prefix version is a new opti-
mization problem 〈Ip, Sp, πp, mp,Goal〉 where

1. Ip = I × Σ∗.

118 The complexity of optimization problems

2. For any instance 〈x, a〉 ∈ Ip, Sp(x, a) = S(x).
3. For any instance 〈x, a〉 ∈ Ip and for any possible solution y, πp(〈x, a〉, y) =

true if and only if π(x, y) = true and a is a prefix of y.3

4. For any instance 〈x, a〉 ∈ Ip and for any feasible solution y, mp(〈x, a〉, y) =
m(x, y).

Let optp denote the function that computes the optimum measure of the prefix
version.

Theorem 6.1 If 〈I, S, π, m,Goal〉 is an optimization problem in NPO such that
optp ∈ FP, then 〈I, S, π, m,Goal〉 belongs to PO.

Proof. The following polynomial-time algorithm computes an optimum solution a
for 〈I, S, π, m,Goal〉 symbol by symbol:

begin {input: x; output: a}
a := e;
{optp(x, e) coincides with opt(x)}
while a 6∈ S(x) ∨ ¬π(x, a) ∨ optp(x, e) 6= m(x, a) do
begin

look for a σ ∈ Σ such that optp(x, aσ) = optp(x, e);
{since, at least, one optimum solution exists then such a σ must exist}
a := aσ;

end;
end.

It is easy to verify that, since |a| ≤ r(|x|), for some polynomial r, and optp is com-
putable in polynomial time with respect to |〈x, a〉|, the algorithm has polynomial-
time complexity with respect to the length of x. 2

An interesting consequence of Theorem 6.1 is the next corollary, which provides
a sufficient condition for computing an optimum solution in polynomial time, as-
suming that the optimum measure can be evaluated in polynomial time.

Corollary 6.2 Let 〈I, S, π, m,Goal〉 be an optimization problem in NPO. If
opt ∈ FP implies optp ∈ FP, then opt ∈ FP implies that 〈I, S, π, m,Goal〉
belongs to PO.

Example 6.11 Let us consider the prefix version of minimum cover introduced in
Example 6.1 where prefix a denotes subsets D of C. If opt ∈ FP, then, given an instance

3If the problem does not admit feasible solutions having prefix a, we can always appropriately
modify Sp, πp and mp obtaining a new prefix version which, for any instance 〈x, a〉, admits, at
least, one feasible solution (see Problem 6.4).

Approximability 119

〈〈A,C〉, D〉, we can compute optp(〈A,C〉, D) in the following way. If A′ = A −
⋃

d∈D d
and, for any c ∈ C, c′ = c−

⋃
d∈D d, then optp(〈A,C〉, D) = opt(A′, C ′) + |D|.

The previous procedure can easily be extended to prefixes which do not correspond
to subsets of C but rather to partial encodings of such subsets (see Problem 6.5). Thus,
if we can evaluate in polynomial time the optimum measure of minimum cover, then
we can compute in polynomial time an optimum solution for it. Since the underlying
language of minimum cover is NP-complete (see Problem 5.13), this seems unlikely.

In fact, the next theorem shows that not only minimum cover but all problems
whose underlying languages are NP-complete do not seem to admit an optimum
measure computable in polynomial time.

Theorem 6.2 The following statements are equivalent:

1. P = NP.
2. For any optimization problem in NPO, opt ∈ FP.
3. PO = NPO.

Proof. 2→ 1. This follows from Example 6.11, Corollary 6.2 and Lemma 6.3.
3→ 2. This follows from the discussion at the beginning of this section.
1→ 3. Given an optimization problem in NPO, the underlying language belongs

to NP and, according to the hypothesis, to P. Given any instance of the optimiza-
tion problem, we can then evaluate its optimum measure through a binary search
(see Problem 6.7) and, then, use this value to compute an optimum solution (see
Problem 6.8). 2

6.4 Approximability

Lemma 6.3 shows that it is unlikely that an optimization problem whose underlying
language is NP-complete admits a polynomial-time algorithm yielding an optimum
solution. In these cases we sacrifice optimality and start looking for approximate
solutions computable in polynomial time.

Example 6.12 Recall that minimum node cover is an NPO problem whose underlying
language is NP-complete (see Example 5.5).

Let us consider the following polynomial-time algorithm:

begin {input: G = (N,E); output: N ′}
{N ′ denotes the cover and E′ the candidate edges}
N ′ := ∅;
E′ := E;
while E′ 6= ∅ do
begin

pick any edge 〈u, v〉 ∈ E′;

120 The complexity of optimization problems

E′ := E′ − {〈u, v〉};
{〈u, v〉 is still uncovered }
if u 6∈ N ′ ∧ v 6∈ N ′ then N ′ := N ′ ∪ {u, v};

end;
end.

Clearly, the subset N ′ ⊆ N computed by the algorithm is a vertex cover corresponding
to a set of disjoint edges whose cardinality is |N ′|/2 (since for any edge both its endpoints
have been added to N ′). Since, by definition, any cover must ‘touch’ all the edges of
such set, then it must contain, at least, |N ′|/2 nodes. Thus, the cardinality of N ′ is, at
most, twice the cardinality of an optimum cover.

6.4.1 The class APX

The previous example shows that optimization problems exist in NPO for which
it is possible to get ‘close enough’ to an optimum solution. To characterize such
problems, let us introduce some definitions.

Let 〈I, S, π, m,Goal〉 be an optimization problem. For any instance x ∈ I and
for any feasible solution y, the relative error of y (with respect to x) is defined as

|opt(x)−m(x, y)|/opt(x).

Given an optimization problem 〈I, S, π, m,Goal〉 and a positive rational ε, a
Turing transducer T is an ε-approximating algorithm for 〈I, S, π, m,Goal〉 if, for
any instance x ∈ I, T (x) computes in polynomial time a feasible solution whose
relative error is less than or equal to ε.

An optimization problem is approximable if it admits an ε-approximating algo-
rithm, for a given ε. Note that, for most of the ‘natural’ maximization problems
in NPO, it is always possible to derive a Turing transducer computing a feasible
solution y in polynomial time, for any instance x ∈ I. In this case the definition of
approximability only makes sense if ε < 1 (since the measure of a feasible solution
is greater than 0, all ‘natural’ maximization problems admit a 1-approximating
algorithm).

The class APX is defined as the set of all approximable optimization problems
in NPO.

Example 6.13 The algorithm presented in Example 6.12 is a 1-approximating algorithm
for the problem minimum vertex cover. In fact, we have already observed that such
an algorithm computes a feasible solution whose measure is, at most, twice the optimum
measure. If y = T (x), then

|opt(x)−m(x, y)|
opt(x)

=
m(x, y)− opt(x)

opt(x)
≤ 2opt(x)

opt(x)
− 1 = 1.

The next theorem shows that if P 6= NP, then not all optimization problems in
NPO are approximable.

Approximability 121

Theorem 6.3 If P 6= NP, then an optimization problem that is not approximable
exists in NPO.

Proof. Let L ∈ NP− P and let NT be a polynomial-time nondeterministic Turing
machine that decides L. We have already discussed how to encode the computation
paths of NT (x) as words whose length is bounded by p(|x|), for a polynomial p.

Let us define the maximization problem 〈I, S, π, m, max〉 where

1. I = Σ∗ − {e, 0, 1}.
2. For any instance x, S(x) = {y : y ∈ Σ∗ ∧ |y| ≤ p(|x|)}.
3. For any instance x and for any possible solution y, π(x, y) = true if and only

if y encodes a computation path of NT (x).

4. For any instance x and for any feasible solution y,

m(x, y) =

|x| if y encodes an accepting computation

path,
1 otherwise.

Note that, for any x ∈ I, opt(x) = |x| if and only if x ∈ L.

Assume that the previous problem admits an ε-approximating algorithm T for
some ε < 1. Let n0 be a natural number such that (n0− 1)/n0 > ε. We shall prove
that, for any x whose length is, at least, n0, m(x, T (x)) = opt(x). This, in turn,
implies that a polynomial-time Turing machine exists that decides L. Indeed, such
a machine with input x simulates T (x) and accepts if and only if the output encodes
an accepting computation path of NT (x). Since L 6∈ P, the theorem follows.

Let x be an instance of length, at least, n0. If x 6∈ L, then opt(x) = 1 and,
of course, m(x, T (x)) = opt(x). Conversely, if x ∈ L, then opt(x) = |x|. The
measure of T (x) must then be equal to opt(x), otherwise the relative error would
be

opt(x)−m(x, T (x))

opt(x)
=
|x| − 1

|x|
≥ n0 − 1

n0

> ε,

contradicting the assumption.

2

An immediate consequence is the following corollary.

Corollary 6.3 If P 6= NP, then APX 6= NPO.

122 The complexity of optimization problems

6.4.2 The class PAS

Finding an approximating algorithm for an optimization problem whose underlying
language is NP-complete could be considered a good result. An even better one
would consist of approximating such a problem for any ε. In this case, the inputs of
the algorithm computing approximate solutions should include both the instance
x and the required accuracy, that is, the value ε.

Given an optimization problem 〈I, S, π, m,Goal〉, a polynomial approximation
scheme for 〈I, S, π, m,Goal〉 is a Turing transducer T such that, for any instance
x ∈ I and for any positive rational ε, T (x, ε) computes a feasible solution whose
relative error is, at most, ε in polynomial time with respect to |x|.

The class PAS is defined as the set of all the optimization problems in NPO that
admit a polynomial approximation scheme.

Example 6.14 minimum partition: given a set of n integer numbers A = {a1, . . . , an},
find a partition of A into two disjoint subsets A1 and A2 which minimizes the value
max{

∑
ai∈A1

ai,
∑

ai∈A2
ai}. The underlying language of minimum partition is NP-

complete (see Problem 5.12).
Without loss of generality, we can assume that the n numbers are ordered in a non-

increasing way. For any fixed h, let us consider the following algorithm Th that partitions
the first h elements of A optimally and then adds each remaining element to the smaller
set:

begin {input: A; output: A1, A2}
if h > n then h := n;
find an optimum partition 〈A1, A2〉 for the first h elements;
for i = h + 1 to n do

if
∑

aj∈A1
aj ≤

∑
aj∈A2

aj then A1 := A1 ∪ {ai}
else A2 := A2 ∪ {ai};

end.

The time complexity of the first step of the algorithm is exponential in h (but remember
that h is fixed), while the remaining steps can be performed in polynomial time with
respect to n. We shall now show that the relative error is always less than or equal to
1/(h + 1).

Note that opt(A) ≥ L where L = 1
2

∑n
i=1 ai. Let 〈A1, A2〉 be the partition computed

by the algorithm and assume that
∑

aj∈A1
aj ≥

∑
aj∈A2

aj . Let ā be the last element
added to A1. If ā is added during the first step of the algorithm, then 〈A1, A2〉 is an
optimum solution. Otherwise,

∑
aj∈A1

aj−ā ≤
∑

aj∈A2
aj and, thus,

∑
aj∈A1

aj−L ≤ ā/2
(see Figure 6.2).

Since the numbers are ordered in a non-decreasing way and ā is added after the first
step of the algorithm, then

∑n
i=1 ai ≥ (h + 1)ā. This in turn implies that L ≥ (h + 1)ā/2

and, hence, the following inequalities hold:∑
aj∈A1

aj − opt(A)

opt(A)
≤
∑

aj∈A1
aj − L

L
≤ ā

2L
≤ 1

h + 1
.

Approximability 123

A1

A2

�

�
ā

L

Figure 6.2 An approximation scheme for partition

Thus, for any ε, the algorithm Th with h = 1
ε − 1 outputs a solution whose relative

error is, at most, ε. Furthermore, the time required is O[n21/ε]. It follows that minimum
partition belongs to PAS.

6.4.3 The class FPAS

We have already observed that the algorithm presented in Example 6.14 computes
a solution whose relative error is, at most, ε in exponential time with respect to
1/ε. In fact, the definition of an approximation scheme does not limit the time
complexity to being polynomial with respect to 1/ε. Thus, computations with
small ε values may be found to be practically unfeasible.

An approximation scheme is fully polynomial if it runs in polynomial time with
respect to both the length of the instance and 1/ε.

The class FPAS is defined as the set of all of the optimization problems in NPO
that admit a fully polynomial approximation scheme.

We will now describe a useful technique to develop fully polynomial approxima-
tion schemes.

Pseudo-polynomiality and full approximability
Let us consider the minimum partition problem again (see Example 6.14). The
following algorithm computes a matrix T with n × ∑n

i=1 ai Boolean entries such
that T (i, j) = true if and only if the set {a1, . . . , ai} can be partitioned into two
disjoint sets A1 and A2 with

∑
a∈A1

a = j:

begin {input: A; output: T}

124 The complexity of optimization problems

b :=
∑n

i=1 ai;
{initialize the matrix T}
for i = 1 to n do

for j = 0 to b do
T (i, j) := false;

T (1, 0) := true;
T (1, a1) := true;
for i = 2 to n do
{compute the values of the ith row by using the values of the (i− 1)th one}
for j = 0 to b do

T (i, j) := T (i− 1, j) ∨ (j ≥ ai ∧ T (i− 1, j − ai));
end.

It is easy to see that the above algorithm runs in time O[n
∑n

i=1 ai]. Once we
have computed the matrix T we can derive the measure of an optimum solution by
simply looking in the last row of the matrix for the integer h such that T (n, h) =
true and max{h,

∑n
i=1 ai−h} is as small as possible. This additional step requires

time O[
∑n

i=1 ai]. As a result, if amax denotes the maximum number in A, then we
can compute the optimum measure in time O[n2amax]. Note also that the above
algorithm can be slightly modified in order to derive not only the optimum measure
but also an optimum solution.

We have already observed that the underlying language of minimum partition
is NP-complete. Have we thus proved that P = NP? Of course not, and the reader
should justify this answer before reading it in the following paragraph.

Note that, in general, the value amax is not polynomial with respect to the length
of the instance. In fact, log amax digits are sufficient to encode amax, and, thus,
the length of an instance of minimum partition is O[n log amax], while n2amax, in
general, is not polynomial with respect to such a length. For this reason, algorithms
such as the one presented above are called ‘pseudo-polynomial’. Besides deceiving
us (it looked as though we had proved P = NP!), such algorithms also suggest a
way in which fully polynomial approximation schemes can be obtained.

In fact, if all the values ai of an instance of minimum partition are ‘small’, then
the above algorithm becomes very efficient. More precisely, if they are bounded by
a polynomial nk, then amax is also bounded by nk too, and the time complexity of
the algorithm is O[nk+2], that is polynomial (see Problem 4.14). Obviously this is
not always the case, but we can still make use of that observation. Let us try to
make the numbers small!

The most natural way to carry out such a plan is ignoring the least significant
(decimal) digits of the numbers ai. For instance, assume that we ignore the last
digit of each, namely, for any ai, we set a′i = bai/10c, and we then solve the new
instance. Obviously the solution we obtain will be different in general from the
optimum solution of the original instance, but let us see to what extent it is.

Let 〈A1, A2〉 denote an optimum solution of the original instance, and 〈A′
1, A

′
2〉

an optimum solution of the truncated instance. The measure of the latter solution

Reducibility and optimization problems 125

is always less than:

max{∑ai∈A′
1
(10a′i + 10),

∑
ai∈A′

2
(10a′i + 10)} since 10a′i ≥ ai − 10

≤ max{∑ai∈A′
1
10a′i,

∑
ai∈A′

2
10a′i}+ 10n since |A′

1|, |A′
2| ≤ n

≤ max{∑ai∈A1
10a′i,

∑
ai∈A2

10a′i}+ 10n since 〈A′
1, A

′
2〉 is optimum

≤ max{∑ai∈A1
ai,
∑

ai∈A2
ai}+ 10n since 10a′i ≤ ai

Thus,

max{
∑

ai∈A′
1

ai,
∑

ai∈A′
2

ai} −max{
∑

ai∈A1

ai,
∑

ai∈A2

ai} < 10n.

Since

amax ≤ max{
∑

ai∈A1

ai,
∑

ai∈A2

ai} ≤ namax

where amax is the maximum of the numbers in A, then the relative error is less
than 10 n

amax
.

More generally, if we ignore the last t decimal digits of the numbers in A , then
the relative error will be less than 10t n

amax
. Thus, for any ε and t = blog10(ε

amax

n
)c,

the algorithm computes a solution whose relative error is, at most, ε.
Let us now evaluate the complexity of the algorithm. We have already seen that

the time complexity is O[n2a′max], that is, O[n2amax10−t]. Since amax10−t ≤ n
ε
, then

the time complexity is O[n3 1
ε
].

We conclude that minimum partition admits a fully polynomial approximation
scheme.

6.5 Reducibility and optimization problems

To summarize the results of the previous section, five classes of optimization prob-
lems have been identified:

1. NPO: optimization problems whose underlying languages are in NP.

2. APX: NPO-problems which are approximable within a fixed relative error ε.

3. PAS: NPO-problems which can be approximated within any ε by algorithms
having an instance x and ε as input and whose time-complexity is polynomial
in |x| for each fixed ε.

4. FPAS: NPO-problems which can be approximated within any ε by algorithms
having an instance x and ε as input and whose time-complexity is polynomial
both in |x| and in 1/ε.

5. PO: NPO-problems which are solvable in polynomial time.

126 The complexity of optimization problems

Clearly, PO ⊆ FPAS ⊆ PAS ⊆ APX ⊆ NPO and, by means of techniques
similar to that of Theorem 6.3, we can show that all those inclusions are strict
unless P = NP (see Problem 6.17). It is therefore worth looking for problems
which are likely to separate such classes. Once again, using the complete problem
concept seems to be the best way to proceed.

In the following we shall consider only minimization problems, even though
similar results can be obtained for those of maximization. Furthermore, we shall
focus our attention on the APX ⊆ NPO inclusion. Similar interesting results are
known for subsets of APX but, due to lack of space, we will not present them here
(see Notes).

Our goal is to introduce an ‘approximation preserving’ reducibility, that is, a
reducibility such that if problem A reduces to problem B and B ∈ APX, then A ∈
APX. First, note that, in order to define a suitable reducibility among minimization
problems, it is not sufficient to map instances of one problem into those of another
one. We also need an efficient way of reconstructing a feasible solution of the
former problem from a feasible solution of the latter. Furthermore, if we want
to preserve approximability properties, then we also have to guarantee that the
quality of the reconstructed solution is comparable to that of the original one.
These considerations lead us to the following definition.

A minimization problem A = 〈IA, SA, πA, mA, min〉 is APX-reducible to a second
minimization problem B = 〈IB, SB, πB, mB, min〉, in symbols A ≤APX B, if two
functions f : Σ∗ → Σ∗ and g : Σ∗ × Σ∗ → Σ∗ exist such that (see Figure 6.3)

1. f and g are polynomial-time computable.
2. For any x ∈ IA, f(x) ∈ IB, that is, f maps instances of A into instances of

B.
3. For any x ∈ IA and for any y ∈ SB(f(x)), g(x, y) ∈ SA(x), that is, g maps

feasible solutions of B into feasible solutions of A.
4. For any positive rational ε, a positive rational ε′ exists such that, for any

x ∈ IA and for any y ∈ SB(f(x)),

mB(f(x), y)− optB(f(x))

optB(f(x))
≤ ε⇒ mA(x, g(x, y))− optA(x)

optA(x)
≤ ε′.

It is clear that if A ≤APX B and B admits an ε-approximating algorithm, then
A admits a ε′-approximating algorithm which is, basically, a composition of the
reduction and the approximation algorithm for B.

A minimization problem A is NPO-complete if A ∈ NPO and, for any other
minimization problem B ∈ NPO, B ≤APX A. It thus follows that no NPO-
complete minimization problem belongs to APX, unless P = NP (note that the
proof of Theorem 6.3 can be easily modified in order to obtain a minimization
‘separator’ problem).

We are now faced with the following question. Do NPO-complete minimization
problems exist? As in the case of our first NP-complete problem, we shall see that
a positive answer is based on the simulation of machines by formulas.

Reducibility and optimization problems 127

-

?
�

x ∈ IA f(x) ∈ IB

y ∈ SB(f(x))g(x, y) ∈ SA(x)

t t

tt

f

g

Algorithm for B

Figure 6.3 The APX-reducibility

Example 6.15 The minimum satisfiability problem is defined similarly to the satis-
fiability problem, but a non-negative integer weight is associated to each variable. We
are asked to find a satisfying truth-assignment which minimizes the sum of the weights
of the true variables. In order to avoid an empty set of feasible solutions (this can hap-
pen whenever the formula is not satisfiable), we assume that the truth-assignment that
makes all variables true is always a feasible solution, even though it may not satisfy the
formula.

Theorem 6.4 minimum satisfiability is NPO-complete.

Proof. It is easy to see that such a problem belongs to NPO.
To prove its NPO-completeness, first note that, for any minimization problem

A = 〈I, S, π, m, min〉 in NPO and for any x ∈ I, the set of feasible solutions is
defined as

F (x) = {y : |y| ≤ p(|x|) ∧ π(x, y)}

where p is a polynomial limiting the length of the possible solutions. Furthermore,
for any x ∈ I, opt(x) = min{m(x, y) : y ∈ F (x)}.

Let us define a machine T which on input x and y first checks whether x ∈ I,
then checks whether y ∈ F (x) and finally computes m(x, y). We can assume that
if one of the two tests fails then T rejects, otherwise it accepts after having written
m(x, y) on a special tape. Since I ∈ P, and both π and m are polynomial-time
computable, it follows that T runs in polynomial time. From Theorem 5.2, we
already know how to derive, for any x, a Boolean formula fx which is satisfiable

128 The complexity of optimization problems

if and only a word y exists such that T (x, y) accepts (in fact, since we assumed
that a feasible solution always exists, fx is always satisfiable). Let y1, . . . , yr be the
Boolean variables describing the word y and let m1, . . . ,ms the Boolean variables
which correspond to the tape cells on which T prints the value m(x, y). We then
assign a zero weight to all variables excluding the mis, which instead receive the
weight 2s−i.

For any truth-assignment which satisfies fx, we then recover a feasible solution
y for A by simply looking at the values of yi’s variables. It is clear that m(x, y)
is exactly equal to the sum of the weights of the true variables. Hence we have
proved that A ≤APX minimum satisfiability.

Since A is an arbitrary minimization problem in NPO, it follows that minimum
satisfiability is NPO-complete. 2

Starting from minimum satisfiability it is possible to prove the NPO-com-
pleteness of other minimization problems. This is due to the fact that ≤APX-
reducibility, like polynomial-time reducibility, is transitive (see Problem 6.18). The
following is a simple example.

Example 6.16 minimum 0-1 programming: given a m × n matrix A of integers, m
integers b1, . . . , bm and n integers c1, . . . , cn, find n numbers x1, . . . , xn with xi ∈ {0, 1}
such that, for any i ≤ m,

n∑
j=1

aijxj ≥ bi

and the value

n∑
i=1

cixi

is as small as possible.
Once again, in order to avoid an empty set of feasible solutions, we assume that the

solution with all xi’s equal to 1 is always a feasible one. Under this assumption, it is
clear that minimum 0-1 programming belongs to NPO.

We will now define an APX-reduction from minimum satisfiability to minimum 0-1
programming.

Let f be a Boolean formula in conjunctive normal form and denote by u1, . . . , un the
variables and by c1, . . . , cm the clauses of such a formula. First, the matrix A is defined
as follows: aij = 1 if uj occurs in ci while aij = −1 if ¬uj occurs in ci. In all other cases,
aij = 0. Then, for any i ≤ m, bi is defined as 1 minus the number of negated variables
in ci. Finally, for any i ≤ m, ci is defined as the weight of ui.

For example, consider the formula f with c1 = (u1 ∨ ¬u2 ∨ u3), c2 = (u4 ∨ ¬u5), and
c3 = (u2 ∨ u3 ∨ u4 ∨ u5) and with the weights of u1, u2, u3, u4 and u5 defined as 2, 3, 0, 1
and 2, respectively. In the corresponding instance of minimum 0-1 programming we
are asked to minimize the value

2x1 + 3x2 + x4 + 2x5

Problems 129

subject to the following constraints:

x1 − x2 + x3 ≥ 0
x4 − x5 ≥ 0
x2 + x3 + x4 + x5 ≥ 1

and xi ∈ {0, 1}.
It is easy to prove that any feasible solution of the instance of minimum 0-1 pro-

gramming corresponds to a truth-assignment for f having the same measure. Indeed,
it is sufficient to interpret a 1 as true and a 0 as false. This proves that minimum
satisfiability ≤APX minimum 0-1 programming and hence that this latter problem
is NPO-complete.

The number of known NPO-complete problems is much smaller than that of NP-
complete ones. On the one hand, proving NPO-completeness seems harder than
proving NP-completeness because of the more constrained reducibility and, on the
other, many NP-complete problems admit approximation algorithms and cannot
be NPO-complete unless P = NP. Nevertheless, the concept of completeness
seems to be the right way to obtain general results and, in fact, several interesting
completeness proofs relative to subclasses of NPO have been obtained (see Notes).

Problems

6.1. maximum cut: given a graph G = (N,E), find a partition of N into two disjoint
sets N1 and N2 such that the number of edges that have one endpoint in N1 and one
endpoint in N2 is maximum. Prove that the underlying language is NP-complete. [Karp
(1972)] A graph is said to be planar if it can be embedded into two-dimensional space R2

(see Example 4.6). Prove that maximum cut belongs to PO when restricted to planar
graphs. [Hint: consider the dual graph of G whose nodes correspond to regions in the
embedding of G and whose edges denote the fact that two regions share an edge in G.]

6.2. A graph is said to be chordal if, for any cycle of length greater than three, at least,
one edge exists between two non-consecutive nodes of the cycle. Show that maximum

clique belongs to PO when restricted to chordal graphs. [Gavril (1972)]

6.3. A subset system is a pair 〈X, C〉 where X is a finite set and C is a subset of 2X

closed under inclusion. A subset system is said to be a matroid if, for any c and c′ in
C such that |c′| = |c| + 1, an element x ∈ c′ − c exists such that c ∪ {x} ∈ C. Given a
subset system 〈X, C〉 along with a weight function w : X → N , consider the following
greedy algorithm:

begin {input: X, C,w; output: c}
c := ∅;
while X 6= ∅ do
begin

130 The complexity of optimization problems

choose an element x of X with maximum weight;
X := X − {x};
if c ∪ {x} ∈ C then c := c ∪ {x};

end;
end.

Show that 〈X, C〉 is a matroid if and only if the above algorithm computes a subset of
C with maximum weight. Observe that if we require the algorithm to run in polynomial
time with respect to |X|, we cannot represent the set C by listing all its elements.
However, if the predicate c ∈ C can be decided in polynomial time, then we can represent
C by an algorithm computing this predicate. Can you think of an application of the
above result to prove that an optimization problem belongs to PO? [Papadimitriou and
Steiglitz (1982)]

6.4. Show how to modify the definition of the prefix version of an optimization problem
so that it always admits a feasible solution. [Hint: add a ‘dummy’ solution which is
always feasible and whose measure is very small (respectively, large) if the problem is a
maximization (respectively, minimization) one.]

6.5. Generalize Example 6.11 to the case where the prefixes do not exactly encode a
subcollection.

6.6. Prove that, for minimum vertex cover, if it is possible to evaluate the optimum
measure in polynomial time, then it is also possible to compute an optimum solution in
polynomial time. [Hint: use the same technique as in Example 6.11.]

6.7. Prove that, for any optimization problem in NPO, if the underlying language belongs
to P, then opt is in FP. [Hint: use binary search.]

6.8. Prove that if P = NP, then, for any optimization problem in NPO, it is possible to
compute an optimum solution by using the optimum measure. [Hint: use the technique
of Theorem 5.10.]

6.9. Can the algorithm presented in the Example 6.12 be used to obtain an approximat-
ing algorithm for maximum clique? Justify your answer.

6.10. minimum bin packing: given a finite set S of numbers and an integer b, find a
minimum size set of subsets of S such that the sum of the elements of each subset is, at
most, b. Prove that the underlying language, called bin packing, is NP-complete. [Hint:
prove that partition is polynomial-time reducible to bin packing.] Furthermore, prove
that minimum bin packing is approximable. [Hint: consider an algorithm that assigns
a number to the first subset that can contain it or to a new subset if the number is too
large.]

6.11. maximum 2-satisfiability: given a Boolean formula f in conjunctive normal
form such that each clause contains exactly two literals, find an assignment of values
which maximizes the number of satisfied clauses. Show that the underlying language
is NP-complete. [Hint: use 3-satisfiability.] Prove that maximum 2-satisfiability

admits a 1/2-approximating algorithm. [Hint: for each variable, decide its value based on

Notes 131

the number of clauses in which it appears positive.] Generalize this result to maximum

satisfiability in which clauses are allowed to contain any number of literals.

6.12. Prove that minimum node cover belongs to PAS when restricted to planar
graphs. [Baker (1983)]

6.13. Show that maximum knapsack (the optimization version of knapsack) belongs
to FPAS. [Hint: first show that maximum knapsack has a pseudo-polynomial algo-
rithm, then apply the ‘scaling’ technique of Section 6.4.3.]

6.14. Prove that, for any graph G, it is possible to compute in polynomial time a graph
G′ such that G contains a clique of size k if and only if G′ contains a clique of size k2.
[Hint: G′ contains a copy of G for any node of G itself. Given a copy corresponding to
a node u, connect any node of such a copy to each node of the copies corresponding to
nodes adjacent to u.]

6.15. Prove that if, for some ε < 1, an ε-approximating algorithm for maximum clique

exists, then such a problem admits a δ-approximating algorithm, for any δ < 1. [Hint:
use the result of the previous problem.]

6.16. Show that if an optimization problem is such that

1. It admits no pseudo-polynomial algorithm.

2. For any instance x, opt(x) ≤ p(maxint(x)) where p and maxint(x) denote a
polynomial and the largest integer in x, respectively,

then it does not belong to FPAS. Use this result and the previous one to show that
either maximum clique is in NPO−APX or it is in PAS− FPAS (unless P = NP).

6.17. Prove that if P 6= NP, then PAS 6= APX and FPAS 6= PAS. [Hint: use a technique
similar to that presented in the proof of Theorem 6.3.]

6.18. Show that the APX-reducibility is transitive.

6.19. Show that if maximum clique is approximable, then maximum 2-satisfiability

belongs to PAS. [Hint: ‘reduce’ the latter problem to the former one.]

6.20. Prove that minimum traveling salesman is NPO-complete. [Hint: show that
minimum satisfiability is APX-reducible to minimum traveling salesman.]

Notes

Optimization has provided much of the motivation for the development of NP-
completeness theory. However, although all known NP-complete problems are
reducible to each other (in fact, they are p-isomorphic), their corresponding op-
timization versions can have dramatically different properties with respect to ap-
proximability (e.g. minimum partition and minimum 0-1 programming). It

132 The complexity of optimization problems

thus seems that more sophisticated techniques are needed to study the ‘structure’
of classes of optimization problems.

After initial success in deriving approximation algorithms for several problems,
over the last fifteeen years a great research effort has been devoted to a more
complexity-theoretic attempt at finding a unified framework for treating approx-
imability of optimization problems. A few examples of such efforts are Ausiello,
D’Atri, and Protasi (1980), Ausiello, Marchetti Spaccamela, and Protasi (1980),
Paz and Moran (1981), Orponen and Mannila (1987), Krentel (1988), Papadim-
itriou and Yannakakis (1991), and Crescenzi and Panconesi (1991). Most of these
results are surveyed in Bruschi, Joseph, and Young (1991).

The papers of Ausiello, D’Atri, and Protasi (1980) and of Paz and Moran (1981)
contain most of the definitions and results presented in Section 6.1, 6.2, and 6.3: in
particular, Theorems 6.1 and 6.2 appeared in the latter paper. The algorithm dis-
cussed in Example 6.7 is hinted at in Berge (1957) and, independently, in Norman
and Rabin (1959) (for additional references, see Galil, 1986), while the algorithm
of Example 6.8 appeared in Gupta, Lee, and Leung (1979).

One of the first studies on the approximability of optimization problems was con-
tained in Johnson (1974) where the definitions used in Section 6.4 were presented
and some approximation algorithms were derived. Papadimitriou and Steiglitz
(1982) contains a good chapter on approximability: some of the examples and
problems presented here are taken from there.

Pseudo-polynomiality was first analysed in Garey and Johnson (1978). In that
paper the pseudo-polynomial algorithm for minimum partition and the concept
of strong NP-completeness were introduced, and it was proved that the latter is
closely tied to the existence of fully polynomial approximation schemes.

Several kinds of reducibilities between optimization problems were proposed.
The one presented in this text was first defined in Orponen and Mannila (1987),
which also contains Theorem 6.4 and the reduction of Example 6.16. This re-
ducibility was further refined in Crescenzi and Panconesi (1991). In this paper
some other natural reducibilities were introduced in order to study the relations
between classes of approximable problems, but no examples of interesting complete
problems were obtained. The most successful effort in this direction was the work
of Papadimitriou and Yannakakis (1991) where a complexity class of approximable
optimization problems, denoted as MAXSNP, was defined and several interesting
complete problems were formulated. It is also worth mentioning that in Arora,
Lund, Motwani, Sudan, and Szegedy (1992) it was proved that such a class is
not contained in PAS, unless P = NP. This is essentially the first very general
and practically significant result in the study of the approximability properties of
optimization problems.

Chapter 7

Beyond NP

In Chapters 4 and 5 we introduced the complexity classes P and NP which allowed
us to make a first rough distinction between computationally ‘tractable’ and ‘in-
tractable’ decision problems. As its title suggests, in this chapter we shall study
new classes of decision problems that do not seem to belong to NP. Indeed, even
though we have already observed that most of the combinatorial problems oc-
curring in practice fall within NP, a variety of interesting types of problems exist
which do not seem to be included in NP, thus justifying the definition of additional
complexity classes.

As an initial example, consider the ‘asymmetry’ inherent in the definition of NP.
For a word to be accepted it suffices to have an accepting computation path while
for one to be rejected none of the computation paths can be an accepting one.
This one-sidedness of the class NP will be emphasized in Section 7.1 where the
complement class coNP of NP is defined and some of its properties are analysed.

The new class coNP can be used with the class NP to classify problems related to
the search for exact answers. For instance, in the exact answer version of clique,
given a graph and a natural number k, we are asked whether the maximum clique
size is exactly k. These considerations will lead us in Section 7.2 to the definition
of a hierarchy of complexity classes based on the classes NP and coNP.

Both classes NP and coNP are defined by referring to nondeterministic Turing
machines operating in polynomial time. Our next step in defining richer complexity
classes will consist of making use of more powerful Turing machines, namely oracle
Turing machines. In Section 7.3 we introduce a second hierarchy of complexity
classes called the polynomial hierarchy which may be viewed as a computational
analog to the Kleene arithmetic hierarchy of recursion theory.

It is only fair to state that none of these new complexity classes contains a
problem which has been proved to be intractable. Even though this seems quite
unlikely, we cannot entirely rule out the possibility that all of them collapse to
the class P. In contrast, in Section 7.4 we introduce richer complexity classes (in
fact, the richest ones to be considered in this text), namely the exponential-time

133

134 Beyond NP

complexity classes, that are known to include intractable problems (no need for
conjecture!).

7.1 The class coNP

The complement class coC of a class of languages C was introduced in Section 3.2
and we know from Lemma 3.5 that for any deterministic time-complexity class C,
C = coC holds. The same lemma, however, does not seem to hold for nondetermin-
istic time-complexity classes. Let us try to understand why this happens by using
a simple example.

Example 7.1 Denote by satisfiabilityc the complement problem of satisfiability,
that is, the problem of deciding whether a Boolean formula in conjunctive normal form
does not admit any assignment of values which satisfies it.

Let NT be a nondeterministic machine which decides satisfiability in polynomial
time and let NT ′ be the machine obtained from NT by exchanging the accepting and
the rejecting states as in the proof of Lemma 3.5. It can immediately be verified that
the language accepted by NT ′ is not satisfiabilityc but rather the language consisting
of all formulas which admit at least one assignment which does not satisfy them.

All attempts to design a nondeterministic polynomial-time Turing machine deciding
satisfiabilityc have failed up to now.

Apart from the negative result of the previous example, it may be found that
some other NP-complete problems do admit nondeterministic polynomial-time al-
gorithms for their complement problems. The next lemma states that if this were
true even for a single language, then NP would coincide with its complement class
coNP.

Lemma 7.1 If an NP-complete language L exists such that Lc ∈ NP, then coNP =
NP.

Proof. Since L is NP-complete and Lc ∈ NP, Lc ≤ L, that is, L ≤ Lc. For any
L1 ∈ NP, it follows that L1 ≤ L ≤ Lc. Since coNP is closed with respect to ≤, then
L1 ∈ coNP and NP ⊆ coNP. Similarly, we can prove that coNP ⊆ NP (remember
that according to the properties of reducibilities discussed in Section 2.3.2, the
complement language Lc of an NP-complete language L is coNP-complete). 2

Despite many attempts, no NP-complete problem satisfying the conditions of the
previous lemma has been found. For this reason, the NP 6= coNP conjecture has
been proposed. The following lemma shows that this new conjecture is stronger
than the well-known P 6= NP conjecture.

Lemma 7.2 If coNP 6= NP, then P 6= NP.

The class coNP 135

Proof. According to Lemma 3.5 P = coP. Assume coNP 6= NP and P = NP; in
that case, both coNP = NP and coNP 6= NP would hold. 2

Notice that both P 6= NP and coNP = NP could hold at the same time although
this seems rather unlikely.

7.1.1 Testing primality

An interesting application of Lemma 7.1 is the following. Assume that we have a
language L such that both L and Lc belong to NP. Then the lemma allows us to
state that unless NP = coNP, L cannot be NP-complete.

Example 7.2 prime number: given an integer n, is n prime?
Since the introduction of number theory, mathematicians have been fascinated by this

problem. In particular, the problems of generating primes, primality testing, and looking
for prime divisors have received considerable attention. While primes are still found by
sieves, not by formulas, and factoring is still considered very difficult, primality testing
has advanced to a stage where the primality of 100-digit numbers can now be checked
in a few seconds. That is why current research efforts are directed towards proving that
this problem belongs to P (see Notes).

We show in this section that prime number is unlikely to be NP-complete
since the next theorem states that it belongs to NP∩ coNP. In order to prove this
result we need to introduce some number-theoretic notations and to prove a few
preliminary lemmas.

The basic idea consists of giving an alternative (and efficient) definition of pri-
mality based on the following result due to Fermat.

Lemma 7.3 If a number n > 2 is prime, then, for any integer a with 1 ≤ a < n,
an−1 ≡ 1 (mod n).

Proof. Given an integer a with 1 ≤ a < n, let mi = ia, for any i ≤ n − 1. Note
that, for any i and j, mi 6≡ mj (mod n) since otherwise n would divide (i − j)a
while both i − j and a are numbers smaller than n. Similarly, for any i, mi 6≡ 0
(mod n). Thus the numbers m1, m2, . . . ,mn−1 must be equivalent modulo n to the
numbers 1, 2, . . . , n− 1 considered in a suitable order. It follows that

an−1
n−1∏
i=1

i =
n−1∏
i=1

mi ≡
n−1∏
i=1

i (mod n),

that is,

(an−1 − 1)
n−1∏
i=1

i ≡ 0 (mod n).

136 Beyond NP

Clearly, n cannot divide the product
∏n−1

i=1 i. This implies that n divides an−1 − 1,
that is, an−1 ≡ 1 (mod n). 2

The above necessary condition, which we shall call Fermat’s test, is also sufficient.
In order to prove this, we need the following lemmas.

Lemma 7.4 Given two integers a and n, GCD(a, n) = 1 if and only if an integer
b exists such that ab ≡ 1 (mod n).

Proof. By Euclid’s algorithm (see Example 4.2) it follows that GCD(a, n) = 1 if
and only if two integers b and c exist such that ab + nc = 1. This in turn is true if
and only if an integer b exists so that n divides 1− ab which holds true if and only
if an integer b exists such that ab ≡ 1 (mod n). 2

Lemma 7.5 If a number n > 2 is composite, then an integer a with 1 ≤ a < n
exists such that an−1 6≡ 1 (mod n).

Proof. If n is composite, then an integer a with 1 ≤ a < n exists such that
GCD(a, n) 6= 1: indeed, it suffices to choose a as any of the prime divisors of n.
Assume an−1 ≡ 1 (mod n). Then a admits an inverse modulo n, that is, an−2,
contradicting Lemma 7.4. Thus an−1 6≡ 1 (mod n). 2

Note that Fermat’s test is a ‘universal’ condition which does not seem to be
verifiable in nondeterministic polynomial time. However, its negation can.

Lemma 7.6 prime number belongs to coNP.

Proof. Consider the following nondeterministic algorithm:

begin {input: n}
guess a in {1, 2, . . . , n− 1};
if an−1 ≡ 1 (mod n) then reject else accept;

end.

Since an−1 mod n can be computed in O[log2 n] steps (see Problem 7.2), the
above algorithm requires a polynomial number of steps. From Lemmas 7.3 and 7.5
it follows that it correctly decides the complement of prime number. 2

In order to prove that prime number belongs to NP, we need to add more
constraints to Fermat’s test to make it ‘existential’. In particular, the condition we
will provide states that n is prime if and only if an integer a exists with 1 ≤ a < n
such that not only a passes Fermat’s test but also the (n− 1)th power of a is the
only power of a which is equivalent to 1 modulo n.

For any integer n, the set Φ(n) of invertible elements modulo n is defined as the
set of all natural numbers less than n which are ‘relatively prime’ to n. That is,

Φ(n) = {a : 1 ≤ a < n ∧GCD(a, n) = 1}.

The class coNP 137

Clearly, if n is prime, Φ(n) includes the first n − 1 integers and the complement
set Φc(n) = {1, . . . , n− 1} −Φ(n) is empty. The cardinality of Φ(n) (respectively,
Φc(n)) is denoted as φ(n) (respectively, φc(n)).

Example 7.3 Let n = 18. Then Φ(18) = {1, 5, 7, 11, 13, 17}, φ(18) = 6, Φc(18) =
{2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16}, and φc(18) = 11.

Lemma 7.7 For any integer n whose divisors are d1, . . . , dh,

n =
h∑

i=1

φ(di).

Proof. Let us consider the n ratios rj = j/n, for 0 ≤ j ≤ n − 1. By reducing
such ratios, we can partition them into h groups of ratios such that the ith group
contains φ(di) ratios with denominator di, one for each element in Φ(di). Thus the
lemma follows. 2

Example 7.4 For n = 18, the 18 ratios are

0
18

,
1
18

,
2
18

,
3
18

,
4
18

,
5
18

,
6
18

,
7
18

,
8
18

,
9
18

,
10
18

,
11
18

,
12
18

,
13
18

,
14
18

,
15
18

,
16
18

,
17
18

while the reduced ratios are

0
1
,

1
18

,
1
9
,
1
6
,
2
9
,

5
18

,
1
3
,

7
18

,
4
9
,
1
2
,
5
9
,
11
18

,
2
3
,
13
18

,
7
9
,
5
6
,
8
9
,
17
18

.

The above ratios can be grouped as shown in Table 7.1.

Table 7.1 The reduced basic fractions with
denominator 18

d φ(d) Ratios
1 1 0/1
2 1 1/2
3 2 1/3, 2/3
6 2 1/6, 5/6
9 6 1/9, 2/9, 4/9, 5/9, 7/9, 8/9
18 6 1/18, 5/18, 7/18, 11/18, 13/18, 17/18

We are now ready to prove the alternative characterization of primality.

Lemma 7.8 A number n > 2 is prime if and only if an integer a exists such that

138 Beyond NP

1. 1 < a < n.
2. an−1 ≡ 1 (mod n).
3. For all q such that q is a prime divisor of n− 1, a(n−1)/q 6≡ 1 (mod n).

Proof. Let n be a prime number and a be any element of Φ(n). First note that an
integer k exists such that ak ≡ 1 (mod n). Indeed, if this not the case, then two
integers k1 and k2 with k1 > k2 exist such that ak1 ≡ ak2 (mod n) which in turn
implies that ak1−k2 ≡ 1 (mod n), contradicting the assumption.

Let ka denote the smallest integer such that aka ≡ 1 (mod n). In order to prove
the necessity, it then suffices to show that an a in Φ(n) exists such that ka = n−1.

Clearly the only powers of a which are equivalent to 1 modulo n are those that
are multiples of ka and, from Lemma 7.3, it follows that ka divides n− 1.

For any k, let Rk denote the set of elements a of Φ(n) such that ka = k and
let rk = |Rk|. Clearly, each a ∈ Rk is a root of xk ≡ 1 (mod n). A well-known
result in number theory states that if n is prime, then any polynomial of degree k
that is not identically zero has, at most, k distinct roots modulo n (see Problem
7.3). Thus rk ≤ k. Let a be any element of Rk. For any i < ka, we have that ai

is also a root of xk ≡ 1 (mod n): indeed, (ai)k = (ak)i ≡ 1 (mod n). It also
holds true that, for any i and j with j < i < ka, ai 6≡ aj (mod n) since otherwise
ai−j ≡ 1 (mod n), contradicting the assumption that ka is the smallest power of
a equivalent to 1 modulo n. Thus Rk ⊆ {ai : 0 ≤ i < k}. But we can do better.
Note in fact that if i < k and GCD(i, k) = d 6= 1, then (ai)k/d ≡ 1 (mod n), that
is, kai ≤ k/d < k. Thus Rk ⊆ {ai : 0 ≤ i < k ∧ GCD(i, k) = 1}. This in turn
implies that rk ≤ φ(k).

Finally, let d1, . . . , dr be the divisors of n − 1. Since rk = 0 when k does not
divide n − 1 and

∑n−1
k=1 rk = n − 1 (any element a ∈ Φ(n) admits a ka), it follows

that

n− 1 =
r∑

i=1

rdi
≤

r∑
i=1

φ(di) = n− 1

where the last equality is due to Lemma 7.7. Thus, for any k, rk = φ(k). In
particular, rn−1 = φ(n − 1) > 0 and an element of Φ(n) satisfying the conditions
of the lemma exists.

Conversely, suppose that an integer a exists such that 1 < a < n, an−1 ≡ 1
(mod n), and, for all q such that q is a prime divisor of n − 1, a(n−1)/q 6≡ 1
(mod n). We will show that the numbers a1 mod n, . . . , an−1 mod n are distinct
and relatively prime to n. This in turn implies that the numbers 1, . . . , n − 1 are
relatively prime to n, that is, n is prime.

If ai ≡ aj (mod n) for some j < i < n, then ai−j ≡ 1 (mod n), that is, an
integer k exists such that the kth power of a is equivalent to 1 modulo n. Once
again, let ka be the minimum of such powers. Then the only powers of a which are
equivalent to 1 are those that are multiples of ka and, since an−1 ≡ 1 (mod n),
it follows that ka divides n − 1, that is, kam = (n − 1)/q for some integer m

The class coNP 139

and for some prime divisor q of n − 1. We then have that a(n−1)/q = akam =
(aka)m ≡ 1 (mod n), contradicting the assumptions on a. Thus the numbers
a1 mod n, . . . , an−1 mod n are distinct.

In order to prove that they are relatively prime to n, note that, since an−1 ≡ 1
(mod n), for any i with 1 ≤ i < n, ai admits an inverse modulo n, that is, an−(i+1).
From Lemma 7.4, it then follows that GCD(ai, n) = 1. 2

Finally, we can state the main result of this section.

Lemma 7.9 prime number belongs to NP.

Proof. The nondeterministic algorithm which decides prime number in polyno-
mial time can be derived in a straightforward way from the above lemma and is
the following:

begin {input: n}
if prime(n) then accept else reject;

end.

where the recursive function prime is defined as

function prime(n): boolean;
begin

guess x in set of numbers between 2 and n− 1;
if x(n−1) 6≡ 1 (mod n) then prime := false
else
begin

guess n1, . . . , nk in set of possible factorizations of n− 1
if n1 × n2 × . . .× nk 6= n− 1 then prime := false
else
begin

if prime(n1) ∧ . . . ∧ prime(nk) then
if x(n−1)/n1 6≡ 1 (mod n) ∧ . . . ∧ x(n−1)/nk 6≡ 1 (mod n) then

prime := true
else prime := false

else prime := false;
end;

end;
end;

Since any possible factorization of a number r consists of, at most, log r numbers
ranging from 2 to (r− 1)/2, the above algorithm requires a polynomial number of
steps. Thus, prime number belongs to NP. 2

From Lemmas 7.6 and 7.9 we have the following result.

Theorem 7.1 prime number belongs to NP ∩ coNP.

140 Beyond NP

7.2 The Boolean hierarchy

Before introducing complexity classes which refer to more powerful machines, let
us try to derive additional classes by combining NP and coNP. This section is
based on the assumption that NP 6= coNP.

We are encouraged to proceed in this direction by the existence of a few ‘natural’
problems which do not seem to belong either to NP or to coNP, but which can
easily be defined as the intersection of languages in these two classes.

Example 7.5 exact node cover: given a graph G and a positive integer k, is k the
size of the minimum node cover included in G? The same problem can be expressed as
the conjunction of the following two subproblems:

1. G admits a node cover of size k.

2. G does not admit a node cover of size k + 1.

The first subproblem corresponds to node cover which is known to be in NP while
the second corresponds to the complement of node cover and belongs to coNP. Thus
the language corresponding to exact node cover can be defined as

Lexact node cover = {〈〈G, k〉, 〈G, k + 1〉〉 : 〈G, k〉 ∈ Lnode cover

∧〈G, k + 1〉 ∈ Lc
node cover}.

Let us extend the technique used in the previous example by considering all
three Boolean set operators, namely, union, intersection and complement.

The Boolean hierarchy is a collection {BHi : i ≥ 1} of classes of languages such
that

BH1 = NP;
BH2 = {LA ∩ Lc

B : LA, LB ∈ NP};
BH2i+1 = {LA ∪ LB : LA ∈ BH2i ∧ LB ∈ NP} with i ≥ 1;
BH2i+2 = {LA ∩ Lc

B : LA ∈ BH2i+1 ∧ LB ∈ NP} with i ≥ 1.

The infinite union of all BHis is denoted as BH and it is possible to prove (see
Problem 7.5) that BH coincides with the Boolean closure of NP, that is, with the
smallest class which includes NP and which is closed with respect to the union,
intersection, and complement of languages, hence the name Boolean hierarchy.

The second level of the Boolean hierarchy, namely BH2, is of special interest since
it is able to capture the complexity of several interesting problems related to the
search for an exact answer (see Example 7.5). Another interesting property of BH2

is that it admits a complete language with respect to polynomial-time reducibility.
We already know that satisfiability is BH1-complete. Let us consider an

extension of satisfiability denoted as satisfiability(2). Given two Boolean
formulas f and g in conjunctive normal form, is it true that f is satisfiable and g
is not?

The Boolean hierarchy 141

Theorem 7.2 satisfiability(2) is BH2-complete.

Proof. Define the language L1 (respectively, L2) consisting of pairs of Boolean for-
mulas in conjunctive normal form 〈f, g〉 such that f (respectively, g) is satisfiable.
Clearly, both L1 and L2 belong to NP (in fact, they are NP-complete). According
to the definition, satisfiability(2) = L1 ∩ Lc

2 and thus belongs to BH2. From
Cook’s theorem, it follows that satisfiability(2) is BH2-complete. 2

As shown in the next example, other interesting BH2-completeness results can
be obtained via a polynomial reduction from satisfiability(2).

Example 7.6 Let us consider the exact node cover problem introduced in Example
7.5. Clearly, such a problem belongs to BH2. Let us then prove its BH2-completeness by
showing that satisfiability(2) ≤ exact node cover.

Observe first that, given a Boolean formula f = C1 ∧ C2 ∧ . . . ∧ Cm, f is satisfiable if
and only if

f ′ = (C1 ∨ y) ∧ (C2 ∨ y) ∧ . . . ∧ (Cm ∨ y) ∧ ¬y

is satisfiable, where y is a new variable. In addition, we also have that either f ′ is
satisfiable or all but one clause of f ′ can be satisfied by simply assigning the value true
to variable y. Now, as in Example 5.5, starting from f ′ we can construct a graph G and
an integer k such that if f ′ is satisfiable then G admits a node cover of size k, otherwise
it admits a node cover of size k + 1 (intuitively, only one extra node is needed for the
unsatisfied clause ¬y).

Let 〈f, g〉 be an instance of satisfiability(2) and let Gf and kf (respectively, Gg and
kg) be the graph and the integer obtained starting from f (respectively, g) and applying
the above reduction. The instance of exact node cover is then formed by the graph
G given by two copies of Gf and one copy of Gg (each not connected with the other)
and the integer k = 2kf + kg + 1. From the previous discussion it easily follows that
f is satisfiable and g is not satisfiable if and only if k is the size of the minimum node
cover included in G. We have thus proved that satisfiability(2) is polynomial-time
reducible to exact node cover.

Starting from satisfiability(2), it is also easy to derive a BHi-complete lan-
guage satisfiability(i) for any class BHi.

Does each class BHi properly contain BHi−1 and BHi−2 for all i ≥ 3? If this
were not the case, a collapsing of the Boolean hierarchy would occur at some level
k, that is, for all j > k BHj = BHk would hold. This event is considered unlikely
although a formal proof that BH includes an infinite number of levels has not yet
appeared. Figure 7.1 represents in a schematic way the infinite levels of BH (it is
assumed that no collapsing occcurs).

142 Beyond NP

P = BH0

NP ∩ coNP

NP = BH1

H
HH

H

�
��
�

coNP = coBH1

��
��

HH
HH

NP ∪ coNP

BH2

HH
H
H

��
�
�

coBH2

�
��
�

H
HH

H
BH2 ∪ coBH2

BH3

HH
H
H

��
�
�

coBH3

!!
!

H
H

. . .

Figure 7.1 Inclusions between classes of BH

7.3 The polynomial hierarchy

Our next step in defining richer complexity classes will require referring to more
powerful Turing machines, namely oracle Turing machines.

It is easy to convince ourselves that the number of oracles available does not
play a significant role in the sense that, in many cases, a single carefully chosen
oracle can replace any finite set of two or more oracles.

Example 7.7 Assume machine T makes use of two oracles L1 and L2 belonging to NP.
The language decided by T can also be decided by another machine T ′ which makes
use of a single language L′ included in NPC. Denote by f and g two polynomial-time
reductions from L1 to L′ and from L2 to L′, respectively. Whenever T queries oracle L1

(respectively, L2) about some y, T ′ simulates T by querying the oracle L′ about f(y)
(respectively, g(y)).

The approach used in the previous example can easily be generalized to include
machines querying a finite number of oracles belonging to complexity class C and
it can be shown that such machines can be simulated by other machines which

The polynomial hierarchy 143

make use of a single oracle, provided that class C admits a complete language. The
basic idea will then consist of increasing their complexity instead of their number.

7.3.1 A first definition

The polynomial hierarchy is an infinite union of time-complexity classes whose
interest derives from the fact that it captures the inherent complexity of some
interesting and ‘natural’ decision problems as shown in the following example.

Example 7.8 Denote by U a set of n Boolean variables. Let E be a Boolean formula
consisting of variables in U , Boolean constant true and false, left and right parentheses,
and logical operators ¬, ∧ and ∨, and let k denote a natural number.

Given an instance 〈E, k〉, equivalent formulas consists of deciding whether E
admits an equivalent formula E′ including, at most, k occurrences of literals (two Boolean
formulas E and E′ are equivalent if for any assignment of values E is satisfied if and only
if E′ is satisfied).

It is easy to verify that satisfiability can be solved in polynomial time by a deter-
ministic Turing machine with oracle equivalent formulas. For this, we note that only
two types of formulas exist equivalent to a formula including 0 occurrences of literals,
that is, a formula consisting only of Boolean constants: those equivalent to true, also
called tautologies, which are satisfied by all possible assignments of values, and those
equivalent to false which cannot be satisfied by any assignment of values.

Let E be a formula in conjunctive normal form. To decide whether E is satisfiable
it is sufficient to check first whether E is a tautology. If so, E is satisfiable; otherwise,
we only have to check whether E is equivalent to a formula containing 0 occurrences of
literals. If this is the case, E is not satisfiable, otherwise it is satisfiable.

The first check can be done in polynomial time (see Problem 4.10); the second can
also be done in polynomial time by querying the oracle equivalent formulas with
the word 〈E, 0〉. If the oracle answers positively, E is not satisfiable, otherwise it is
satisfiable.

It is far less obvious how to proceed in the opposite direction. Thus far no deterministic
Turing machine having an NP-complete language as oracle and deciding equivalent
formulas in polynomial time has been found.

It is, however, possible to define a nondeterministic Turing machine having the above
characteristics. Indeed, the nondeterminism can be exploited to generate all possible
formulas E′ including, at most, k occurrences of literals and to query the oracle to
determine whether E′ is not equivalent to E, that is, if ¬((¬E′ ∨ E) ∧ (¬E ∨ E′)) is
satisfiable. If this last formula is not satisfiable, then E′ is the required k-literal formula.
Conversely, if all k-literal formula E′ are not equivalent to E, then the instance 〈E, k〉
does not belong to equivalent formulas.

Let us generalize the previous example by introducing two classes of languages
whose definition is based on oracle Turing machines which make use of oracle
languages belonging to a given class C.

144 Beyond NP

Given a class of languages C, the class PC is defined as

PC =
⋃
L∈C

PL

while the class NPC is defined as

NPC =
⋃
L∈C

NPL

where PL and NPL denote the classes P and NP relativized with respect to oracle
L, respectively.

Example 7.9 According to Example 7.8, the problem satisfiability belongs to the
class Pequivalent formulas while equivalent formulas belongs to NPNP.

The technique introduced to define new classes of languages by referring to
existing ones can obviously be iterated. The new class of languages we are going
to present is based on this observation.

The polynomial hierarchy is an infinite set {Σp
k, Π

p
k, ∆

p
k : k ≥ 0} of classes of

languages such that

1. Σp
0 = Πp

0 = ∆p
0 = P.

2. Σp
k+1 = NPΣp

k , Πp
k+1 = coΣp

k+1 and ∆p
k+1 = PΣp

k with k ≥ 0.

The infinite union of all Σp
ks (or of all Πp

ks or of all ∆p
ks) is denoted as PH.

7.3.2 Some properties

From the definition of polynomial hierarchy, it follows that Σp
1 = NP, Πp

1 = coNP,
∆p

1 = P, Σp
2 = NPNP and ∆p

2 = PNP.
The next lemma illustrates some relationships among classes in the polynomial

hierarchy. Those relationships are represented schematically in Figure 7.2.

Lemma 7.10 For each k ≥ 0, the following inclusion relationships hold:

Σp
k ∪ Πp

k ⊆ ∆p
k+1 ⊆ Σp

k+1 ∩ Πp
k+1.

Proof. First note that L ∈ PL and PL ⊆ NPL ∩ coNPL for all languages L.
If L ∈ Σp

k, then PL ⊆ ∆p
k+1 and L ∈ ∆p

k+1. Thus, Σp
k ⊆ ∆p

k+1. It can be shown
in a similar way that Πp

k ⊆ ∆p
k+1.

If L ∈ ∆p
k+1, then a language L′ ∈ Σp

k exists such that L ∈ PL′
. Since PL′ ⊆

NPL′ ∩ coNPL′
, then L ∈ NPL′ ∩ coNPL′

and thus L ∈ Σp
k+1 ∩ Πp

k+1. We have
therefore shown that ∆p

k+1 ⊆ Σp
k+1 ∩ Πp

k+1. 2

It has not yet been settled whether the inclusion relationships of Lemma 7.10
are proper. In fact, the following questions remain unanswered:

1. Is Σp
k 6= Σp

k+1 for each k ≥ 0?
2. Is Σp

k 6= Πp
k for each k ≥ 1?

3. Is ∆p
k 6= Σp

k ∩ Πp
k for each k ≥ 1?

The polynomial hierarchy 145

∆p
1 = P

Σp
1 = NP

HH
H
H

��
��
Πp

1 = coNP
�
��

�

H
HH

H
∆p

2

Σp
2

HH
HH

��
��

Πp
2

��
�
�

HH
H

H
∆p

3

Σp
3

H
HH

H

�
��
�

Πp
3

.

Figure 7.2 Inclusions between classes of PH

7.3.3 An alternative definition

The following theorem yields an alternative characterization of the polynomial
hierarchy.

Theorem 7.3 For each k ≥ 0, a language L belongs to Σp
k if and only if a language

A ∈ P and a polynomial p exist such that

x ∈ L↔ (∃y1)(∀y2) . . . (Qyk)[〈x, y1, . . . , yk〉 ∈ A]

where |yi| ≤ p(|x|) with 1 ≤ i ≤ k and where the sequence of quantifiers consists of
an alternation of existential and universal quantifiers. As a consequence, Q must
be read as ∃ or as ∀ depending on whether k is odd or even.

Similarly, for each k ≥ 0, a language L belongs to Πp
k if and only if a language

A ∈ P and a polynomial p exist such that

x ∈ L↔ (∀y1)(∃y2) . . . (Qyk)[〈x, y1, . . . , yk〉 ∈ A]

where the yis are again polynomially bounded in |x| and the sequence of quantifiers
is alternated.

146 Beyond NP

Proof. The proof is by induction on k. The case k = 0 immediately follows from
the definitions. Let us assume that the theorem holds both for Σp

h and for Πp
h for

all 0 ≤ h < k.
Assume L ∈ Σp

k (a similar reasoning holds when L ∈ Πp
k is assumed, see Prob-

lem 7.8). According to the definition, a language L1 ∈ Σp
k−1 and a nondeterministic

Turing machine NT with oracle L1 exist such that NTL1 decides L in polynomial
time. Denote by q the polynomial limiting the number of steps of NT . We already
know that for any input x any computation path of NT (x) can be encoded into a
word of length, at most, q(|x|). Then define the following languages:

1. 〈x, w〉 ∈ A1 if and only if w encodes a computation path of NTL1(x) which
halts in the accepting state.

2. 〈u, v〉 ∈ A2 if and only if u = 〈u1, . . . , uhu〉, v = 〈v1, . . . , vhv〉 and, for each i
and j, ui 6= vj (u and v encode two pairwise disjoint finite sets of words).

3. 〈x, w, u〉 ∈ A3 if and only if u = 〈u1, . . . , uhu〉 coincides with the set of words
queried by the computation path w of NTL1(x) obtaining a yes answer (by
assumption, |ui| ≤ q(|x|)).

4. 〈x, w, v〉 ∈ A4 if and only if v = 〈v1, . . . , vhv〉 coincides with the set of words
queried by the computation path w of NTL1(x) obtaining a no answer (by
assumption, |vi| ≤ q(|x|)).

5. u ∈ A5 if and only if u = 〈u1, . . . , uhu〉 and ui ∈ L1 for each i.
6. v ∈ A6 if and only if v = 〈v1, . . . , vhv〉 and vi 6∈ L1 for each i.

The six languages Ai allow us to state that a polynomial r exists such that x ∈ L
if and only if three words w, u and v with |w|, |u|, |v| ≤ r(|x|) exist such that

〈x, w〉 ∈ A1 ∧ 〈u, v〉 ∈ A2 ∧ 〈x, w, u〉 ∈ A3 ∧ 〈x, w, v〉 ∈ A4 ∧ u ∈ A5 ∧ v ∈ A6.

It is easy to verify that the four languages Ai (1 ≤ i ≤ 4) are polynomial-time
decidable.

Denote by A the language such that

〈x, w, u, v〉 ∈ A↔ 〈x, w〉 ∈ A1 ∧ 〈u, v〉 ∈ A2 ∧ 〈x, w, u〉 ∈ A3 ∧ 〈x, w, v〉 ∈ A4.

It follows that

x ∈ L↔ (∃〈w, u, v〉)[〈x, w, u, v〉 ∈ A ∧ u ∈ A5 ∧ v ∈ A6].

It is also easy to verify that since L1 ∈ Σp
k−1 (respectively, Lc

1 ∈ Πp
k−1), then

A5 ∈ Σp
k−1 (respectively, A6 ∈ Πp

k−1) (see Problem 7.7). According to the induction
hypothesis, a language B1 ∈ P and a polynomial r1 exist such that

u ∈ A5 ↔ (∃z1)(∀z2) . . . (Qzk−1)[〈u, z1, z2, . . . , zk−1〉 ∈ B1]

where |zi| ≤ r1(|u|), for 1 ≤ i ≤ k − 1, and the sequence of k − 1 quantifiers is
alternated.

The polynomial hierarchy 147

Similarly, a language B2 ∈ P and a polynomial r2 exist such that

v ∈ A6 ↔ (∀w2)(∃w3) . . . (Qwk)[〈v, w2, w3, . . . , wk〉 ∈ B2]

where |wi| ≤ r2(|n|), for 2 ≤ i ≤ k, and the sequence of quantifiers is alternated.

We can now merge adjacent quantifiers of the same type by using standard rules
of classical logic and obtaining

x ∈ L ↔ (∃〈w, u, v, z1〉)(∀〈z2, w2〉) . . . (Qwk)[〈x, w, u, v〉 ∈ A ∧
〈u, z1, z2, . . . , zk−1〉 ∈ B1 ∧ 〈v, w2, w3, . . . , wk〉 ∈ B2].

Since the lengths of the quantified tuples can be bounded by a suitable polynomial
p, the first part of the theorem has been proved.

Let us now consider the second part. Assume a language A ∈ P and a polynomial
p exist such that

x ∈ L↔ (∃y1)(∀y2) . . . (Qyk)[〈x, y1 . . . , yk〉 ∈ A]

where |yi| ≤ p(|x|), for 1 ≤ i ≤ k, and the sequence of quantifiers is alternated.

Define C as C = {〈x, y1〉 : (∀y2) . . . (Qyk)[〈x, y1 . . . , yk〉 ∈ A]}. Then, x ∈ L if
and only if (∃y1)[〈x, y1〉 ∈ C].

By induction hypothesis, C ∈ Πp
k−1 (because the first quantifier is a universal

one) and thus Cc ∈ Σp
k−1. Let us derive a nondeterministic Turing machine with

oracle Cc which decides L. On input x such a machine generates all possible words
y1 such that |y1| ≤ p(|x|) and then uses oracle Cc to check whether 〈x, y1〉 ∈ C.
These tasks can be performed in polynomial time, thus L ∈ Σp

k. 2

An immediate application of Theorem 7.3 confirming a result already obtained
in Example 7.8 is the following.

Example 7.10 Define the language A ∈ P as 〈〈x, k〉, y1, y2〉 ∈ A if and only if y2 is an
assignment of values which satisfies the formula (¬x ∨ y1) ∧ (¬y1 ∨ x) where y1 denotes
a formula which includes, at most, k occurrences of literals.

Clearly, a word 〈x, k〉 belongs to the language associated with equivalent formulas
if and only if a formula y1 exists such that, for all possible assignments of values y2,
〈〈x, k〉, y1, y2〉 ∈ A holds. We conclude that equivalent formulas belongs to Σp

2 .

Another interesting application of Theorem 7.3 is given in the following corollary
whose proof is left as a problem (see Problem 7.18).

Corollary 7.1 For all k ≥ 0, a language L belongs to Σp
k +1 (respectively, to Πp

k +
1) if and only if a k-alternating deterministic Turing machine with an existential
(respectively, universal) initial state exists which decides L in polynomial time.

148 Beyond NP

7.3.4 Complete languages in the polynomial hierarchy

As usual, we are interested in determining whether the classes Σp
k and Πp

k admit
complete languages with respect to the polynomial reducibility. Indeed, if we
consider the fact that the polynomial hierarchy does not collapse as plausible, then
proving that a language is complete with respect to a given Σp

k (or Πp
k) is equivalent

to identifying the correct kth level in the hierarchy where that language is to be
placed.

Example 7.11 Let E be a Boolean formula built on a set of Boolean variables
⋃k

i=1 Xi

where Xi = {xij : 1 ≤ j ≤ mi} with mi positive integer. Let us shorten as ∃Xi

(respectively, ∀Xi) the sentence ‘there exists an (respectively, for all) assignment(s) of
values to the variables xi1, . . . , ximi ’. The problem k-qbf consists of deciding whether
the formula

(∃X1)(∀X2) . . . (QXk)[E(X1, . . . , Xk)]

is true (as usual, the sequence of quantifiers consists of an alternation of existential and
universal quantifiers and Q must be read as ∃ or as ∀ depending on whether k is odd or
even).

The next theorem shows that k-qbf is one of the ‘hardest’ problems in Σp
k.

Theorem 7.4 For all k ≥ 1, k-qbf is Σp
k-complete (and thus k-qbfc is Πp

k-
complete).

Proof. Theorem 7.3 ensures that k-qbf belongs to Σp
k for all k ≥ 0. Indeed the same

formula (∃X1)(∀X2) . . . (QXk)[E(X1, . . . , Xk)] of k-qbf can replace both x and the
right-hand formula in the ‘if and only if’ formulation of the theorem when the lan-
guage A is chosen as the set of k-variable assignments for which E is true. Further-
more, the construction used in the proof of Theorem 7.3 shows that any language
L decided in polynomial-time by some NTL1 with L1 ∈ Σp

k−1 is polynomial-time
reducible to k-qbf since it transforms the computations NTL1(x) into formulas of
k-qbf. Thus k-qbf is Σp

k-complete. 2

Despite the previous result, very few interesting problems have been shown to be
complete with respect to a given level of the polynomial hierarchy. For example,
it is not known whether equivalent formulas is Σp

2-complete.

7.3.5 The collapse of the polynomial hierarchy

Although we are unable to prove that each level of PH properly includes the previ-
ous one, we may link this new conjecture with the ever-present P 6= NP conjecture.
This result derives from the following theorem which is preceded, in turn, by a
technical lemma.

The polynomial hierarchy 149

Lemma 7.11 For all k ≥ 1, given a language A ∈ Σp
k and a polynomial q, the

language B = {x : (∃y)[〈x, y〉 ∈ A ∧ |y| ≤ q(|x|)]} belongs to Σp
k. In other words,

Σp
k is closed with respect to polynomially limited existential quantifiers.

Similarly, Πp
k is closed with respect to polynomially limited universal quantifiers.

Proof. Let A ∈ Σp
k. Denote by L a language L ∈ Σp

k−1 and with NT a nondetermin-
istic Turing machine with oracle L deciding A in polynomial time. The following
nondeterministic algorithm uses such a machine NT to decide B in polynomial
time:

begin {input: x}
guess a word y in set of words y with |y| ≤ q(|x|);
if NTL(x, y) accepts then accept else reject;

end.

Thus, B ∈ Σp
k. The closure of Πp

k with respect to polynomially limited universal
quantifiers can be proved in a similar way. 2

Theorem 7.5 If Σp
k = Πp

k for some k ≥ 1, then Σp
m = Πp

m = Σp
k for all m ≥ k.

Proof. The proof is by induction on m. The base m = k is obvious. Assume
then that for some m > k, Σp

m−1 = Πp
m−1 = Σp

k holds. We shall prove that
Σp

m ⊆ Σp
k (Σp

m = Σp
k follows immediately). Let A ∈ Σp

m. Theorem 7.3 ensures that
a language B ∈ Πp

m−1 and a polynomial p exist such that x ∈ A↔ (∃y)[〈x, y〉 ∈ B]
with |y| ≤ p(|x|).

Since Πp
m−1 = Σp

k has been assumed, B ∈ Σp
k. According to Lemma 7.11, A ∈ Σp

k.
Thus Σp

m ⊆ Σp
k. 2

An interesting application of the previous theorem is illustrated in the following
corollary.

Corollary 7.2 P 6=NP if and only if P 6=PH.

Proof. The necessity is obvious since P = Σp
0 and NP = Σp

1. Conversely, assume
that P 6= Σp

k for some k ≥ 1. If P = NP, then Σp
1 = Πp

1 (see Lemma 7.2)
and, according to Theorem 7.5, P = Σp

k should hold for all k ≥ 1, which is a
contradiction. 2

Even assuming P 6= NP, a collapse of the polynomial hierarchy might occur.
The following question which we are unable to answer is therefore meaningful. If
the polynomial hierarchy collapses, what is the smallest k for which Σp

k = Σp
k+1?

150 Beyond NP

7.4 Exponential-time complexity classes

All time-complexity classes considered so far have been defined according to the
following schema. C is the class of languages decided by Turing machine X (de-
terministic, nondeterministic, with oracle) in polynomial time with respect to the
input length. Clearly, additional complexity classes defined in terms of hyperpoly-
nomial time-constructible functions may also be considered and in this section we
shall introduce a few time-complexity classes based on some exponential functions.
In fact, these new classes are the largest in our classification of problem complex-
ity since most natural problems have subexponential time complexity and very few
interesting problems have been shown to be complete with respect to these new
classes (see Notes).

From a slightly different perspective, it may be said that exponential-time com-
plexity classes are the richest classes of languages investigated by complexity theory
while hyperexponential classes of functions are mainly investigated in computabil-
ity theory.

Let lk(n) = 2kn and hk(n) = 2nk
and let DTIME[lk(n)] and DTIME[hk(n)] be

the corresponding deterministic time-complexity classes. The classes LEXP and
PEXP are defined as

LEXP =
⋃
k≥0

DTIME[lk(n)]

and

PEXP =
⋃
k≥0

DTIME[hk(n)],

respectively. The nondeterministic complexity classes NLEXP and NPEXP are
defined in a similar way.

An algorithm (deterministic or nondeterministic) is said to be exponential if it
requires a number of steps bounded by O[2nk

] with k constant.
It is easy to prove by diagonalization that P ⊂ LEXP and that LEXP ⊂ PEXP

(see Problem 7.19) and that both results can be extended to the nondeterministic
case. It is also easy to show that Σp

k ⊆ LEXP for all k ≥ 0 (see Problem 7.20)
although it is not known whether such inclusions are strict.

7.4.1 The LEXP 6= NLEXP conjecture

According to the definitions of LEXP and NLEXP, LEXP is included in NLEXP. Is
the inclusion strict? Although we cannot provide a definite answer, we can reduce
this conjecture to a second one which refers to the existence of tally languages in
NPI.

Theorem 7.6 LEXP 6= NLEXP if and only if NP− P includes a tally language.

Exponential-time complexity classes 151

Proof. Let L be a binary language in NLEXP− LEXP. Let u : {0, 1}∗ → {0}∗ be
the function introduced in Section 5.3.2 which maps binary numbers onto unary
ones and denote by b : {0}∗ → {0, 1}∗ the inverse function of u. The pair of
functions b and u establish a bijection between a unary and a binary alphabet.
Note that |x| ≤ dlog(|u(x)|)e and that |z| < 2|b(z)|+1.

According to the definition, the tally language UL associated with L is

UL = {u(x) : x ∈ L}.

Let us prove that UL ∈ NP− P.

Denote by NT the nondeterministic Turing machine which decides L in expo-
nential time. Consider the machine NT ′ which checks, for any input z, whether
z consists only of 0s and, in the affirmative case, simulates NT with input b(z).
Clearly, NT ′ decides UL in polynomial time. Thus, UL ∈ NP.

Assume UL ∈ P. A deterministic Turing machine T would then exist deciding
UL in polynomial time. Consider the machine T ′ which, on input x, computes in
exponential time u(x) and then simulates T with input u(x). Such a T ′ would be
able to decide L in exponential time, contradicting the assumption that L 6∈ LEXP.
Thus, UL ∈ NP− P.

Conversely, let U be a tally language in NP−P. The binary langage LU associ-
ated with U is defined as

LU = {b(z) : z ∈ U}.

Let us prove that LU ∈ NLEXP − LEXP. LU ∈ NLEXP since a machine NT
which first computes u(x) in exponential time and then simulates NT ′ (the machine
which decides U in polynomial time) with input u(x) can immediately be derived.

Suppose LU belongs to LEXP. A machine T which decides LU in exponential
time could then be used to decide U in polynomial time. Indeed, a new machine T ′

which derives b(z) from z and then simulates T with input b(z) can be obtained.
Thus U would belong to P, which is a contradiction. 2

An immediate consequence of the previous theorem is expressed in the following
corollary.

Corollary 7.3 If LEXP 6= NLEXP, then P 6= NP.

According to Theorem 7.6 and Lemma 5.2 we obtain one more corollary which
makes the existence of sparse languages in NPI plausible.

Corollary 7.4 LEXP 6= NLEXP if and only if NP−P includes a sparse language.

152 Beyond NP

Problems

7.1. Show that NP = coNP if and only if, for any maximization problem A in NPO,
a minimization problem B in NPO exists such that IA = IB and, for every x ∈ IA,
optA(x) = optB(x). [Kolaitis and Thakur (1991)]

7.2. Describe a deterministic algorithm which computes xr in, at most, O[log2 r] steps.
[Hint: square x repeatedly for blog(r)c times; if r is not a power of 2, then repeat the
procedure on xr′ with r′ < r.]

7.3. Show that, if n is prime, then any polynomial of degree k that is not identically zero
has, at most, k distinct roots modulo n. [Hint: By induction on k, consider a polynomial
p(x) = akx

k + . . . a1x+a0 with at least k+1 roots x1, . . . , xk+1 and define the polynomial
p′(x) = p(x)− ak

∏k
i=1(x− xi).]

7.4. A language L is said to be expressible by hardware over NP if it belongs to the
Boolean closure of NP. Prove that if L is expressible by hardware over NP, then it is a
finite union of languages in BH2 and a finite intersection of languages in coBH2. [Hint:
if a language is expressible by hardware over NP, then it is accepted by a ‘hardware tree’
connecting NP languages.]

7.5. Prove that BH is the Boolean closure of NP, that is, it coincides with the smallest
class containing NP which is closed with respect to union, intersection and complement.
[Hint: show that, for any k ≥ 0, L ∈ BH2k if and only if L = (L1−L2)∪. . .∪(L2k−1−L2k)
with Li ∈ NP.]

7.6. exact clique: given a graph G and a positive integer k, is k the size of the
maximum clique included in G? Prove that exact clique is BH2-complete.

7.7. Let C denote a class of the polynomial hierarchy. Given a language L define the
language L′ as L′ = {〈x1, . . . , xn〉 : n ≥ 0 ∧ ∀i ≤ n[xi ∈ L]}. Prove that L ∈ C if and
only if L′ ∈ C.

7.8. Complete the proof of Theorem 7.3 in the case k > 0 and L ∈ Πp
k.

7.9. Show that if Σp
k ⊆ Πp

k, then Σp
k = Πp

k.

7.10. Define the language L(2) as

L(2) = {〈NT, x, 0t〉 : NTL accepts x in, at most, t steps}.

where L is a NP-complete language. Show that L(2) is Σp
2-complete. Generalize this

result to any level of the polynomial hierarchy.

7.11. An integer expression f and the set Xf it represents are defined inductively as
follows:

1. The binary representation of an integer n is an integer expression representing the
single set {n}.

2. Given two integer expressions f and g, (e∪f) is an integer expression representing
the set Xf ∪Xg.

Notes 153

3. Given two integer expressions f and g, (e+f) is an integer expression representing
the set {m + n : m ∈ Xf ∧ n ∈ Xg}.

integer expression inequivalence: given two integer expressions f and g, is Xf

different from Xg? Prove that this problem is Σp
2-complete. [Stockmeyer and Meyer

(1973)]

7.12. Prove that ∆p
2 admits complete languages. Generalize this result to ∆p

k for any
k ≥ 0.

7.13. Show that all classes of the polynomial hierarchy are constructively numerable.
Show also that, for any k ≥ 0, the set of Σp

k-complete languages is constructively enu-
merable.

7.14. Show that if Σp
k − Σp

k−1 6= ∅, then languages in Σp
k − Σp

k−1 exist which are not
Σp

k-complete. [Hint: use the uniform diagonalization technique.]

7.15. Let L be a self-reducible language (see Problem 5.15) such that L ∈ Σp,L
k for some

k ≥ 0 and some sparse language S. Prove that Σp,L
2 ⊆ Σp

k+2. [Hint: based on Theorem
7.3, define a language corresponding to L but assuming that the oracle answers are given
as a part of the input. You will probably need the result of Problem 5.16.]

7.16. A language L is said to be NP-equivalent if ∆p
2 = PL. Show that a language is

NP-equivalent if and only if for any language L′ ∈ ∆p
2 , a polynomial-time deterministic

Turing machine with oracle L exists deciding L′.

7.17. Prove that if NP 6= coNP, then a language in ∆p
2 exists which is neither NP-

equivalent, nor in NP, nor in coNP. [Schöning (1983)]

7.18. Prove the Corollary 7.1.

7.19. Use diagonalization to prove that P ⊂ LEXP and that LEXP ⊂ PEXP.

7.20. Use simulation to prove that Σp
k ⊆ PEXP.

7.21. Use diagonalization to prove that NP ⊂ NPEXP.

7.22. Show how to derive a PEXP-complete language from a LEXP-complete one. [Hint:
use padding arguments increasing artificially the length of the inputs so that the ‘padded’
language is easier to decide than the initial one.]

Notes

Lemma 7.3 was obtained by Fermat in 1640: more modern proofs can be found in
any text on number theory, such as Schroeder (1984), or in discrete mathematics,
such as Graham, Knuth, and Patashnik (1989). The proof that every prime number
has a ‘succinct’ certificate (Lemma 7.8) and thus that prime number belongs to
NP is due to Pratt (1975). A polynomial-time deterministic algorithm for the same
problem was devised in Miller (1976). However, the proof of its correctness relies

154 Beyond NP

on the still-open ‘extended Riemann’s hypothesis’ and therefore does not constitute
a proof of P membership. For a survey of subexponential algorithms for primality
testing see Kranakis (1986).

A problem similar to that discussed in Example 7.5 appeared in Papadimitriou
and Yannanakakis (1984). The motivation was to obtain negative results con-
cerning the facets of the polytopes associated to many important combinatorial
optimization problems. For that purpose, the class BH2, denoted as Dp, was
introduced and several interesting completeness results were obtained, including
Theorem 7.2. In addition to problems related to the search for exact answers, the
class BH2 also contains the critical version of some decision problems. As an exam-
ple, the critical version of satisfiability consists of deciding whether a formula
is not satisfiable but deleting any single clause is enough to make it satisfiable (see
Papadimitriou and Wolfe (1988)). The same class also includes uniqueness prob-
lems, that is, problems related to the existence of a unique solution (see Blass and
Gurevich (1982)). The full Boolean hierarchy appears in passing in many papers
and was defined explicitly in Wechsung (1985). Most results regarding structural
properties and applications of this hierarchy were discussed in Cai et al. (1988,
1989).

The polynomial hierarchy was introduced in Stockmeyer (1977) as a time-bound-
ed version of the arithmetic hierarchy of functions introduced by Kleene (see Rogers
(1967)). In that paper, some properties of the hierarchy proved in Section 7.3 were
presented. Theorems 7.3 and 7.4 were proved in Wrathall (1977) although the
latter theorem was first noted in Meyer and Stockmeyer (1972). As in the case
of the Boolean hierarchy, the practical significance of PH is restricted to the first
few levels. In particular, the classes at these levels were found to be a useful tool
to investigate the complexity of several problems arising in the field of artificial
intelligence.

The LEXP 6= NLEXP conjecture and the related Theorem 7.6 appeared in
Hartmanis, Immerman, and Sewelson (1985). An interesting example of LEXP-
complete problem related to game theory is discussed in Robson (1984) while Stock-
meyer and Meyer (1973) show the NPEXP-completeness of a few word problems.

Finally, relativized separation results were obtained for all classes presented in
this chapter (remember that according to Theorem 5.11 an oracle exists such that
all classes up to PH collapse to P). In particular, Baker, Gill, and Solovay (1975)
showed an oracle separating NP from coNP, Cai and Hemachandra (1986) proved
the existence of an oracle with respect to which the Boolean hierarchy is infinite,
and Yao (1985) obtained a similar result for the polynomial hierarchy. In addition
to proper inclusion relationships between complexity classes, structural properties
of such classes have also been studied via relativization. For instance, Sipser (1982)
showed that an oracle exists such that the class NP ∩ coNP has no complete lan-
guages. More recently, Bovet, Crescenzi, and Silvestri (1992) introduced a uniform
approach to obtaining such relativized results. In particular, they gave a sufficient
and necessary condition for proving separation of relativized complexity classes,
a characterization of complexity classes with complete languages and a sufficient

Notes 155

condition for deriving strong separations from simple ones. In Bovet, Crescenzi,
and Silvestri (1991) such an approach is also applied to problems related to positive
relativizations.

Chapter 8

Space-complexity classes

The previous five chapters have dealt mainly with time-complexity classes and,
although the dynamic measure SPACE was introduced in Chapter 3, little atten-
tion, if any, has been paid to space-complexity classes. Such classes will be defined
in Section 8.1 and the following issues will be discussed.

First, do relations between time-complexity and space-complexity classes exist?
Clearly, the time is generally not bounded by the same function bounding the
space since memory cells can repeatedly be used by the computation. We do,
however, know that any deterministic Turing machine working in space O[s(n)]
runs in time O[2ks(n)] with k constant (see Lemma 3.1). This result also holds
true in the nondeterministic case and no better one is known. On the other hand,
since each new tape cell used by a computation requires at least one step to move
the tape head onto that cell, we may state that a bound on the time implies an
equal bound on the space. Can we do better? In Section 8.2 we shall see that for
one-tape Turing machines tighter bounds do exist.

Second, the role of nondeterminism in space-complexity classes will be analysed.
We have already seen how a nondeterministic Turing machine can be simulated by
a deterministic one whose running time is exponential with respect to the running
time of the former machine (see Theorem 2.1). In Section 8.3 such a simulation
will be performed in a more efficient way from a space-complexity point of view.

Third, we already know from the previous chapters that nondeterministic time-
complexity classes are not likely to coincide with their complement classes (we have
conjectured NP 6= coNP, Σp

k 6= Πp
k, etc.). Surprisingly, we shall see in Section 8.4

that the opposite is true for nondeterministic space-complexity classes.

Finally, in Sections 8.5 and 8.6 we shall consider two popular complexity classes,
that is, LOGSPACE and PSPACE, which contain languages decidable in logarith-
mic and polynomial space, respectively.

156

Space-complexity classes 157

8.1 Space-complexity classes

As for the definition of time-complexity classes, some constraints have to be placed
on the functions used to define space-complexity classes.

Formally, a space-constructible function s is a function mapping natural numbers
onto natural numbers such that a multitape Turing machine exists which uses
exactly s(|x|) tape cells before halting for any input x.

Given a space-constructible function s, the deterministic space-complexity class
DSPACE[s(n)] is defined as

DSPACE[s(n)] = {L : ∃Ti[L = L(Ti) ∧ SPACEi(x) ∈ O[s(|x|)]]}.

Similarly, we define the nondeterministic space-complexity class NSPACE[s(n)]
by replacing deterministic machines Ti with nondeterministic ones NTi in the pre-
vious formula.

8.2 Relations between time and space

Let us consider the following problem. Given a language L ∈ DTIME[t(n)], what
is the smallest space-complexity class including L? As stated above, we know that
L ∈ DSPACE[t(n)]: the next theorem shows that this bound can be consider-
ably lowered at least for one-tape machines. In order to prove this, we shall first
introduce some preliminary definitions and facts.

Let T be a one-tape Turing machine and x be an input. Let us focus our
attention on the boundary between the ith and the (i + 1)th tape cell. During the
computation T (x), this boundary is likely to be crossed several times and, each
time the tape head crosses the boundary, T must be in a given state. The sequence
of T states as its tape head crosses the boundary is called the crossing sequence at
boundary i with input x, in symbols Si(x).

Example 8.1 The crossing sequence at boundary i of the computation represented in
Figure 8.1 is given by q2, q4, q2, q5, q4.

More generally, a crossing sequence is a list of states. Denote two crossing
sequences by S ′ = q′1, . . . , q

′
r and S ′′ = q′′1 , . . . , q

′′
s . The basic idea underlying the

next result is a relation of ‘compatibility’ between S ′, S ′′, and a portion y of the
tape, that is, a range of tape cells together with their contents. Intuitively, S ′, S ′′

and y are compatible if, starting T at the leftmost tape cell of y in state q′1, S ′ and
S ′′ are generated at the left and right boundaries of y whenever the following two
rules are applied (see Figure 8.2):

1. If T crosses the left boundary of y moving left in state q′i with i even, then
its tape head is placed on the leftmost tape cell of y and its state is set to
q′i+1.

158 Space-complexity classes

. . .i + 1

q2

1 2 i. . .

-

q4

q2

q5

q4

Figure 8.1 An example of a crossing sequence at boundary i

2. If T crosses the right boundary of y moving right in state q′′i with i odd, then
its tape head is placed on the rightmost tape cell of y and its state is set to
q′′i+1.

In other words, the odd subsequence of S ′, that is, q′1, q
′
3, q

′
5, . . ., denotes the

sequence of states of T when entering into y from the left, while the even subse-
quence, that is, q′2, q

′
4, q

′
6, . . ., denotes the sequence of states of T when leaving y

to the left. A similar interpretation holds for odd and even subsequences of S ′′

(we hope that such an intuitive definition is clear enough: for more formality see
Notes).

Note now that if T runs in time O[t(n)], then, for any input x, at most, ct(|x|)
tape cells will be used by the computation T (x), where c is a constant. The basic
idea is to partition these ct(|x|) tape cells into blocks of equal size and to consider
the crossing sequences at the boundaries of such blocks. In particular, for any i and
d, let l = d(ct(|x|) − i)/de. The first ct(|x|) cells are partitioned into l + 1 blocks
with the first block y0 containing the first i cells and block yj, with 1 ≤ j ≤ l,
containing cells i + d(j − 1) through i + dj − 1 (see Figure 8.3).

The ith crossing sequence sample of distance d and length l with input x is the
list of crossing sequences S0(x), Si(x), Si+d(x), Si+2d(x), . . . , Si+ld(x), that is, the
list of crossing sequences at the boundaries of the blocks yj. More generally, a
crossing sequence sample of length l is a list of l + 2 crossing sequences.

Lemma 8.1 Given two integers i and d, let l = d(ct(|x|) − i)/de. A crossing
sequence sample S0, S1, S2, . . . , Sl+1 of length l is the ith crossing sequence sample
of distance d and length l with input x if and only if for any j with 0 ≤ j ≤ l, Sj,
Sj+1 and yj are compatible.

Relations between time and space 159

-

-

-

-

�

� �

-

y

q1

q2

q3

q4

q5

q′1

q′2

q′3

Figure 8.2 Compatibility between crossing sequences and a tape

0 i i + d i + 2d i + (l − 2)d i + (l − 1)d i + ld

ct(|x|)

S0 S1 S2 S3 Sl−1 Sl Sl+1
? ? ? ? ?

6

y0 y1 y2 yl−1 yl

. . .

Figure 8.3 Partition of the tape into blocks

Proof. The proof is straightforward and is left as a problem (see Problem 8.3). 2

The above lemma guarantees that the acceptance of a given input can be checked
by testing iteratively for the compatibility of crossing sequences and portions of
the tape. This will be exploited in the following theorem.

Theorem 8.1 Let t be any time-constructible function such that t(n) ≥ n2 and
√

t
is space-constructible. If a language L is decided by a one-tape deterministic Turing

160 Space-complexity classes

machine T in time O[t(n)], then L can be decided by a one-tape deterministic

Turing machine using space O[
√

t(n)].

Proof. First, note that an integer 1 ≤ i ≤
√

ct(|x|) exists such that the sum of the
lengths of the crossing sequences included in the ith crossing sequence sample of

distance d =
√

ct(|x|) and length l as in the above lemma is, at most,
√

ct(|x|).
In fact, the sum of the lengths of all the ith crossing sequence samples, for 1 ≤
i ≤

√
ct(|x|), gives the total number of times the tape head crosses the boundary

between two tape cells. This number cannot be greater than ct(|x|). Hence there

must be a crossing sequence sample whose length is, at most,
√

ct(|x|).
The new machine systematically generates crossing sequence samples of length,

at most,
√

ct(|x|). For each, it tests adjacent crossing sequences and the cor-

responding portion of the tape for compatibility (according to the definition of

compatibility, this test can be performed using, at most, k
√

t(|x|) tape cells with

k constant), and accepts if all the previous tests have been successful and an ac-
cepting global state has been encountered during one of them. The details of the
machine are left to the reader. 2

In addition to the previous result, other important relationships between time
and space have been found. Due to lack of space, we cannot present them here but
refer the interested reader to the Notes.

Finally, a more ambitious goal would be to look for tradeoffs between time and
space. For example, is it possible to save time by consuming more space? Unfor-
tunately, at present, no general technique is known for deriving from a machine T
working in time t and space s an equivalent machine T ′ operating in time t′ < t
but space s′ > s.

8.3 Nondeterminism, determinism and space

The following theorem is analogous to Theorem 2.1 which, surprisingly, yields a
more efficient space bound.

Theorem 8.2 For any space-constructible function s such that s(n) ≥ n,

NSPACE[s(n)] ⊆ DSPACE[s2(n)].

Proof. Let L be an arbitrary language in NSPACE[s(n)] and NT be a nondeter-
ministic Turing machine which decides L in space O[s(n)]. Thus, for any input
x of length n, if NT accepts x, then a computation path of NT (x) requiring, at
most, ks(n) cells must exist, where k is a constant. According to Lemma 3.1, the
length of such a computation path is, at most, 2cs(n) with c constant.

Let us make a few simplifying assumptions. First, NT is a one-tape machine
(see Lemma 4.1); second, each global state is encoded by exactly ks(n) symbols

Nondeterminism, determinism and space 161

(see Problem 2.7); finally, before reaching the accepting final state qA, NT cleans
the tape and positions the tape head on cell 0 so that both a single initial global
state S0 and a single accepting global state SΩ exist (see Problem 2.5).

Consider the predicate reachable(S,S ′, j) which is true if and only if the global
state S ′ is reachable from the global state S in at most 2j steps, that is, the
computation tree NT (x) contains a path from S to S ′ of length, at most, 2j. Then,
according to previous observations, x ∈ L if and only if reachable(S0,SΩ, cs(n)) =
true.

Now comes the difficult part, namely, the algorithm for the predicate reachable.
Note that instead of asking whether it is possible to go from S to S ′ in, at most, 2j

steps, we can divide the problem into two somewhat easier ones and ask whether
a global state S ′ exists such that it is possible to go from S to S ′ in, at most,
2j−1 steps and from S ′ to S ′ in, at most, 2j−1 steps. This breaking-down process
can then be iterated for increasingly smaller values of j until transforming a call to
reachable with j = 1 (that is, two steps) into two calls to reachable with j = 0 (that
is, one step). These latter calls can easily be computed by simply investigating the
quintuples of NT .

The following algorithm formalizes the above discussion:

function reachable(S,S ′, j): Boolean;
begin

if j = 0 then
if (S = S ′) or (a quintuple exists causing the transition from S to S ′)
then reachable := true
else reachable := false

else
begin

reachable := false;
for each global state S ′ do

if (reachable(S,S ′, j − 1)) and (reachable(S ′,S ′, j − 1)) then
reachable := true;

end;
end;

Let us now check the space requirements of the above algorithm. By construc-
tion, the nesting level of recursive calls is O[s(n)] and, at each level, O[s(n)] space
must be used to save the two parameter values S and S ′. In conclusion, the algo-
rithm requires O[s(n)2] space. 2

162 Space-complexity classes

8.4 Nondeterminism, complement and space

Theorem 8.2 suggests that nondeterminism is less powerful with respect to space
than it is with respect to time. The following theorem provides some further
evidence of this.

Theorem 8.3 For any space-constructible function s such that s(n) ≥ n,

NSPACE[s(n)] = coNSPACE[s(n)].

Proof. Given any language L ∈ NSPACE[s(n)], denote by NT the nondeterministic
machine which decides L in space O[s(n)]. Then, for any input x of length n,
NT (x) uses, at most, cs(n) tape cells where c is a constant. In order to prove the
result, we will derive a second machine denoted as NT ′ which decides Lc in space
O[s(n)].

As in the proof of Theorem 8.2, we assume that NT is a one-tape machine, that
global states are encoded in exactly cs(n) symbols of an alphabet Γ, and that a
single initial global state S0 associated with input x and a single accepting global
state SΩ exist.

Denote by Im(x) the set of global states reachable from S0 in, at most, m steps.
Since the number of steps in any accepting computation path of NT (x) is bounded
by |Γ|cs(n), it follows that

NT accepts x↔ SΩ ∈ I|Γ|cs(n)(x).

Note that it is easy to derive a nondeterministic machine NT1 deciding whether
a global state S belongs to Im(x) for some m. Such a machine simply guesses a
computation path starting from S0 and consisting of, at most, m global states and
checks whether S is in the path. Formally, NT1 can be defined as follows:

begin {input: x,S,m}
{S0 ∈ Im for all m}
if S = S0 then accept;
S1 := S0;
{check whether S is reachable from S0 in m steps}
for i = 1 to m do
begin

guess a global state S2;
if a quintuple exists causing a transition from S1 to S2 then

if S = S2 then accept
else S1 := S2

else reject;
end;
reject;

end.

Nondeterminism, complement and space 163

However, in order to decide whether x ∈ Lc the nondeterministic Turing ma-
chine NT ′ has to be capable of deciding whether SΩ does not belong to I|Γ|cs(n)(x)
(remember, we cannot simply invert the roles of accepting and rejecting final states
in the definition of NT1). The basic idea is as follows.

First NT ′ inductively computes the cardinalities |I0(x)|, |I1(x)|, . . . , |I|Γ|cs(n)(x)|.
Once the cardinality of I|Γ|cs(n)(x) is known, it successively considers all global
states until it finds all those included in I|Γ|cs(n)(x) and if SΩ is not one of those
states then it accepts, otherwise it rejects.

Let us first show how the cardinalities of the sets Im(x) can be computed in an
inductive way. By construction, I0(x) = {S0} and thus |I0(x)| = 1. Assume now
that |Im(x)| has been computed. In order to compute |Im+1(x)|, each global state
S is considered to check whether another global state S ′ exists belonging to Im(x)
such that S is reachable from S ′ in, at most, one step. If so, the value of a counter
is increased by one. The final value of the counter will be equal to |Im+1(x)|.

The nondeterministic algorithm computing |I|Γ|cs(n)(x)| is then the following:

function cardinality(x, cs(n)): integer;
begin
{card1 and card2 denote |Im| and |Im+1|, respectively}
card1 := 1;
for k = 1 to |Γ|cs(n) do
begin

card2 := 0;
for each global state S do
begin

counter := card1;
answer := false;
for each global state S ′ do
begin
{check whether S ′ ∈ Im}
simulate NT1(x,S ′,m);
if NT1(x,S ′,m) accepts then
begin

counter := counter − 1;
if S is reachable from S ′ in one step then

answer := true;
end;

end;
{check whether all global states of Im have been considered}
if counter = 0 then

if answer then card2 := card2 + 1;
{by inducing an infinite loop at this point
NT1 eliminates all computation paths which
have not considered all global states of Im}
else cycle for ever;

end;

164 Space-complexity classes

card1 := card2;
end;
cardinality := card1;

end;

Notice that the above algorithm is described by means of a nondeterministic
transducer. Did not we promise in Section 2.1.2 to consider nondeterministic ac-
ceptor machines only? Well, there is an exception to every rule; in any case, the
above algorithm does not lead to any ambiguity since, for any input, all the halting
computation paths compute the same value.

Finally, the second part of machine NT ′ is as follows:

function find SΩ(x, |I|Γ|cs(n)(x)|): boolean;
begin

i := 0;
isin := false;
{derive I|Γ|cs(n)(x) and check whether SΩ belongs to it}
for each global state S do
begin

simulate NT1(x,S, |Γ|cs(n));
if NT1(x,S, |Γ|cs(n)) accepts then
begin

i := i + 1;
if S = SΩ then isin := true;

end;
end;
if i = |I|Γ|cs(n)(x)| then

if isin then find SΩ := false else find SΩ := true
else find SΩ := false;

end;

It is easy to verify that the space requirement of all the above algorithms is the
same as that of machine NT . Thus Lc ∈ NSPACE[s(n)]. Since L can be any
language in NSPACE[s(n)], it follows that NSPACE[s(n)] = coNSPACE[s(n)]. 2

8.5 Logarithmic space

We have already observed that, whenever the input encoding is reasonable, all
input symbols have to be read and thus the linear space is a lower bound for any
computation. We can refine the above analysis by examining more closely the
storage requirements of a computation. On the one hand, tape cells are needed to
contain the input value and, in the case of transducers, the output value. On the
other, the computation may require additional cells to store the internal data struc-
tures (variables, counters, lists, etc.) used by the algorithm. Let us concentrate on
storage requirements of this second kind.

Logarithmic space 165

For this purpose, we shall impose some minor constraints on the use of the tapes
of a k-tape Turing machine. Tape 1 which contains the input x must be used as
a read-only tape. If the machine is a transducer, then the output must be written
on tape 2, called the output tape which must be used as a write-move tape, that
is, a write-only tape on which only right moves are allowed. The remaining tapes,
called working tapes, are unrestricted read/write tapes.

We then define a new dynamic measure of complexity denoted as WSPACE.
Given a computation Ti(x), WSPACEi(x) is defined as the number of working
tape cells needed by the computation.

This new definition allows us to define subclasses of the classes P and FP intro-
duced in Section 4.1. The first of such classes is the class LOGSPACE defined as
the set of languages L which can be decided by a deterministic Turing machine Ti

requiring WSPACEi(x) ∈ O[log(|x|)].
Many problems in P can be shown to belong to LOGSPACE. The intuitive

reason for this is that many deterministic polynomial-time algorithms are based
on tests for local properties of a problem instance.

Example 8.2 The problem of deciding whether a given word is a palindrome can be
solved in logarithmic working space by making use of the algorithm described in Exam-
ple 3.18. Indeed, it suffices to maintain a counter of how many symbols have already
been checked.

Example 8.3 degree one: given a graph G = (N,E), does G include a node of degree
1? This problem can be solved by checking the number of adjacent nodes of each of the
|N | nodes of G. Only the index of the node currently examined must be kept in the
working tapes. Thus this problem belongs to LOGSPACE.

Similarly, we shall define a subset of the class of functions FP. This class denoted
as the class FLOGSPACE is the class of all functions computable in logarithmic
WSPACE by a deterministic transducer Turing machine. The class FLOGSPACE
comprises a large set of functions. For example, the sum and product functions are
computable in logarithmic space. Similarly it can be shown (see Problems 8.8 and
8.10) that matrix multiplication and sorting a list of numbers can be done in loga-
rithmic space. More surprisingly, it turns out that all known polynomial-time func-
tions used to prove the NP-completeness of problems also belong to FLOGSPACE
(see Problem 8.12).

Finally, let us consider the nondeterministic version of LOGSPACE. Formally,
the class NLOGSPACE is defined as the set of languages L which can be decided
by a nondeterministic Turing machine NTi requiring WSPACEi(x) ∈ O[log(|x|)].

The following is an example of problem in NLOGSPACE which highlights the
role of nondeterminism.

Example 8.4 directed graph accessibility: given a directed graph G(N,E) with
N = {1, . . . , n}, does G admit a directed path from node 1 to node n? The following
nondeterministic algorithm solves directed graph accessibility:

166 Space-complexity classes

begin {input: G(N,E)}
r := n;
i := 1;
while r > 0 do

if (i, n) ∈ E then accept
else
begin

guess j in N ;
r := r − 1;
if (i, j) ∈ E then i := j else reject;

end;
reject;

end.

Since the working tape of the above algorithm only needs to contain the values of r, i,
and j, a logarithmic number of tape cells is sufficient, and thus the problem belongs to
NLOGSPACE. It is not known whether it also belongs to LOGSPACE. If the graph is
not directed, however, the corresponding graph accessibility problem can easily be
shown to belong to LOGSPACE (see Problem 8.9).

Clearly, NLOGSPACE includes LOGSPACE; the next theorem shows that,
somewhat surprisingly, this class is not larger than P.

Theorem 8.4 NLOGSPACE ⊆ P.

Proof. First note that any global state of a nondeterministic Turing machine NT
working in logarithmic space can be encoded as a word of a logarithmic length
(see Problem 8.11). Thus, for any x, we can derive a directed graph of polynomial
size whose nodes denote global states of NT (x) and whose edges denote one-step
transitions between pairs of global states. Clearly, NT accepts x if and only if a
path exists from the initial global state to the accepting one. This latter problem
can easily be solved in polynomial time. 2

8.5.1 P-complete problems

From the previous theorem and since LOGSPACE ⊆ NLOGSPACE, it follows
that LOGSPACE is included in P. We are unable, however, to specify whether the
inclusion is a proper one. Even if it seems likely that languages in P - LOGSPACE
do exist, this conjecture has not yet been proved. We must then content our-
selves with inserting it into the list of hard-to-prove conjectures which have been
challenging computer scientists for the past two decades.

Since we are unable to prove such a conjecture, once again we shall look for the
hardest problems in P unlikely to be in LOGSPACE. Before doing that, however,
we need to introduce a restricted form of polynomial-time reducibility.

Logarithmic space 167

A language L is said to be logspace-reducible to a second language L′, in symbols
L ≤log L′, if a function f ∈ FLOGSPACE exists providing an m-reduction between
L and L′.

The next lemma shows that logspace reducibility is reflexive and transitive, there-
fore the class LOGSPACE is closed with respect to it.

Lemma 8.2 The logspace reducibility ≤log is reflexive and transitive.

Proof. Clearly, ≤log is reflexive since the identity function is computable in zero
space.

It remains to prove that ≤log is also transitive. For this, let L, L1 and L2 be
arbitrary languages such that L ≤log L1 ≤log L2. Denote by T1 and T2 the two
deterministic transducers which compute the reductions from L to L1 and from
L1 to L2, respectively, in logarithmic space. It suffices to prove that a machine
T can be defined which reduces L to L2 in logarithmic space. We first observe
that the straightforward approach consisting of cascading together T1 with T2 will
not work, in general, since the working tape of the resulting T should be large
enough to contain the output of T1 whose length may be more than logarithmic
with respect to the input length (remember that the output tape is not considered
when evaluating the space complexity of T1).

For that reason, machine T will make use of the following technique. Whenever
T2 needs to read the ith symbol of the output of T1, T initializes a counter to 0,
starts simulating T1 and increases the counter by 1 every time T1 wants to write
a new symbol in its output tape (remember that this tape is a write-move one)
without really performing that writing. When the counter reaches the value i− 1,
T knows that the new symbol to be written by T1 is the symbol needed by T2.

Since both T1 and T2 work in logarithmic space and since the length of the
counter is clearly logarithmic with respect to the input length, then machine T
works in logarithmic space. 2

A language L is P-complete with respect to ≤log, in short P-complete, if it belongs
to P and if all languages in P are logspace-reducible to it.

Thus if LOGSPACE 6= P, then Lemma 3.2 ensures that any P-complete language
belongs to P− LOGSPACE.

Do P-complete languages exist? As in the case of NP-complete languages, if we
can prove the existence of at least one, then it becomes relatively easy to prove the
completeness of other languages via a chain of reductions.

Example 8.5 solvable path systems: given a finite set X and three sets R ⊆ X ×
X ×X, Xs ⊂ X and Xt ⊂ X, does Xt include at least one element of the least subset A
of X such that (i) Xs ⊆ A and (ii) if y, z ∈ A and 〈x, y, z〉 ∈ R then x ∈ A?

Intuitively, Xs and Xt correspond to ‘source’ and ‘terminal’ nodes of a graph, respec-
tively, and the objective is to decide whether a set of paths (or, equivalently, a set of
derivations) based on triples of R and connecting a terminal node with some source nodes
exists.

168 Space-complexity classes

The following result shows that solvable path systems plays the same role
for P-complete problems as satisfiability does for NP-complete problems.

Theorem 8.5 solvable path systems is P-complete.

Proof. The problem belongs to P. Indeed, it can be solved by the following simple
polynomial-time algorithm. A list L of nodes which initially contains the nodes of
Xs is derived; in the successive steps, all nodes x 6∈ L such that 〈x, y, z〉 ∈ R and
y, z ∈ L are added to L. When no new nodes can be added to L, the algorithm
halts and accepts the input if and only if L includes at least one element of Xt.

In order to prove completeness, let Ti and x be a deterministic polynomial-
time Turing machine and an input value, respectively. The proof will consist of
producing a logspace-reduction f which transforms the pair 〈Ti, x〉 into an instance
f(Ti, x) of solvable path systems such that Ti accepts x if and only if f(Ti, x)
is a yes-instance.

The reduction makes use of a clever trick which deserves a few words of expla-
nation. If we observe the moves of a tape head along a tape during a computation,
in general, we will not be able to determine any correlation between the tape head
positions and the steps of the computation. We may consider, for instance, a com-
putation which in some phases focuses on a limited portion of the tape while in
others it sweeps back and forth between the two extremities of the used tape.

It turns out, however, that a neat correlation between the tape head position and
the number of steps executed can be established, albeit sacrificing some efficiency.
This is accomplished by a special kind of Turing machine which we shall denote as
pendulum machine.

For simplicity and without loss of generality, we shall limit our attention to one-
tape machines. The tape head moves of a pendulum machine are best described
in terms of oscillations. Assume that the tape head is positioned on cell 0 at time
0. Then the first oscillation scans cells 1 and 0 at times 1 and 2, respectively. The
second oscillation scans cells 1, 2, 1, and 0 at times 3, 4, 5 and 6, respectively.
In general, each new oscilation scans one new cell to the right with respect to the
previous oscillation and then returns to cell 0 as shown in Figure 8.4.

It is easy to verify (see Problem 8.14) that, given any polynomial-time machine,
it is always possible to derive from it an equivalent polynomial-time pendulum
machine. We may thus limit our attention to polynomial-time pendulum machines.

Let us start by introducing a few simple functions which make explicit the cor-
relation between tape head position and step number. Denote by cell the function
yielding the index of the cell scanned at step t, by tprev the function yielding the
last step before step t at which the cell cell(t) has been scanned (if that cell is
scanned for the first time at step t, then assume tprev(t) = −1), and, finally, with
initialvalue the function yielding the contents of cell(t) at step 0.

Let us now compute the three previous functions (remember that according to
the definition, the ith oscillation is performed in 2i steps and consists of i right
tape head moves followed by i left ones, for i = 1, 2, . . .):

Logarithmic space 169

. . .0 n

x . . .2 2

1 n + 1

@
@

@
@

@
@

@
@

1st oscillation

2nd oscillation

3rd oscillation

4th oscillation

.

Figure 8.4 Tape head motion of a pendulum machine

1. If 0 ≤ t ≤ 2, then

cell(t) =

{
0 if t = 0, 2,
1 if t = 1;

if t > 2, then derive the index i∗ of the last oscillation which terminated
before step t, that is,

i∗ = max{i : i ≥ 1 ∧
i∑

j=1

2j < t}.

Let i = i∗ + 1. According to the previous definitions, the cell c scanned at
step t is included among those scanned during the ith oscillation. Subtract
from t the number of steps required to perform the i∗ oscillations preceding
the ith and denote the resulting value as t′. Thus,

t′ = t−
i∗∑

j=1

2j = t− i∗(i∗ + 1).

The value cell(t) for t > 2 can then be computed from i and t′ as

cell(t) =

{
t′ if t′ ≤ i,
2i− t′ otherwise.

170 Space-complexity classes

2. Similarly, tprev(t) can be computed by first deriving the index i of the oscil-
lation including t and then the corresponding t′. The value tprev(t) is then
computed as

tprev(t) =

−1 if (0 ≤ t ≤ 1) ∨ (t′ = i),
t− 2t′ if 1 ≤ t′ < i,
t− 2(t′ − i) if i < t′ ≤ 2i.

3. Finally, for any input x = x0x1 . . . xn−1 of length n, the third function
initialvalue is defined as

initialvalue(t) =

{
xcell(t) if 0 ≤ cell(t) ≤ n− 1,
2 otherwise.

We may now proceed with the reduction. Let Ti be a pendulum machine, x an
input of length n and denote by t∗ = p(n) the upper bound to the number of steps
executed by the computation Ti(x) where p is a polynomial. The set X of nodes
of the solvable path systems instance is defined as X = {0, . . . , t∗} × Q × Σ
where Q and Σ denote the set of states and the tape alphabet of Ti, respectively.

The set Xs consists of a single-source node, namely, 〈0, q0, x0〉, while the set of
terminal nodes Xt consists of all nodes 〈t, qA, σ〉 with 0 ≤ t ≤ t∗ and σ ∈ Σ (q0

and qA denote the initial state and the accepting state of Ti, respectively).
The triples of R are derived form the quintuples of Ti in two possible ways (we

use the notation y, z → x instead of 〈x, y, z〉 to emphasize the derivation implied
by a triple):

1. Associate to each quintuple 〈q, σ, σ′, m, q′〉 of Ti the triples

〈t, q, σ〉, 〈t, q, σ〉 → 〈t + 1, q′, σ′′〉

for all values t with 0 ≤ t < t∗ such that initialvalue(t + 1) = σ′′ and
tprev(t + 1) = −1.

2. Associate to each pair of quintuples 〈q1, σ1, σ
′
1, m1, q

′
1〉 and 〈q2, σ2, σ

′
2, m2, q

′
2〉

of Ti the triples

〈t, q1, σ1〉, 〈t1, q2, σ2〉 → 〈t + 1, q′1, σ
′
2〉

for all values t with 0 ≤ t < t∗ such that tprev(t + 1) = t1.

The first rule deduces the value at step t+1 of the state and that of the observed
symbol assuming that cell cell(t+1) has not been scanned previously. In that case,
the observed symbol is the initial symbol, that is, the symbol contained at step 0,
while the state depends on the pair state-symbol at step t.

The second rule deduces the value at step t + 1 of the state and that of the
observed symbol assuming that cell cell(t+1) has previously been scanned at step

Polynomial space 171

t1. In that case, the observed symbol depends on the pair state-symbol at step t1,
while the state depends on the pair state-symbol at step t.

It immediately follows from the above construction that Ti accepts x if and
only if the corresponding instance 〈X, Xs, Xt, R〉 of solvable path systems is a
yes-instance.

Since the number of quintuples of Ti is constant, the total number of triples
derived according to rules 1 and 2 is bounded by kt∗ where k is a constant. Fur-
thermore, it is easy to verify that functions cell, tprec, and initialvalue belong
to FLOGSPACE (see Problem 8.13) and that the triples of R can be derived one
at a time using, at most, h log(t∗) cells with h constant. The reduction described
requires logarithmic space. Since Ti was a generic pendulum machine, it follows
that solvable path systems is P-complete. 2

Many other interesting P-complete problems have been defined. We shall discuss
a few in the last part of the book.

8.6 Polynomial space

Let pk(n) = nk and denote by DSPACE[pk(n)] the corresponding deterministic
space-complexity class. The class PSPACE is then defined as

PSPACE =
⋃
k≥0

DSPACE[pk(n)]

The same reasoning applied in Section 4.2 to show the robustness of class P with
respect to variations in the model of computation can be applied to class PSPACE.
In other words, it is always possible to transform a polynomial-space algorithm
obtained for a modified model into a polynomial-space algorithm applicable to the
basic one.

Let us further explore the similarities between P and PSPACE. What is the role
of nondeterminism? Does it make sense to define NPSPACE as an infinite union
of nondeterministic polynomial space-complexity classes and examine the relations
between PSPACE and NPSPACE? The answer is negative since it suffices to apply
Theorem 8.2 to polynomial functions to obtain the following result.

Corollary 8.1 PSPACE = NPSPACE.

8.6.1 An alternative characterization

In this section we present an alternative characterization of PSPACE based on
alternating Turing machines. Define the class AP as the class of languages which
can be decided in polynomial time by an alternating Turing machine.

Theorem 8.6 PSPACE = AP.

172 Space-complexity classes

Proof. By using a technique similar to that used in the proof of Theorem 8.2, it is
relatively easy to show that PSPACE ⊆ AP (see Problem 8.18).

Conversely, let L ∈ AP and let AT be an alternating Turing machine which
decides L in polynomial time. The following construction shows how to derive from
AT a corresponding deterministic Turing machine T which decides L in polynomial
space.

Given an input x, T executes a depth-first visit of the computation tree associ-
ated with AT (x) to check whether an alternating tree which accepts x exists. The
detailed procedure is illustrated below (the notation used is similar to the one used
in the proof of Theorem 8.2):

begin {input: x}
S0 := initial global state;
if visit(S0) then accept else reject;

end.

where the function visit is defined as

function visit(S): Boolean;
begin

if S is the accepting state then visit := true;
if S is the rejecting state then visit := false;
if S is an existential state then
begin

b := false;
{check whether an accepting subtree exists}
while (not b) and unvisited successors of S exist do
begin

select a successor S ′ not yet visited;
b := visit(S ′);

end;
if b then visit := true else visit := false;

end;
if S is a universal state then
begin

b := true;
{check if all subtrees accept}
while b and unvisited successors of S exist do
begin

select a successor S ′ not yet visited;
b := visit(S ′);

end;
if b then visit := true else visit := false;

end;
end;

It is easy to verify that the above algorithm decides L in polynomial space. 2

Polynomial space 173

8.6.2 PSPACE-complete problems

Once again we are interested in characterizing the ‘most difficult’ problems of a
given complexity class, namely of PSPACE. Our approach will consist of looking
for PSPACE-complete problems with respect to polynomial-time reducibility. The
next example, which is a slight modification of the problem k−qbf introduced
in Example 7.11, decribes a first problem for which it is relatively easy to prove
PSPACE-completeness.

Example 8.6 qbf: given a Boolean formula E on n variables x1, . . . , xn and a sequence
of n quantifiers Q1, . . . , Qn, is the prenex formula

F = (Q1x1)(Q2x2) . . . (Qnxn)E(x1, . . . , xn)

true? Note how in this new problem the number of alternations between quantifiers is
no longer required to be constant.

Theorem 8.7 qbf is PSPACE-complete.

Proof. It is easy to see that qbf belongs to PSPACE. We will now outline the
completeness proof leaving the details to the reader.

Let T be any machine deciding a language in polynomial space and let x be any
input. The objective is to derive a polynomial-time reduction f which transforms
the pair 〈T, x〉 into a quantified Boolean formula Fx such that Fx is true if and
only if T accepts x.

Denote by n the length of x and with s(n) the polynomial limiting the space
requirements of T . Thus T (x) uses, at most, s∗ = s(n) tape cells and executes, at
most, t∗ = 2cs(n) steps, for a constant c.

Assume that global states are encoded as binary words of a fixed length L. These
words, in turn, can be viewed as assignments of values to L-tuples of Boolean
variables. Thus, in the following, the notation ∃X (respectively, ∀X) with X =
〈x1, . . . , xL〉 will stand both for ‘an assignment of values to variables x1, . . . , xL

exists’ (respectively, ‘for all assignments of values to variables x1, . . . , xL’) and for
‘a global state X exists’ (respectively, ‘for all global state X’).

Using the same assumptions as in the proof of Theorem 8.2, we can transform
the predicate reachable(S,S ′, j) into a quantified Boolean formula Fj such that
global state S ′ can be reached from global state S in, at most, 2j steps if and only
if the corresponding Fj is true. Clearly T accepts x if and only if the formula
corresponding to reachable(S0,SΩ, cs∗) is true.

In order to derive formula Fj we need the following Boolean formulas whose
formal definitions are left to the reader:

1. gs(X) is true if and only if X encodes a global state.

174 Space-complexity classes

2. yield(X, Y) is true if and only if global state Y can be reached from global
state X in, at most, one step.

3. init(X) is true if and only if X encodes the initial global state.
4. accept(X) is true if and only if X encodes the accepting global state.

Formula Fj is then constructed inductively as follows. For j = 0, the corre-
sponding formula F0(X, Y) is expressed as

F0(X, Y) = gs(X) ∧ gs(Y) ∧ yield(X, Y).

In the inductive step, we might define Fj+1(X, Y) as

Fj+1(X, Y) = (∃Z)(Fj(X, Z) ∧ (Fj(Z, Y)).

However, this approach already used in the pseudo-Pascal algorithm reachable
does not suit our purpose since the length of the resulting formula Fj+1 grows
exponentially with j. We can resolve this problem by reformulating Fj+1 as

Fj+1(X, Y) = (∃Z)(∀X ′)(∀Z ′)
[((X ′ = X ∧ Y ′ = Z) ∨ (X ′ = Z ∧ Y ′ = Y))→ Fj(X

′, Y ′)].

It is not difficult to convince ourselves that the two definitions of Fj+1 are equiva-
lent and that the length of Fj+1 defined in this alternative way grows polynomially
with j.

Finally, formula Fx is defined as

Fx = (∃X)(∃Y)[init(X) ∧ accept(Y) ∧ Fcs∗(X, Y)].

This concludes the proof. 2

In addition to qbf, the set of PSPACE-complete problems includes many inter-
esting problems in widely different areas such as automata theory, computational
linguistics and game theory. In the last area, a rich source of PSPACE-complete
problems comes from the class of two-player games, that is, games which can be de-
scribed by specifying the ‘initial’ and ‘final’ configurations and the rules according
to which each of the two players can alternatively make a move.

Denote by WHITE and BLACK the two players, with S0 the initial configuration
and assume that WHITE moves first. In such a case, asking whether WHITE will
win in exactly n moves is equivalent to asking whether

a move of WHITE from S0 to S1 exists such that,
for all moves of BLACK from S1 to S2,
a move of WHITE from S2 to S3 exists such that,

...

a move of WHITE from Sn−2 to Sn−1 exists such that,

Problems 175

for all moves of BLACK from Sn−1 to Sn,
Sn is a winning configuration for WHITE.

The reader will notice the similarity of the above formulation of a two-player
game with qbf and it is thus not surprising that many decisional problems con-
sisting of deciding whether WHITE wins in n moves are PSPACE-complete (see
Problem 8.20).

Problems

8.1. Prove an analog of Problem 3.13 for space complexity classes.

8.2. Show that P 6= DSPACE[n]. [Hint: use padding arguments to prove that if
DSPACE[n] ⊆ P, then DSPACE[nk] ⊆ P for any k ≥ 1.]

8.3. Prove Lemma 8.1.

8.4. Show that a weaker form of Theorem 8.2 holds when function s is not space-
constructible. Prove that in this case it is possible to derive a deterministic machine T

which accepts (instead of decides) the same language as NT .

8.5. Assume that a graph is encoded through its adjacency matrix with rows separated
by suitable delimiters and consider the following algorithm for degree one (see Example
8.3). Check whether a row of the matrix exists containing a single 1. Clearly this test
can be done in constant space. Can we infer from this fact that degree one is solvable
in constant space?

8.6. For any integer i, let b(i) denote the binary representation of i (without lead-
ing 0s). Show that the language L = {b(1)#b(2)# . . . #b(n) : n ≥ 1} belongs to
DSPACE[log(log(n))].

8.7. Prove that k-clique (see Example 4.5) belongs to LOGSPACE.

8.8. Show that the product of two matrices can be computed in logarithmic space.

8.9. Show that graph accessibility belongs to LOGSPACE. [Hint: use the result
obtained in Problem 8.8.]

8.10. Show that sorting belongs to FLOGSPACE.

8.11. Prove that Theorems 8.2 and 8.3 still hold by replacing s(n) ≥ n with s(n) ≥ log n

and by replacing SPACE with WSPACE. [Hint: show that any global state of a Turing
machine working in logarithmic space can be encoded as words of logarithmic length.]

8.12. In Garey and Johnson (1979) it is stated that all known polynomial reductions
used to prove NP-completeness results require logarithmic space. Show that this is true
at least for all reductions described in the examples of Section 5.2.

8.13. Prove that the functions cell, tprev and initialvalue introduced in the proof of
Theorem 8.5 belong to FLOGSPACE.

176 Space-complexity classes

8.14. Show how it is possible to derive from machine Ti which decides L in polynomial
time a pendulum machine TPi equivalent to Ti which also runs in polynomial time (see
Theorem 8.5).

8.15. Prove that directed graph accessibility is NLOGSPACE-complete. [Hint:
given a nondeterministic machine NT operating in logarithmic space and an input x,
compute the global state graph whose nodes correspond to global states of NT (x) and
whose edges correspond to possible transitions.]

8.16. Show that NLOGSPACE is strictly included in PSPACE.

8.17. Show that if P is equal to PSPACE, then any function computable in polynomial
space belongs to FP. [Hint: use a bit-by-bit construction technique.]

8.18. Prove that PSPACE ⊆ AP. [Hint: refer to the function reachable introduced in
the proof of Theorem 8.2.]

8.19. Prove that the language A defined in Theorem 5.11 is PSPACE-complete.

8.20. The generalized hexagon game is played on a board whose topology is described
by a graph G = (N,E). The nodes correspond to squares of the board and the edges
represent the existing links betweens squares.

The two players alternatively place white and black tokens on the squares of the board.
The objective of WHITE, who starts with a token in a fixed node s, is to create a path
consisting of contiguous white tokens between s and a second fixed node t of G. The
objective of BLACK is to block WHITE from reaching his or her objective (clearly,
BLACK is not allowed to place a token into node t).

generalized hexagon: given an initial configuration and an integer n, is WHITE
able to win in exactly n moves? Show that this problem is PSPACE-complete. [Even
and Tarjan (1976)]

Notes

In addition to Theorem 8.1, contained in the pioneering paper of Hopcroft and
Ullman (1968), other important relationships between time and space have been
found. Denote by T (respectively, NT) a deterministic (respectively, nondeter-
ministic) Turing machine running in time O[f(n)] with f(n) ≥ n2 and by T ′

(respectively, NT ′) a space-bounded machine which simulates it. Then:

• If T is a k-tape machine, then T ′ is a k-tape machine requiring space bounded
by O[f(n)/ log(n)] (see Hopcroft, Paul, and Valiant (1977)).
• If T is a one-tape deterministic machine, then T ′ is a one-tape determin-

istic machine running in time O[f(n)3/2] but requiring space bounded by
O[f(n)1/2] (see Liskiewicz and Lorys (1989)).
• If NT is a one-tape machine, then NT ′ is a one-tape machine running in the

same time but requiring space O[f(n)1/2] (see Lorys and Liskiewicz (1988)).

Notes 177

Theorem 8.2 appeared in Savitch (1970) while Theorem 8.3 was proved in Im-
merman (1988). An interesting application of this latter theorem is the following.
It was conjectured in Kuroda (1964) that the class of languages derivable from type
1 grammars1 is closed with respect to the complement. In the same paper, it was
shown that this class coincides with the linear nondeterministic space complexity
class NSPACE[n]. According to Theorem 8.3, NSPACE[n] = coNSPACE[n] and
the conjecture is proved in a positive sense.

In Jones (1975) it was proved that the problem directed graph accessi-
bility is NLOGSPACE-complete with respect to logspace-reducibility: this re-
sult implies that if this problem belongs to LOGSPACE, then NLOGSPACE =
LOGSPACE. As usual, starting from this first result several other problems were
shown to be NLOGSPACE-complete. Besides allowing a deeper insight into the
structure of P, the classes LOGSPACE (also called L) and NLOGSPACE (also
called NL) are closely related to the field of parallel algorithms (see Chapter 12).

Other interesting classes such as POLYLOGSPACE (the class of problems solv-
able in polylogarithmic space) or SC (the class of problems solvable in polyloga-
rithmic space and polynomial time) was also studied and we refer the reader to
Johnson (1990) for an exhaustive survey.

Theorem 8.5 was proved in Cook (1974) although the term P-completeness is
due to Goldschlager (1977). Exhaustive lists of P-complete problems can be found
in Miyano, Shiraishi, and Shoudai (1989) and in Greenlaw, Hoover, and Ruzzo
(1991). P-complete problems were also defined in Cook (1985) by making use of
another reducibility denoted as NC-reducibility. We shall deal with this in the last
part of this book.

The equivalence between classes PSPACE and AP was established in Chan-
dra, Kozen, and Stockmeyer (1981). In the same paper, a few other significant
complexity classes were defined by referring to alternating Turing machines. The
PSPACE-completeness of qbf was shown in Stockmeyer and Meyer (1973).

Finally, a few words on relativizations. An oracle separating PH from PSPACE
was shown in Yao (1985) via a result due to Furst, Saxe, and Sipser (1984) while
it is not clear whether any reasonable way to construct relativizations of classes
with sublinear space bounds exists.

1Type i grammars (0 ≤ i ≤ 3) were studied in Chomsky (1959). Type 0 grammars are
unrestricted models of computation while the remaining grammars correspond to models with
additional restrictions.

Chapter 9

Probabilistic algorithms and
complexity classes

Probability theory has several applications in the analysis of algorithms. For in-
stance, instead of considering the ‘worst case’ complexity of an algorithm (which
has been the approach followed so far) probabilistic techniques can be used to
evaluate the ‘average case’ complexity of the algorithm itself with respect to a
given probability distribution. In fact, many algorithms have been developed over
the past years for NP-complete problems whose average case complexity has been
found to be computationally tractable.

In this chapter, however, we will focus our attention on a different application
of probability theory, namely, the development of probabilistic algorithms. Intu-
itively, such algorithms are deterministic ones that make random choices in the
course of their execution. Even for a fixed input, different runs of a probabilistic
algorithm algorithm may thus give different results and it is inevitable that the
analysis of a probabilistic algorithm involves probabilistic statements. However,
instead of fixing the probability distribution over the inputs (as in the case of av-
erage complexity evaluation), the probabilistic analysis will assume a probability
distribution over the outputs of the algorithm.

To acquaint the reader with this kind of algorithm and its analysis, in Section
9.1 we will present a few examples of probabilistic algorithms in the field of number
theory, polynomial identities, and graph theory and we will show how probabilistic
algorithms with bounded error probability can be used to obtain a correct answer
with probability as high as desired by simply iterating the algorithm a limited
number of times.

The above considerations justify the definition of classes of problems which are
solvable by probabilistic algorithms. Just as Turing machines have been introduced
to formalize the concept of algorithm, in order to study probabilistic algorithms
formally in Section 9.2 we define our probabilistic model of computation which is
essentially a nondeterministic Turing machine with a different interpretation of its
branchings in the computation tree. In Section 9.3 by making use of such machines
we define several important complexity classes and we show some properties of such

178

Some probabilistic algorithms 179

classes and relations between them.

9.1 Some probabilistic algorithms

In order to describe probabilistic algorithms we add to our pseudo-Pascal lan-
guage the function random(n,m) whose value is uniformly distributed between
n and m. Note that in practice such a random number generator does not exist.
A possible solution could be to use a physical phenomenon considered random,
even though there could be disagreement regarding the real nature of randomness.
Furthermore, such physical sources of randomness generate correlated sequences
of numbers, rather than the independent random numbers that one would ideally
want. Another possibility is to use so-called ‘cryptographically secure pseudoran-
dom number generators’, that is, generators designed so that distinguishing them
from truly random ones is computationally equivalent to solving a presumably dif-
ficult problem. Due to lack of space, we will not cover these topics and we shall
focus on more theoretical aspects of probabilistic algorithms.

9.1.1 Compositeness testing

Several polynomial-time probabilistic algorithms are available for testing compos-
iteness (see Notes). All are based on a very simple technique, called the ‘abundance
of witnesses’. The input of a problem often satisfies a certain property whenever a
certain object, called a witness, exists. While it may be difficult to find such a wit-
ness deterministically, it is sometimes possible to prove that enough witnesses exist
to allow one of them to be efficiently searched for by simple random generation.

In the case of compositeness testing, the input is an integer n and the property
is whether or not n is composite. From Lemma 7.5 we would be tempted to let
the role of witness be played by any integer a with 1 ≤ a < n for which Fermat’s
test is not verified, that is, an−1 6≡ 1 (mod n). Clearly, if a witness a exists then
n is composite. But the question is: if n is composite, how many witnesses of its
compositeness exist?

First, remember that, for any integer n, the set Φ(n) of invertible elements
modulo n is defined as

Φ(n) = {a : 1 ≤ a < n ∧GCD(a, n) = 1},

and that its cardinality is denoted as φ(n).

As we have already seen in Section 7.1.1, if Φc(n) is not empty then a ∈ Φc(n)
implies an−1 6≡ 1 (mod n) (otherwise a would be invertible modulo n contra-
dicting Lemma 7.4). In other words, each element of Φc(n) is a witness of n’s
compositeness.

180 Probabilistic algorithms and complexity classes

One might then hope that, for any composite number n, either Φc(n) is suffi-
ciently large or Φc(n) is small but Φ(n) is rich in witnesses. Unfortunately, some
strange composite numbers n exist for which neither of the two above cases holds,
that is, Φc(n) is relatively small and no element of Φ(n) is a witness. Such num-
bers are defined as follows. For any integer n, let Kn be the set of integers a such
that 1 ≤ a < n and an−1 ≡ 1 (mod n). A composite number n is said to be a
Carmichael number if Kn = Φ(n).

Example 9.1 The first column of Table 9.1 shows the first five Carmichael numbers,
while the last column shows the frequency of witnesses.

Table 9.1 The first five Carmichael
numbers

n Factorization φ(n) Percentage
561 3 · 11 · 17 320 0.43
1105 5 · 13 · 17 768 0.3
1729 7 · 13 · 19 1296 0.25
2465 5 · 17 · 29 1792 0.27
2821 7 · 13 · 31 2160 0.23

The next theorem shows that the above concept of compositeness witness is
‘good’ for numbers which are not Carmichael numbers. In order to prove this, we
first need the following group-theoretic fact.

Lemma 9.1 For any finite group G and for any proper subgroup S of G, the
cardinality of S is a divisor of the cardinality of G.

Proof. Let RS be the binary relation in G such that 〈x, y〉 ∈ RS if and only if
x−1y ∈ S where x−1 denotes the inverse of x in G. It is easy to see that RS is an
equivalence relation. Let [x]S denote the equivalence class determined by x, that
is, the set of elements of G such that RS(x, y) = true. Clearly, if RS(x, y) = false
then [x]S ∩ [y]S = ∅. Thus G is found to be partitioned into nS equivalence classes
for a given integer nS.

Given x ∈ G, let fx be the function defined as fx(s) = xs, for any s ∈ S. It can
immediately be verified that fx is a bijection from S onto [x]S. Thus |[x]S| = |S|
for any x ∈ G. This in turn implies that |G| = nS|S|, that is, |S| divides |G|. 2

Theorem 9.1 If a composite number n is not a Carmichael number, then the
number of witnesses of n’s compositeness is at least φ(n)/2.

Some probabilistic algorithms 181

Proof. Note that, for any n, according to Lemma 7.4 Φ(n) is a group under multipli-
cation modulo n. Note also that Kn is a proper subgroup of Φ(n) (see Problem 9.1).
It thus follows from Lemma 9.1 that |Kn| is a divisor of φ(n). Hence |Kn| ≤ φ(n)/2,
that is, the number of witnesses of n’s compositeness is at least φ(n)/2. 2

It then remains to treat the case in which n is a Carmichael number. In order to
do this, we first need to modify the definition of witness as follows. Given an integer
n, an integer a is a compositeness witness for n if the following two conditions hold
true:

1. 1 ≤ a < n.
2. Either an−1 6≡ 1 (mod n) or an integer i exists such that 2i divides n − 1

and 1 < GCD(a(n−1)/2i − 1, n) < n.

Once again, it is clear that if a witness a exists then n is composite. Furthermore,
since the new definition encompasses the previous one, Theorem 9.1 still applies. In
order to prove a similar result for Carmichael numbers we first need the following
lemmas.

Lemma 9.2 For any prime number p and for any integer k ≥ 1, φ(pk) = pk−1(p−
1).

Proof. First note that, for any integer a with 1 < a < pk, GCD(a, pk) = 1 if
and only if p does not divide a. Since the multiples of p which are less than pk

are {p, 2p, . . . , pk − p}, there are pk−1 − 1 of them. Including the number 1 yields
φ(pk) = pk − pk−1 = pk−1(p− 1). 2

Lemma 9.3 If n is an odd1 Carmichael number, then n is the product of r different
odd prime factors p1, . . . , pr with r ≥ 3.

Proof. For any odd integer number n = pk1
1 . . . pkr

r , let

λ(n) = LCM(φ(pk1
1), . . . , φ(pkr

r))

where LCM denotes the least common multiple function. Then, for any a ∈ Φ(n),
aλ(n) ≡ 1 (mod n). Indeed, if r = 1 then aλ(n) = aφ(n) and from a simple
generalization of Lemma 7.3 it follows that aφ(n) ≡ 1 (mod n) (see Problem 9.2).
Otherwise, since λ(n) is a multiple of every φ(pki

i) with 1 ≤ i ≤ r, we have that
aλ(n) ≡ 1 (mod pki

i) which in turn implies that aλ(n) ≡ 1 (mod n).
Furthermore, as in the proof of Lemma 7.8, we can show that λ(n) is the

least exponent such that, for any a ∈ Φ(n), aλ(n) ≡ 1 (mod n). Hence, n is a
Carmichael number if and only if λ(n) is a factor of n−1. This in turn implies that
GCD(n, λ(n)) = 1. Hence, n does not contain a repeated prime factor since such

1It can be shown that all Carmichael numbers are odd, but we do not need this result since
even numbers are composite.

182 Probabilistic algorithms and complexity classes

a prime would be a factor of both n and λ(n). Moreover, n cannot be a product of
two prime numbers. Indeed, let n = pq with p < q and p, q primes. Then λ(n) is a
factor of n−1, that is, of pq−1. Also, λ(n) = LCM(φ(p), φ(q)) = LCM(p−1, q−1),
therefore λ(n) is a multiple of q − 1 which should divide pq − 1. But

pq − 1

q − 1
= p +

p− 1

q − 1
,

and since (p− 1)/(q − 1) is not an integer this is not possible.
Thus n must be the product of three or more different prime factors. 2

Theorem 9.2 If n is an odd Carmichael number, then the number of witnesses
of n’s compositeness is at least three fourths of φ(n).

Proof. Let p1, p2 and p3 be three different odd prime factors of n. From the proof
of Lemma 9.3 it follows that, for any i = 1, 2, 3, φ(pi) = pi − 1 divides n− 1.

Denote by ei the largest j such that 2j divides pi−1 and assume e1 = e2 = e3 = e
(similar analysis of cases e1 = e2 < e3 and e1 < e2 ≤ e3 is left to the reader).
Since pi − 1 = 2emi where mi is an odd integer and since pi − 1 divides n − 1,
it follows that n − 1 = 2e2km where m is an odd integer divisible by mi and
k ≥ 0. Let d = (n − 1)/2k+1 = 2em/2. Clearly pi − 1 does not divide d: indeed,
d/(pi − 1) = 2em

2
1

2emi
= m/2mi which is not an integer. Furthermore (pi − 1)/2

divides d: indeed, d
(pi−1)/2

= 2em
2

2
2emi

= m/mi which is an integer.

Let bi be a ‘primitive root’ modulo pi, that is, for any integer t, bt
i ≡ 1 (mod pi)

if and only if pi−1 divides t (the existence of this bi follows from the proof of Lemma
7.8). Reasoning as in the proof of Lemma 7.3, it is easy to verify that the powers
bi, b

2
i , . . . , b

pi−1
i are equivalent modulo pi to the numbers 1, 2, . . . , pi − 1 taken in a

suitable order. Thus, for each a ∈ Φ(n), a corresponding ri with 1 ≤ ri < pi must
exist such that a ≡ bri

i (mod pi).
Note now that if ri is even (respectively, odd) then pi divides (respectively, does

not divide) ad − 1. Indeed, since ri = 2r′i, then ad ≡ b
2r′id
i ≡ 1 (mod pi) because

pi − 1 divides 2d (we can treat similarly the case in which ri is odd).
Thus, for any a ∈ Φ(n) such that the corresponding triple 〈r1, r2, r3〉 contains at

least one even number and at least one odd number, we have that a is a witness, that
is, 1 < GCD(ad−1, n) < n. If, for instance, r1 is even and r2 is odd, then p1 divides
both ad−1 and n and p2 does not divide ad−1, therefore 1 < GCD(ad−1, n) < n.
It can be shown that the number of triples 〈r1, r2, r3〉 which satisfy the above
condition is at least three fourths of the number of all possible triples (see Problem
9.3). 2

By combining Theorems 9.1 and 9.2 we have the following result.

Corollary 9.1 If n is an odd composite number, then it admits at least (n− 1)/2
witnesses.

Some probabilistic algorithms 183

Let us then consider the following simple probabilistic algorithm:

begin {input: n > 2}
if n is even then accept
else
begin

a := random(1, n− 1);
if a witnesses the compositeness of n then accept
else reject;

end;
end.

It is easy to see that it can be checked whether a is a witness in polynomial time
(see Problem 9.4). Furthermore, from the above corollary it follows that the error
probability of the algorithm is less than 1/2, that is, if the algorithm accepts, then
we are certain that n is composite, while if it rejects, then we can state that n is
prime with probability at least 1/2.

9.1.2 Testing polynomial identities

Another important use of randomization was discovered for testing polynomial
identities (in the next section we will see how this technique can be applied to
graph theory). In particular, let us consider the following problem.

zero polynomial: given a multivariate polynomial p(x1, . . . , xn) of degree d
(the degree of a multivariate polynomial is defined as the largest among the degrees
of its variables), is p identically zero? Note that if p is given in standard simplified
polynomial form, then it is easy to test whether p is identically zero: we simply
determine whether all the coefficients of p are zero. However, if p is given as an
arbitrary arithmetic expression, then no polynomial-time algorithm is known for
solving the above problem.

The following result will allow us to derive a simple polynomial-time probabilistic
algorithm which is still based on the ‘abundance of witnesses’ principle.

Theorem 9.3 Let p(x1, . . . , xn) be a multivariate polynomial of degree d. If p is
not identically zero, then the number of n-tuples 〈a1, . . . , an〉 of integers between
−nd and nd such that p(a1, . . . , an) = 0 is, at most, nd(2nd + 1)n−1.

Proof. The proof is by induction on n. The case n = 1 is obvious, since a polynomial
of degree d can have, at most, d roots. Assume the asserted result to be true for any
polynomial in n−1 variables and let p(x1, . . . , xn) be a polynomial of degree d in n
variables. Note that p can be written as a polynomial in x1 whose coefficients are, in
turn, polynomials in the remaining n−1 variables x2, . . . , xn. In particular, consider
the highest degree coefficient p′ of x1 which is not identically zero (such a coefficient
must exist since p is not identically zero). For any (n − 1)-tuple 〈a2, . . . , an〉 of

184 Probabilistic algorithms and complexity classes

integers between −nd and nd two cases can occur: either p′(a2, . . . , an) is zero or it
is not. In the first case, p(x1, a2, . . . , an) might be zero for all possible values of x1

between −nd and nd, while in the second case p(x1, a2, . . . , an) can be zero for, at
most, d of such values (since p(x1, a2, . . . , an) is a non-zero polynomial of degree,
at most, d). By the induction hypothesis, p′ has, at most, (n − 1)d(2nd + 1)n−2

roots between −nd and nd. Thus, the number of zeros of p between −nd and nd
is, at most,

(2nd + 1)(n− 1)d(2nd + 1)n−2 + d(2nd + 1)n−1 = nd(2nd + 1)n−1,

which is the required bound. 2

Since the number of n-tuples of integers between −nd and nd is equal to (2nd+
1)n, it follows from the above theorem that if the polynomial is not identically zero
then if we randomly choose such a tuple the probability that the polynomial will
take on the value zero is, at most,

nd(2nd + 1)n−1

(2nd + 1)n
=

1

2 + 1/nd
< 1/2.

This guides us to the following probabilistic algorithm:

begin {input: p(x1, . . . , xn)}
d := degree of p;
for i = 1 to n do ai := random(−nd, nd);
if p(a1, . . . , an) 6= 0 then reject else accept;

end.

Note that it is trivial to compute the degree of a polynomial. Thus the previous
algorithm is a polynomial-time one.

9.1.3 Testing for matchings in graphs

The last example of a probabilistic algorithm refers to a graph-theoretic problem.

perfect matching: given a graph G = (N, E), does G contain a perfect
matching, that is, a subset E ′ ⊆ E such that, for any node u, one and only
one edge in E ′ exists with u as one of its endpoints? Although this problem
admits polynomial-time deterministic algorithms, they are not as simple as the
probabilistic algorithm we are going to present (see Notes).

The basic idea is to reduce perfect matching to zero polynomial. The
following theorem gives a necessary and sufficient ‘algebraic’ condition for a graph
to have a perfect matching.

Some probabilistic algorithms 185

Theorem 9.4 Let G be a graph with vertex set {1, . . . , n} and let A be a matrix
of |n|2 elements defined as follows:

aij =

xij if i is adjacent to j and i < j,
−xji if i is adjacent to j and i > j,
0 otherwise.

Then G has a perfect matching if and only if the determinant of A is not identically
zero.

Proof. By definition, the determinant of A is equal to

∑
π

σπ

n∏
i=1

aiπ(i)

where π denotes a permutation of {1, . . . , n} and σπ is 1 (respectively, -1) if π
is the product of an even (respectively, odd) number of transpositions.2 Note
that, for any permutation π,

∏n
i=1 aiπ(i) 6= 0 if and only if i is adjacent to π(i) for

1 ≤ i ≤ n, that is, any non-vanishing permutation π corresponds to a subgraph
Gπ of G consisting of the edges 〈i, π(i)〉 for 1 ≤ i ≤ n.

By definition, each of such subgraphs consists of disjoint cycles that cover the
entire set of nodes of G.

First, observe that all permutations π such that Gπ contains at least one odd
cycle do not contribute at all to the determinant of A. Indeed, such permutations
can be grouped into pairs that cancel each other’s contribution in the following
way. We associate a permutation π with a permutation π′ that is identical to π
except that an odd cycle is reversed. Since

∏n
i=1 aiπ(i) = −∏n

i=1 aiπ′(i) and σπ = σπ′ ,
the total contribution to the determinant for π and π′ is zero.

As a consequence, we have to consider permutations whose corresponding sub-
graphs consists only of even cycles. With each of such permutations we can
associate another permutation πr in which all cycles are reversed (observe that
σπ = σπr).

Let us then distinguish the following two cases (given a perfect matching E ′, tE′

will denote the product of the xs corresponding to the edges of E ′):

1. π = πr. In this case, Gπ consists of cycles of length 2 only and π corresponds
to a perfect matching E ′ such that

∏n
i=1 aiπ(i) = (tE′)2.

2. π 6= πr. In this case both π and πr correspond to the union of two perfect
matchings E ′ and E ′′ obtained by alternatively selecting edges within the
cycles so that

n∏
i=1

aiπ(i) +
n∏

i=1

aiπr(i) = 2tE′tE′′ .

2A transposition is an exchange of two elements which transforms a permutation into a new
one.

186 Probabilistic algorithms and complexity classes

y y

y y�
�
�
�
�
�

1 2

34

Figure 9.1 An example of graph G with two perfect matchings

In conclusion, the determinant of A is found to be equal to

(tE′
1
+ tE′

2
+ . . . + tE′

h
)2

where E ′
i denotes the ith perfect matching, and thus it is identically zero if and

only if G has no perfect matching. 2

Example 9.2 Consider the graph shown in Figure 9.1.
The corresponding matrix A is the following:

0 x12 0 x14

−x12 0 x23 x24

0 −x23 0 x34

−x14 −x24 −x34 0

whose determinant is given by (x12x34 + x14x23)2. Note how the two terms correspond
to the two perfect matchings contained in G.

In conclusion, the problem of deciding whether a graph G has a perfect matching
has been reduced to whether a polynomial is identically zero. From the previous
section, we know how to solve the latter problem probabilistically in polynomial
time.

9.1.4 Iteration of probabilistic algorithms

How can we deal with the failure of probabilistic algorithms to deliver a correct
answer? A simple solution consists of designing algorithms with a bounded error
probability, that is, algorithms whose error probability is, at most, 1 − ε for some
constant 0 < ε ≤ 1 independent of the input size. For instance, both the prob-
abilistic algorithms for composite number and for zero polynomial have a
bounded error probability of 1/2.

Some probabilistic algorithms 187

For such algorithms, the error probability can be made arbitrarily small by sim-
ply iterating the algorithm on the same input a certain number of times with in-
dependent random choices. For instance, if we run the algorithm deciding whether
a number is composite k times (assuming that at each iteration the probability of
choosing a number a between 1 and n−1 remains uniform), then the probability of
rejecting a composite number becomes less than 1/2k. If k = 50 and the algorithm
accepts at each iteration, then it is more likely that n is composite than that a
failure in our hardware has interfered with the computation!

Clearly, the greater the initial error probability, the greater the number of iter-
ations, but this number will still be independent of the instance size.

Thus probabilistic algorithms with bounded error probability (that is, whose
error probability can be made arbitrarily small) seem to be extremely useful in ef-
ficiently solving decision problems. There is little hope, however, that polynomial-
time probabilistic algorithms with bounded error probability solving some NP-
complete problem can be found since this would imply that any problem in NP
would admit such an algorithm (see Problem 9.16). The latter event appears
unlikely since a problem solvable with arbitrarily small error probability in poly-
nomial time should be considered tractable rather than untractable (think of an
error probability less than 2−100).

In conclusion, two possible applications of probabilistic algorithms seem to be
the most promising. On the one hand, one could look for probabilistic algorithms
solving problems in P which are more efficient (or even simpler) than previously
known deterministic algorithms (the algorithm solving the matching problem falls
into this category). On the other, one could look for polynomial-time probabilistic
algorithms for NP-intermediate problems for which no deterministic polynomial-
time algorithm is known (the two algorithms solving the compositeness problem
and the polynomial identity problem, respectively, fall into this second category).

9.1.5 Monte Carlo versus Las Vegas

All the above algorithms are called ‘Monte Carlo’ algorithms: such algorithms are
efficient but they may give incorrect answers (even though the probability is small).
For example, the algorithm testing whether a number is composite may sometimes
declare a number to be prime even if it is composite.

In contrast, the ‘Las Vegas’ algorithms are not only efficient but are also reli-
able because instead of giving an incorrect answer, they give a ‘don’t know’ one
whenever they are uncertain. Thus a Las Vegas algorithm deciding a language L
neither accepts a word which does not belong to L nor rejects one which belongs
to L but, when applied to certain words, it may halt in a ‘don’t-know’ state (the
formal definition of such algorithms will be given in the next section).

Very few Las Vegas algorithms are known. One of them solves the primality
testing problem. Due to lack of space we will not present it here in detail, but
will outline the basic idea. As we have seen, the compositeness testing algorithm

188 Probabilistic algorithms and complexity classes

is based on the abundance of compositeness witnesses (if n is indeed composite).
Assume that a type of primality witness is available which is easily checkable and
abundant. Then we can provide the following Las Vegas algorithm for testing pri-
mality. Given n, randomly choose a candidate a as being a witness of n’s primality
and test whether a is indeed a witness. If the test succeeds then accept; otherwise
randomly choose a candidate b as being a witness of n’s compositeness and test
whether b is indeed a witness. If the test succeeds then reject; otherwise halt in
the ‘don’t-know’ state. According to our assumptions, the algorithm never lies.
Furthermore, since n is either prime or composite and because of the abundance of
witnesses, the probability that the algorithm halts in the ‘don’t-know’ state is very
small. A witness of primality with the above properties has recently been found
(see Notes).

9.2 Probabilistic Turing machines

In order to define our probabilistic model of computation in a simple way we will
make the following assumptions.3

First we shall only consider nondeterministic Turing machines working in poly-
nomial time and we will no longer specify the time bound. Then, for any nonde-
terministic Turing machine NT , we shall assume that

1. The degree of nondeterminism of NT is 2.

2. Every step of NT is nondeterministic (thus any global state has exactly two
possible successors).

3. For any input x, any computation path of NT (x) executes the same number
of steps.

From the above hypothesis it follows that, for any input x, the computation
tree NT (x) is a perfect binary tree. For clarity, we will denote with a white circle
the leaves corresponding to accepting global states and with a black circle those
corresponding to rejecting global states (see Figure 9.2 where four computation
paths accept and four reject).

Probabilistic Turing machines PT will then be defined as nondeterministic Tur-
ing machines with different acceptance criteria and, in a specific case, with a suit-
able final state, that is, the ‘don’t-know’ state, added to the more familar accepting
and rejecting ones. Before continuing, however, let us briefly consider the interpre-
tation of the branchings in a computation tree. Such branchings no longer denote
guessing steps but ‘coin-flipping’ steps: the next global state depends on the out-
come of such a random choice. It should then be clear that while nondeterministic
Turing machines accept if an accepting computation path exists, the acceptance

3It is easy to see that such assumptions are not restrictive (see Problem 9.6).

Probabilistic Turing machines 189

t t t d d t d d
L
L
L
LL

�
�
�
��

L
L
L
LL

�
�
�
��

L
L
L
LL

�
�
�
��

L
L
L
LL

�
�
�
��

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

%
%
%
%
%

e
e
e
e
e

Figure 9.2 A computation perfect tree

of probabilistic Turing machines will depend on the number of accepting compu-
tation paths, that is, the probability of obtaining an accepting computation path
(provided that we are using a fair coin).

Given a probabilistic Turing machine PT and an input x, let α(PT, x) (re-
spectively, β(PT, x)) denote the ratio of the number of accepting (respectively,
rejecting) computation paths of PT (x) to the total number of computation paths
of PT (x). The error probability is then defined as β(PT, x) (respectively, α(PT, x))
if PT (x) accepts (respectively, rejects) where the acceptance criterion will be spec-
ified in the following sections.

Finally, a probabilistic Turing machine PT decides a language L if, for any x,
PT (x) accepts if and only if x ∈ L.

9.2.1 PP-machines

A probabilistic Turing machine PT is said to be of PP type if

1. For any x, PT (x) accepts if α(PT, x) > 1/2.
2. For any x, PT (x) rejects if β(PT, x) ≥ 1/2 (see Figure 9.3).

Example 9.3 1/2-satisfiability: given a Boolean formula f , is f satisfied by more
than half the possible assignments of values? It can immediately be verified that such a
problem can be decided by a PP-machine (see Problem 9.8).

From a practical point of view, the PP-machines correspond to the least useful
probabilistic algorithms. Indeed, the error probability of such a machine can be of
the form 1/2 − 1/2p(n) where p is the polynomial bounding the running time and

190 Probabilistic algorithms and complexity classes

T
T
T
T
T
T
T
T
T
Tss s s ssc c c c cc c s

�
�
�
�
�
�
�
�
�
� s s

T
T
T
T
T
T
T
T
T
Ts s ssc c c c cc c s

�
�
�
�
�
�
�
�
�
� sccc

α(PT, x) = 7/16

PT (x) rejects

α(PT, x) = 5/8

PT (x) accepts

Figure 9.3 A PP-machine

n is the input length. This unfortunate case can occur when the number of ‘right’
computation paths is only one greater than the number of ‘wrong’ ones. Note that
in order to make the error probability arbitrarily small, an exponential number of
iterations is needed.

9.2.2 BPP-machines

A probabilistic Turing machine PT is said to be of BPP type if a constant ε ∈
(0, 1/2) exists such that

1. For any x, either α(PT, x) > 1/2 + ε or β(PT, x) > 1/2 + ε.
2. For any x, PT (x) accepts if α(PT, x) > 1/2 + ε.
3. For any x, PT (x) rejects if β(PT, x) > 1/2 + ε (see Figure 9.4).

Clearly, BPP-machines are not more powerful than PP-machines. Indeed, if a
language L is decided by a BPP-machine PT , then the very same machine PT
interpreted as a PP-machine decides L (see Problem 9.9).

In contrast to the PP-machines, the BPP-machines can be iterated a polynomial
number of times in order to make the error probability arbitrarily small.

Theorem 9.5 Let PT be a BPP-machine and let q be a polynomial. Then a
probabilistic Turing machine PT ′ exists such that, for any x with |x| = n, if PT (x)
accepts then α(PT ′, x) > 1−2−q(n) and if PT (x) rejects then β(PT ′, x) > 1−2−q(n).

Proof. From the hypothesis it follows that a constant ε ∈ (0, 1/2) exists such that,
for any x, PT (x) accepts if α(PT, x) > 1/2 + ε and PT (x) rejects if β(PT, x) >
1/2 + ε.

Probabilistic Turing machines 191

T
T
T
T
T
T
T
T
T
Tss s s ssc c cc c s

�
�
�
�
�
�
�
�
�
� s s

β(PT, x) = 11/16

ε = 1/8

T
T
T
T
T
T
T
T
T
Ts s ssc c c c c c

�
�
�
�
�
�
�
�
�
� cc

α(PT, x) = 3/4

cc cs s
PT (x) rejects PT (x) accepts

c

Figure 9.4 A BPP-machine

Let t be an odd number to be specified later. The probabilistic Turing machine
PT ′ is thus the following:

begin {input: x}
acc := 0;
for i = 1 to t do
begin

simulate PT (x);
if PT (x) accepts then acc := acc + 1;

end;
if acc > t/2 then accept else reject;

end.

If PT (x) accepts, the ratio of the number of computation paths of PT ′(x) such
that the value of acc is exactly i, with i ≤ t/2, to the total number of computation
paths is given by4

(
t
i

)(
1

2
+ ε

)i (1

2
− ε

)t−i

≤
(

t
i

)(
1

2
+ ε

)i (1

2
− ε

)t−i
(

1
2

+ ε
1
2
− ε

)t/2−i

=

(
t
i

)(
1

4
− ε2

)t/2

.

4Remember that the probability of an event of probability at least p occurring exactly i times

in t independent trials is, at most,
(

t
i

)
pi(1− p)t−i.

192 Probabilistic algorithms and complexity classes

The ratio of the number of rejecting computation paths of PT ′(x) to the total
number of computation paths is then given by

(t−1)/2∑
i=0

(
t
i

)(
1

2
+ ε

)i (1

2
− ε

)t−i

≤
(t−1)/2∑

i=0

(
t
i

)(
1

4
− ε2

)t/2

= 2t−1
(

1

4
− ε2

)t/2

=
1

2

(
1− 4ε2

)t/2
.

In order to prove the theorem, it suffices to select t so that

1− 1

2

(
1− 4ε2

)t/2
≥ 1− 2−q(n),

that is,

2
(

1

1− 4ε2

)t/2

≥ 2q(n)

which is satisfied whenever

t ≥ 2(q(n)− 1)

log(1/(1− 4ε2))
.

We can deal similarly with the case in which PT (x) rejects. Thus the ‘t-iterated’
machine PT ′ is capable of simulating PT in polynomial time. 2

BPP-machines can thus have exponentially small error probabilities. However,
no such machine is known to solve an interesting decision problem (not solvable
by more constrained machines).

9.2.3 R-machines

Clearly, the compositeness test presented in the previous section is a BPP-machine
whose error probability is, at most, 1/2. However, that algorithm has another
important characteristic: if the input is prime, then the error probability is zero.
This leads us to the definition of a ‘one-sided’ version of BPP-machines.

A probabilistic Turing machine PT is said to be of R type if

1. For any x, either α(PT, x) > 1/2 or β(PT, x) = 1.
2. For any x, PT (x) accepts if α(PT, x) > 1/2.
3. For any x, PT (x) rejects if β(PT, x) = 1 (see Figure 9.5).

Probabilistic Turing machines 193

T
T
T
T
T
T
T
T
T
Tss s s ss s

�
�
�
�
�
�
�
�
�
� s s

T
T
T
T
T
T
T
T
T
Ts s ssc c c c cc c s

�
�
�
�
�
�
�
�
�
� sccc

β(PT, x) = 1 α(PT, x) = 5/8

s s s s s s s
PT (x) rejects PT (x) accepts

Figure 9.5 An R-machine

In the case of R-machines, the error probability is zero for rejected inputs. The
most popular probabilistic algorithms developed so far, among which are those
described in Section 9.1, are based on such machines.

The next theorem states that R-machines are not more powerful than BPP-
machines.

Theorem 9.6 Given a language L decided by an R-machine PT , a BPP-machine
PT ′ exists deciding L.

Proof. For any x, if PT (x) accepts, then β(PT, x) < 1/2. Let PT ′ be the BPP-
machine which simulates PT twice similarly as in the proof of Theorem 9.5 and
such that any computation path accepts if at least one computation path of PT (x)
has accepted. It is easy to see that if PT (x) accepts, then α(PT ′, x) > 1−1/4 and
that if PT (x) rejects, then β(PT ′, x) = 1. Thus taking ε = 1/4 yields α(PT ′, x) >
1/2 + ε and PT (x) accepts if and only if PT ′(x) accepts. 2

The previous theorem also shows the usefulness of R-machines: as for BPP-
machines, the error probability can efficiently be made arbitrarily small.

9.2.4 ZPP-machines

All the previous kinds of probabilistic machines implement Monte Carlo algorithms,
that is, they are allowed to lie. It is now time to present the last kind of machine,
implementing Las Vegas algorithms.

A probabilistic Turing machine PT is said to be of ZPP type if

1. PT has an extra final state, called a don’t-know state.

194 Probabilistic algorithms and complexity classes

T
T
T
T
T
T
T
T
T
Tss s

�
�
�
�
�
�
�
�
�
� s s

T
T
T
T
T
T
T
T
T
Tc c c c cc c

�
�
�
�
�
�
�
�
�
� cc

β(PT, x) = 11/16 α(PT, x) = 9/16

s s s s s s
PT (x) rejects PT (x) accepts

?? ??? ?? ?? ?? ?

Figure 9.6 A ZPP-machine

2. For any x, either α(PT, x) > 1/2 ∧ β(PT, x) = 0 or β(PT, x) > 1/2 ∧
α(PT, x) = 0.

3. For any x, PT (x) accepts if α(PT, x) > 1/2.
4. For any x, PT (x) rejects if β(PT, x) > 1/2 (see Figure 9.6 where the don’t-

know states are represented as question marks).

Thus the computation of a ZPP-machine does not contain contradicting com-
putation paths, that is, no computation path can lie. The primality problem is an
example of a problem decided by a ZPP-machine (see Notes).

Once again, the next theorem shows that ZPP-machines are not more powerful
than R-machines.

Theorem 9.7 Given a language L decided by a ZPP-machine PT , an R-machine
PT ′ exists deciding L.

Proof. Machine PT ′ is obtained from PT simply by identifying the reject and the
don’t-know states. 2

9.3 Probabilistic complexity classes

Let us associate with each type of probabilistic Turing machine defined previously
the corresponding class of languages decided by such a machine. For instance, the
class PP is the set of languages L such that a PP-machine exists deciding L. We
can similarly define the classes BPP, R and ZPP.

The next theorem shows some algebraic properties of probabilistic complexity
classes.

Probabilistic complexity classes 195

Theorem 9.8 Classes PP, BPP, and ZPP are closed under complementation.
Furthermore, classes BPP, R, and ZPP are closed under union and intersection.

Proof. In order to prove the first statement, it suffices to observe that, for any
PP-machine (respectively, BPP- or ZPP-machine) which decides a language L, a
probabilistic Turing machine of the same type deciding Lc can be obtained by
simply reversing the roles of the accepting and rejecting states.

In order to prove that BPP is closed under union, let L1 and L2 be two languages
in BPP. From Theorem 9.5 it follows that, for any constant ε ∈ (0, 1/2), two BPP-
machines PT1 and PT2 exist such that, for i = 1, 2, x ∈ Li → α(PTi, x) > 1 − ε
and x 6∈ Li → β(PTi, x) > 1− ε.

Let PT be the BPP-machine which, on input x, successively simulates PT1(x)
and PT2(x) and accepts if and only if at least one of the two simulations accepts.
It is easy to verify that if x ∈ L1∪L2, then α(PT, x) > 1−ε and that if x 6∈ L1∪L2,
then β(PT, x) > (1 − ε)2. By choosing ε so that (1 − ε)2 > 1/2, it follows that
PT decides L1 ∪ L2 (with constant ε1 = (1 − ε)2 − 1/2). Thus L1 ∪ L2 ∈ BPP.
Similarly, we can prove that R and ZPP are closed under union.

Since BPP and ZPP are closed under both complementation and union, they are
also closed under intersection. In order to prove that R is closed under intersection
we can proceed as in the above paragraph and modify PT so that it accepts if and
only if both the computations PT1(x) and PT2(x) accept (see Problem 9.11). 2

9.3.1 Some inclusion relations

Figure 9.7 summarizes all known inclusions, which we will prove in this section, be-
tween the previously defined probabilistic complexity classes, P, NP, and PSPACE.
The dotted rectangle in the figure contains those classes which may be considered
as computationally tractable: indeed, for these classes the error probability can be
made arbitrarily small by a polynomial number of iterations (note that in the case
of P the initial error probability is zero).

Theorem 9.9 The following hold true:

1. P ⊆ ZPP.

2. ZPP = R ∩ coR.

3. R ∪ coR ⊆ BPP.

4. R ⊆ NP and coR ⊆ coNP.

5. BPP ⊆ PP.

6. NP ∪ coNP ⊆ PP.

7. PP ⊆ PSPACE.

Proof. The seven inclusion relationships are proved as follows:

196 Probabilistic algorithms and complexity classes

@
@
@
@

�
�
�
�

�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

PSPACE

PP

BPP

coNP

coR

NP

R

P

ZPP

Figure 9.7 The probabilistic world

1. For any L ∈ P, a deterministic Turing machine T exists deciding L in polyno-
mial time. Let PT be the ZPP-machine such that, for any x, the computation
paths of PT (x) are all equal to the computation T (x). Clearly, if x ∈ L, then
α(PT, x) = 1 and if x 6∈ L, then β(PT, x) = 1. Thus PT decides L.

2. From Theorems 9.7 and 9.8 it follows that ZPP ⊆ R ∩ coR. Conversely, for
any L ∈ R ∩ coR, two R-machines PT1 and PT2 exist deciding L and Lc,
respectively. Let us define the following ZPP-algorithm PT :

begin {input: x}
simulate PT1(x);
if PT1(x) accepts then accept;
simulate PT2(x);
if PT2(x) accepts then reject
else don’t-know;

end.

Since PT1 and PT2 are R-machines, it is easy to verify that if x ∈ L, then
α(PT, x) > 1/2 and β(PT, x) = 0 and, conversely, if x 6∈ L, then α(PT, x) =
0 and β(PT, x) > 1/2. Thus PT decides L. Since L is an arbitrary language
in R ∩ coR, it follows that R ∩ coR ⊆ ZPP.

Probabilistic complexity classes 197

3. It follows from Theorems 9.6 and 9.8.
4. For any L ∈ R, an R-machine PT exists deciding L. By modifying the

acceptance criterion of PT so that it becomes a standard nondeterministic
Turing machine NT , it follows that NT decides L. Indeed, if x ∈ L, then
α(PT, x) > 1/2 and an accepting computation path of NT (x) exists. Con-
versely, if x 6∈ L, then α(PT, x) = 0 and no computation path of NT (x)
accepts.

5. It follows from the comment made immediately after the definition of BPP-
machines.

6. For any L ∈ NP, a nondeterministic Turing machine NT exists deciding L in
polynomial time. Let PT be the PP-machine which, on input x, nondeter-
ministically chooses to perform one of the following two steps: (1) simulates
NT (x); (2) for any step of NT (x), performs a branching and at the end ac-
cepts without further computation. If x ∈ L, then at least one computation
path which has chosen step 1 accepts and, thus, α(PT, x) > 1/2, otherwise
α(PT, x) = 1/2. It then follows that PT decides L.

7. For any L ∈ PP, a PP-machine PT exists deciding L in time p(n) where
p is a polynomial. Thus L can be decided by the following deterministic
algorithm:

begin {input: x}
n := |x|;
acc := 0;
{acc is the number of accepting computation paths}
for i = 1 to 2p(n) do

if the ith computation path of PT (x) accepts then acc := acc + 1;
{check whether α(PT, x) > 1/2}
if acc > 2p(n)−1 then accept else reject;

end.

Since the simulation of a computation path of PT (x) requires, at most, a
polynomial number of tape cells and since the (i+1)th computation path can
be simulated using the same tape cells as used during the ith computation,
the previous algorithm requires a polynomial number of tape cells. Thus
L ∈ PSPACE.

2

None of the above inclusions is known to be strict (even though all of them are
conjectured to be so).

9.3.2 PP-complete languages

Once again, we are faced by ‘difficult-to-prove’ conjectures and searching for com-
plete problems appears to be the best way to find candidates for separating the

198 Probabilistic algorithms and complexity classes

classes at hand. Since it can immediately be verified that all probabilistic com-
plexity classes are closed with respect to polynomial-time reducibility (see Problem
9.16), we will make use of this reducibility.

Unfortunately, it is not known whether complete languages exist for the classes
BPP, R, and ZPP and, indeed, there is some evidence that they do not (see Notes).
In this section, instead, we prove that PP-complete languages do exist.

Example 9.4 maximum satisfiability: given a Boolean formula f and an integer i,
is f satisfied by more than i assignments of values?

Since PP is closed with respect to the polynomial-time reducibility and since
1/2-satisfiability belongs to PP, the next lemma shows that maximum satis-
fiability also belongs to PP.

Lemma 9.4 maximum satisfiability ≤ 1/2-satisfiability.

Proof. Let 〈f, i〉 be an instance of maximum satisfiability where f is a Boolean
formula on variables x1, . . . , xn and i is an integer smaller than 2n. Let i = 2n−r1 +
2n−r2 + . . . + 2n−rk with 1 ≤ r1 < r2 < . . . < rk ≤ n. We then define

gi = (x1 ∧ . . . ∧ xr1)

∨(¬x1 ∧ . . . ∧ ¬xr1 ∧ xr1+1 ∧ . . . ∧ xr2)

∨(¬x1 ∧ . . . ∧ ¬xr2 ∧ xr2+1 ∧ . . . ∧ xr3)

. . .

. . .

∨(¬x1 ∧ . . . ∧ ¬xrk−1
∧ xrk−1+1 ∧ . . . ∧ xrk

).

Clearly the hth clause of gi, with 1 ≤ h ≤ k, is satisfied by precisely 2n−rh assign-
ments of values. Furthermore, the negated variables ensure that all assignments
of values satisfying one clause cannot satisfy any of the other clauses. Thus the
total number of assignments of values which satisfy gi is precisely 2n−r1 + 2n−r2 +
. . . + 2n−rk = i while the total number of assignments of values which satisfy ¬gi

is precisely 2n − i.
Let

g = (y ∧ f) ∨ (¬y ∧ ¬gi)

where y is a new variable not included in {x1, . . . , xn}. It thus follows that f is
satisfied by at least i assignments of values if and only if g is satisfied by more
than half of the possible assignments of values. It is also easy to see that g can be
derived in polynomial time. Thus maximum satisfiability is polynomial-time
reducible to 1/2-satisfiability. 2

Problems 199

Theorem 9.10 maximum satisfiability is PP-complete.

Proof. Because of the previous lemma, it suffices to show that, for any L ∈ PP,
L ≤ maximum satisfiability. Let PT be a PP-machine deciding L. For any x,
fx denotes the Boolean formula ‘encoding’ the computation PT (x) (see Theorem
5.2). It is easy to verify that a one-to-one correspondence exists between accepting
computation paths of PT (x) and assignment of values satisfying fx. Thus PT (x)
accepts if and only if fx is satisfied by more than 2p(|x|)/2 assignments of values
where p is the polynomial bounding the running time of PT .

Finally, the reduction f is defined as h(x) = 〈fx, 2
p(|x|)−1〉, for any x. Clearly

h is computable in polynomial time and x ∈ L if and only if h(x) ∈ maximum
satisfiability.

Thus L ≤ maximum satisfiability. Since L was an arbitrary language in PP,
maximum satisfiability is PP-complete. 2

The following corollary is an immediate consequence of Lemma 9.4 and of the
above theorem.

Corollary 9.2 1/2-satisfiability is PP-complete.

Problems

9.1. For any integer n, let Kn be the set of integers a such that 1 ≤ a < n and an−1 ≡ 1
(mod n). Show that Kn is a subgroup of Φ(n).

9.2. Prove that, for any integer n and for any a ∈ Φ(n), aφ(n) ≡ 1 (mod n).

9.3. Refer to the proof of Theorem 9.2. Show that there are eight equally frequent
possibilities for the parities of r1, r2, and r3. [Hint: make use of the Chinese remainder
theorem to show that the correspondence between elements of Φ(n) and triples 〈r1, r2, r3〉
satisfies the following two conditions: it is surjective and the cardinality of the inverse
image of a triple is the same for all triples.]

9.4. Provide a polynomial-time algorithm deciding whether, given an integer n and an
integer a ∈ {1, 2, . . . , n− 1}, a is a witness of n’s compositeness.

9.5. matrix product: given three n × n matrices A, B and C, is AB = C? Clearly
such a problem belongs to P: however, no deterministic algorithm whose running time
is O[n2] is known (the best-known algorithm runs in time O[n2,5]). Consider instead the
following probabilistic algorithm:

begin {input: A, B and C}
for i = 1 to n do
begin
{generate an array of n elements in {−1, 1}}
x[i] := random(0, 1);
if x[i] = 0 then x[i] := − 1;

200 Probabilistic algorithms and complexity classes

end;
if A(Bx) 6= Cx then reject else accept;

end.

Prove that the error probability of the above algorithm is, at most, 1/2 and that
the running time is O[n2]. [Hint: show that if AB 6= C, then, for any x such that
A(Bx) = Cx, an x′ exists so that A(Bx′) 6= Cx′.]

9.6. Show that the assumptions on nondeterministic Turing machines presented at the
beginning of Section 9.2 are not restrictive, that is, the class of languages decided by
such machines is equal to NP.

9.7. Prove that the constant 1/2 in the definition of PP-machines can be replaced by any
constant greater than 0 without changing the power of such machines. [Simon (1975)]

9.8. Describe a PP-machine which decides 1/2-satisfiability.

9.9. Show that if a language L is decided by a BPP-machine PT , then L is also decided
by PT interpreted as a PP-machine.

9.10. Prove that if L ∈ NSPACE[s(n)], then L can be decided by an R-machine using
space O[s(n)]. [Gill (1977)]

9.11. Prove that R is closed under intersection.

9.12. Show that if L1 and L2 belong to PP, then L1∆L2 also belongs to PP. [Hint:
simulates the two machines one after the other and accepts if and only if exactly one of
the two simulations accepts.]

9.13. Prove that if NP ⊆ BPP, then NP = R. [Ko (1982)]

9.14. Prove that BH2 ⊆ PP. [Hint: use the result of the previous problem.] Generalize
this fact to the entire Boolean hierarchy.

9.15. Give an analog of Theorem 5.1 for classes PP and BPP.

9.16. Show that PP, BPP, R, and ZPP are closed with respect to the polynomial-
time reducibility. Note that if L is an NP-complete language admitting a probabilistic
algorithm with bounded error probability, then any language in NP admits such an
algorithm.

9.17. Let BPP(NP) denote the class of languages L for which a language Lcheck ∈ NP
and a polynomial p exist such that

1. If x ∈ L, then |{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ Lcheck}| ≥ 2/3.

2. If x 6∈ L, then |{y : |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ Lcheck}| ≤ 1/3.

Prove that if coNP ⊆ BPP(NP), then coBPP(NP) ⊆ BPP(NP). [Hint: first prove an
analog of Theorem 9.5 for BPP(NP) and successively define a suitable check language
for any member of coBPP(NP).]

Notes 201

9.18. Show that if coNP is contained in BPP(NP), then PH ⊆ BPP(NP). [Hint: by
induction on k, prove Σp

k ⊆ BPP(NP).] Since BPP(NP) ⊆ Πp
2 , this result implies that if

coNP is contained in BPP(NP), then the polynomial hierarchy collapses to the second
level.

9.19. Prove that maximum satisfiability is self-reducible (see Problem 5.15).

Notes

The compositeness testing algorithm described in Section 9.1 was derived in Rabin
(1976); it is perhaps the most famous probabilistic algorithm along with that de-
scribed in Solovay and Strassen (1977) which solved the same problem. Although
the technical details of the two approaches differ, they both rely on the concept
of compositeness witness and on the abundance of such witnesses. It is also worth
noting that Rabin’s algorithm has a running time of O[log3 n] while, even assum-
ing the extended Riemann hypothesis, the best running time currently known for
a deterministic primality testing algorithm is O[log5 n]. Our presentation of the
algorithm differs slightly from the original one and is inspired partly by that of
Kozen (1992) and partly by that of Rabin (1980). In particular, Theorem 9.1 is
taken from Kozen’s book while Theorem 9.2 is due to Rabin. The Carmichael
numbers were introduced in Carmichael (1912) in order to find a necessary and
sufficient condition for a composite number n satisfying an−1 ≡ 1 (mod n) when
a is any number relatively prime to n. In that paper, Lemma 9.3 was proved.

Schwartz (1980) presented probabilistic algorithms for testing asserted multi-
variate polynomial identities, as well as other asserted or conjectured relationships
between sets of polynomials. Theorem 9.3 and the related probabilistic algorithm
for zero polynomial are taken from that paper. Moreover, in dealing with poly-
nomials with integer coefficients the author adopted the technique of carrying out
all calculations in modular arithmetic in order to avoid having to deal with very
large integers.

Theorem 9.4 is attributed to Tutte (1952) while the corresponding probabilistic
algorithm for perfect matching was suggested in Lovasz (1979). It is fair to
observe that this algorithm does not give us a method of actually finding a perfect
matching when one exists; in fact, this can be done probabilistically but it is a
little more complicated (see Chapter 12). The deterministic algorithm of Edmonds
(1965) has a running time of O[n3], however, it is a very complicated algorithm.
For many programmers its implementation would take exponential time!

The survey by Karp (1990) presents a wide variety of examples intended to illus-
trate the range of applications of probabilistic algorithms and the general principles
and approaches that are of the greatest use in their construction. The examples
are drawn from many areas, including number theory, algebra, graph theory, pat-
tern matching, selection, sorting, searching, computational geometry, combinato-
rial enumeration, and parallel and distributed computation.

202 Probabilistic algorithms and complexity classes

The distinction between Monte Carlo and Las Vegas algorithms was introduced
by Babai (1979) in conjunction with his research into probabilistic algorithms for
the graph isomorphism problem. In particular, a Las Vegas algorithm was de-
scribed solving a variant of that problem. This result, however, was shortly after-
wards updated by the deterministic polynomial-time algorithm of Furst, Hopcroft,
and Luks (1980). The Las Vegas algorithm for testing primality appeared in Adle-
man and Huang (1988).

Formal models for probabilistic algorithms were first studied in de Leeuw et
al. (1956), Santos (1969), and Gill (1977). In this latter paper the problem of
whether probabilistic machines can be proven to require less time or space than
deterministic ones was analysed. In order to provide an answer to this question,
probabilistic Turing machines were introduced, classes PP, BPP, R (called VPP),
and ZPP were defined, and many properties of these classes were demonstrated
(among them Theorems 9.8 and 9.9). Although the model presented in this text
slightly differs from that of Gill, it can be easily shown that the two models are
equivalent.

It is interesting to note that in his paper, Gill left as an open question whether
PP is closed under intersection; this problem remained open for almost twenty
years until Beigel, Reingold, and Spielman (1990) provided a positive answer.

The proof of Theorem 9.5 follows that of Schöning (1985) which also contains
several other interesting results on probabilistic classes and, in general, on struc-
tural complexity theory.

Theorem 9.10 appeared in Simon (1975) while Lemma 9.4 is due to Gill (1977).
In Sipser (1982) it is shown that a relativization of class R exists which does not
admit complete languages; such a result can also be extended to classes BPP and
ZPP.

The most important question about probabilistic classes is their relationships
with classes P and NP. From a relativized point of view, in Hunt (1978) and in
Balcazar and Russo (1988), an oracle was derived such that P is different from
ZPP and ZPP is different from NP, respectively. Moreover, in Stockmeyer (1985)
the existence of an oracle such that BPP is not contained in NP was proved,
thus suggesting that the two classes are incomparable. One of the most important
results obtained in this area is certainly that contained in Toda (1989) which states
that if PP is included in the polynomial hierarchy then this hierarchy collapses.

Finally, an alternative application of probabilistic algorithms consists of deriving
algorithms that always find correct answers, but whose running time obeys some
probability distribution. For example, in Rabin (1976) a probabilistic algorithm
was proposed finding the nearest pair in a collection of points in a unit square.
The expected running time is O[n] for every instance, as opposed to the O[n log n]
worst-case running time of the best deterministic algorithm.

Chapter 10

Interactive proof systems

The concept of a proof is an intuitive one. However, theorem-proving procedures
may differ in the underlying definition of a proof. The most natural one consists
of writing down the proof in a book, but a more general way of communicating a
proof is based on the concept of interaction, and consists of explaining the proof to
some recipients, as in the case of a teacher–student environment. In this way, the
prover (that is, the teacher) can take full advantage of the possibility of interacting
with the verifiers (the students). These latter may ask questions at crucial points
of the explanation and receive answers. This make the prover’s life much easier.
Indeed, writing down a proof that can be understood and checked by every verifier
without interaction is a much harder task because, in some sense, the prover has
to answer all possible questions in advance.

In this chapter, we consider proving procedures, called interactive proof systems,
in which a prover wants to convince a verifier of the correctness of a proof. Although
these systems have been fruitfully applied in other areas such as cryptology (see
Notes), we shall limit ourselves to discussing a few fundamental results related to
complexity theory.

In typical complexity-theoretic fashion we shall view an interactive proof system
simply as a new method for recognizing languages. To that end, the characteristics
of the new model will be gradually introduced in Section 10.1 and a new complexity
class based on interactive proof systems and denoted as IP will be introduced.
Next, it is shown in Section 10.2 that, surprisingly, IP coincides with PSPACE.
On the one hand, this result seems to weaken the importance of IP; on the other,
the equivalence proof is inherently different from those encountered so far since it
does not relativize. In fact, we shall succeed in constructing an oracle A such that
IPA 6= PSPACEA, thus obtaining (for the first time!) a result which ‘is contrary’
to the unrelativized one.

In the last section of the chapter, we shall consider theorem-proving procedures
from a different point of view. Having assumed that the proof is available some-
where, how much of it does the verifier have to know in order to be convinced that

203

204 Interactive proof systems

P V

6

?

-

6

�

Input

P -to-V messages

? ?

Work Work

?

V -to-P messages

6 6

Figure 10.1 A deterministic interactive proof system

the proof is correct? Clearly, if the verifier is deterministic, the proof has to be read
in its entirety. However, if it is probabilistic, then a sublinear number of random
bits and message bits is sufficient to characterize interesting complexity classes.
Furthermore, this kind of proof-checking procedure has surprising applications in
the field of approximation algorithms.

10.1 Interactive proof systems

The interactive system we shall consider is a very simple one which consists of
two Turing machines denoted as P (the prover) and V (the verifier). The two
machines, as represented in Figure 10.1, can exchange messages although suitable
limitations will be placed on both the number and the length of the messages.

The exchange of messages takes place in the two communication tapes labeled
P -to-V tape and V -to-P tape. The first tape is a write-only tape for P and a
read-only one for V while the second is a write-only tape for V and a read-only
one for P . Both P and V have their own working tape and both are able to read
the same input from a read-only tape.

Let us make the following assumptions on the power of P and V and on the
allowed interactions:

Interactive proof systems 205

1. The verifier V is a polynomial-time deterministic Turing machine.
2. The prover P is a computationally unlimited (in both time and space) de-

terministic Turing machine.
3. P and V take turns in being active and V starts the computation. When

a machine is active, it can perform internal computation, read and write on
the correct tapes and send a message to the other machine by writing on the
appropriate communication tape.

4. Both the length and the number of messages exchanged between P and V
are bounded by suitable polynomials in the input length.

5. V can, during its turn, terminate the interactive computation by entering
either the accepting or the rejecting state.

The acceptance criterion is straightforward. (P, V) accepts input x if V halts in
an accepting state while it rejects x if V halts in a rejecting state.

A language L admits a deterministic interactive proof if a verifier V exists such
that

1. A prover P ∗ can be derived such that (P ∗, V) accepts all x ∈ L.
2. For all provers P , (P, V) rejects all x 6∈ L.

Condition 1 says that if x belongs to L, then a way exists to easily prove this fact
to V ; in other words, it is possible to prove a true theorem with an easily verifiable
proof. Condition 2 states that if x does not belong to L, then no strategy for
convincing V of the contrary exists; in other words, it is not possible to prove a
false theorem. This latter condition is motivated by the fact that, in general, we
do not want V to trust the prover with which it is interacting. If x 6∈ L, then
even if a prover is providing incorrect answers, V must be able to detect it. In the
opposite case, trusted provers would behave exactly as unbounded oracles.

Denote by DIP the class of languages which admit a deterministic interactive
proof. The following lemma shows that this first class is of little interest.

Lemma 10.1 DIP = NP.

Proof. Let us first show that NP ⊆ DIP. We have already seen in Theorem 5.1
that NP can be viewed as the set of languages which have short polynomial-time
verifiable membership proofs (for instance, a proof that a formula is satisfiable
simply consists of a satisfying assignment of values). Thus, if x ∈ L, then the prover
which is computationally unlimited computes a membership proof y and sends it
to the verifier. The verifier, whose running time is bounded by a polynomial in the
length of x, checks that y is a membership proof. Conversely, if x 6∈ L, then it is
clear that no prover can persuade V that x is in L.

Let us now show that DIP ⊆ NP. Let L ∈ DIP and let V be a verifier for
L. Given an input x, the number of messages exchanged between P and V is
polynomial with respect to the input length. Thus a nondeterministic polynomial-
time machine NT can be derived which alternatively simulates V and guesses all

206 Interactive proof systems

P V

6

?

-

6

�

Input

P -to-V messages

? ?

Work Work

?

V -to-P messages

Random
generator

�

6 6

Figure 10.2 An interactive proof system

possible messages from P . Clearly, if x ∈ L, then at least the computation path
corresponding to prover P ∗ accepts; otherwise all computation paths reject, since
no prover can induce V to accept x. 2

We can extend the above model of ‘efficient interactive proof systems’ by allowing
V to be a probabilistic Turing machine (see Figure 10.2) and by requiring that, for
all x ∈ L, the prover can convince the verifier with high probability, and, for all
x 6∈ L, no prover can convince the verifier that x is in L with better than negligible
probability.

Formally, the acceptance criterion is similar to that of the BPP-machines. In-
deed, the computation paths of (P, V) with input x can be arranged in a binary
tree similar to that of a probabilistic Turing machine’s computation. The leaves
of such a tree correspond to the final states reached by the verifier. Let α(P, V, x)
(respectively, β(P, V, x)) denote the ratio of the number of accepting (respectively,
rejecting) computation paths of the tree to the total number of computation paths.

For all x, we then say that (P, V) accepts (respectively, rejects) x if α(P, V, x) >
2/3 (respectively, β(P, V, x) > 2/3). It is easy to verify (see Problem 10.1) that
the constant 2/3 can be replaced by any other constant greater than 1/2.

The resulting model of computation is called an interactive proof system and, as
in the case of DIP languages, we say that a language L admits an interactive proof
if a verifier V exists such that the above conditions 1 and 2 hold.

Interactive proof systems 207

An implicit assumption of interactive proof systems is that the verifier’s random
generator is private: the prover only receives information computed by the verifier
based on the previous history and the coin tosses. In this way, we ensure that the
verifier cannot be fooled by the prover even when the latter knows V ’s algorithm.

10.1.1 The class IP

Denote by IP the class of languages which admit an interactive proof. We know
from Lemma 10.1 that IP includes NP.

The following example suggests that the inclusion is strict. The algorithms for
P and V will be described, as usual, in pseudo-Pascal and two new constructs
denoted as transmit and receive will be introduced to denote the transmission
and the reception of a message, respectively.

Example 10.1 graph isomorphism: given two graphs G1 = (N1, E1) and G2 =
(N2, E2), are they isomorphic, that is, does a bijection f : N1 → N2 exist such that,
for all x, y ∈ N1, 〈x, y〉 ∈ E1 if and only if 〈f(x), f(y)〉 ∈ E2?

We now show that the complement of this problem admits an interactive proof: note
that no polynomial-time nondeterministic algorithm is known for this problem. The
verifier’s algorithm is the following:

begin {input: G1, G2}
succ := true;
repeat twice
begin

i := random(1, 2);
randomly create a graph H isomorphic to Gi;
transmit H;
receive j;
if i 6= j then succ := false;

end;
if succ then accept else reject;

end.

Note that the above algorithm is polynomial: indeed, the random generation of a graph
isomorphic to Gi can be realized by randomly selecting a permutation of the nodes of
Gi. Note also that, according to the algorithm, the verifier and the prover will interact
twice.

First, we show that a prover P ∗ exists such that, for any pair 〈G1, G2〉 of nonisomorphic
graphs, the interactive proof system (P ∗, V) accepts 〈G1, G2〉. P ∗’s algorithm is the
following:

begin {input: G1,G2 }
receive H;
if H is isomorphic to G1 then transmit 1 else transmit 2;

end.

208 Interactive proof systems

Clearly, if G1 and G2 are not isomorphic, then the verifier accepts 〈G1, G2〉 with
probability 1 since P ∗ always returns the correct value.

Conversely, given an input 〈G1, G2〉 with G1 isomorphic to G2, a prover P which has no
way of knowing whether the graph received has been generated from G1 or G2 can only
answer randomly. In such a case, the probability that P correctly answers a message
j is 1/2 and thus the combined probability that P correctly answers two consecutive
messages inducing V to accept the input is, at most, 1/4.

10.2 The power of IP

We have already noticed that IP is likely to strictly include NP. Indeed, we have
seen in Example 10.1 that graph isomorphismc belongs to IP, while the same
problem does not seem to belong to NP (even though it clearly belongs to coNP).
For some years the relations existing between IP and other complexity classes such
as coNP were not clear. Indeed, researchers generally believed IP to be slightly
larger than NP and it was conjectured that coNP-complete problems did not belong
to IP.

Furthermore, the following result which refers to the relativized version of IP
suggests that proving the contrary would be a hard task (in the relativized version
of IP, only the verifiers need to make use of oracles since the computational power
of the prover is assumed to be unlimited).

Theorem 10.1 An oracle A exists such that coNPA − IPA is not empty.

Proof. As in the case of Theorem 5.12, the separator language will capture a suitable
property of the oracle, that is, the fullness property when restricted to words of a
given length. In particular, for any language X, let us define a new language L∗

X

as

L∗
X = {0n : Xn = Σ∗

n}.

It is easy to verify that L∗
X ∈ coNPX for any oracle X. In fact, in order to check

whether 0n does not belong to L∗
X , it is sufficient to guess in a nondeterministic

way all words of length n and to verify whether the oracle X does not include at
least one of them. We now derive an oracle A such that no interactive proof using
that oracle exists for L∗

A.
The proof proceeds similarly to that of Theorem 5.12. In particular, let V1, V2, . . .

be an enumeration of all possible polynomial-time oracle verifiers such that, for
any i (and for any oracle), the running time of Vi is bounded by the polynomial
pi(n) = ni.

The diagonalization process used to derive the oracle A associates with each
polynomial-time oracle verifier V in the enumeration an integer n such that either

The power of IP 209

An = Σ∗
n and no prover can convince V to accept 0n or An 6= Σ∗

n and a prover
exists that causes V to accept 0n.

Formally, the language A is constructed in stages. Let A(i) denote the finite set
of words added to A after the ith stage and let ni be an upper bound on the length
of the words of A(i). Moreover, let Q(i) be the set of queries to the oracle which
have been posed in any of the first i stages. At the beginning we let A(0) be ∅, n0

be 0, and Q(0) be ∅. Successively, we let

ni = min{m : m > ni−1
i−1 ∧ 2m > 3mi}

and define the set A(i) distinguishing the following two cases:

1. No prover P exists such that (P, V
A(i−1)∪(Σ∗−Q(i−1))
i) accepts 0ni . In this

case, we denote by R(i) the set of words distinct from those in Q(i − 1)
which have been queried by at least one (P, Vi) with input 0ni and we let
A(i) = A(i− 1) ∪ Σ∗

ni
∪R(i).

2. A prover P ∗ exists such that (P ∗, V
A(i−1)∪(Σ∗−Q(i−1))
i) accepts 0ni . In this

case, we denote by S(i) the set of words distinct from those in Q(i−1) which
have been queried by (P ∗, Vi) with input 0ni and we let A(i) = A(i − 1) ∪
(Σ∗

ni
− {yi}) ∪ S(i) where yi denotes any word of length ni that has been

queried in, at most, pi(ni)/2
ni of all computation paths. Clearly, at least

one such word yi must exist since, in the opposite case, the total number
of queries of length ni in the computation tree would be greater than pi(ni)
times the number of computation paths.

We may then define the oracle language A as A =
⋃

i>0 A(i).
Note that in case 1, for any i, the behavior of Vi on input 0ni with oracle A(i−

1) ∪ (Σ∗ − Q(i − 1)) is precisely the same as its behavior on the same input with
oracle A.

This is no longer true in case 2, since A does not include the word yi which might
have been essential for accepting 0ni . In such a case, we know that yi has been
queried in, at most, pi(ni)/2

ni of all computation paths, that is, in less than one
third of all the computation paths. According to the definition of acceptance, this
means that the prover P ∗ will convince Vi with oracle A to accept with probability
greater than one third but less than two thirds. Thus V A

i cannot be a verifier for a
relativized interactive proof system and we may discard Vi from the enumeration.

To conclude the proof we have to show that L∗
A 6∈ IPA. In contrast, assume that

a verifier Vi with oracle A exists witnessing L∗
A ∈ IPA. If no prover P exists such

that the interactive proof system (P, V A
i) accepts 0ni , then from case 1 it follows

that Ani
= Σ∗

ni
, that is, 0ni ∈ L∗

A. On the other hand, if a prover P exists such that
the interactive proof system (P, V A

i) accepts 0ni , then from the above paragraph

it follows that (P, V
A(i−1)∪(Σ∗−Q(i−1))
i) accepts 0ni . From case 2, we then have that

Ani
6= Σ∗

ni
, that is, 0ni 6∈ L∗

A. In both cases, Vi fails to correctly decide whether 0ni

belongs to L∗
A and we conclude that no such Vi can exist. 2

210 Interactive proof systems

As noted in Chapter 5, the above result shows that, in order to settle the question
whether IP contains coNP, we need techniques that do not relativize. Surprisingly,
one example of these techniques has been recently found!

10.2.1 Arithmetization of Boolean formulas

The basic idea of this proof technique is to ‘arithmetize’ a Boolean formula, obtain-
ing a low-degree polynomial, so that the problem of deciding whether the formula
is satisfiable reduces to that of verifying whether the corresponding polynomial
admits a value different from zero.

Given an n-variable Boolean formula f in conjunctive normal form with three
literals per clause, an arithmetic formula Af is derived from it in the following
inductive way:

1. Arithmetization of a literal: Axi
= 1− zi where xi is a Boolean variable and

zi is an integer variable; similarly, A¬xi
= zi.

2. Arithmetization of a clause: Al1∨l2∨l3 = 1 − Al1Al2Al3 where l1, l2, l3 are
literals.

3. Arithmetization of f : Af = Ac1∧...∧cm = Ac1 . . . Acm where c1, . . . , cm are the
clauses of f .

(note that such Af is a polynomial of degree, at most, 3m where m denotes the
number of clauses).

Clearly, a formula f is not satisfiable if and only if the corresponding Af is equal
to 0 for all (0, 1)-assignments to the variables of Af . The fact that each member of
this exponentially large collection of quantities vanishes can be expressed concisely
as follows:

1∑
z1=0

1∑
z2=0

. . .
1∑

zn=0

Af (z1, . . . , zn) = 0

(it can immediately be verified that the above sum cannot exceed the value 2n).
Let us now define for each i with 0 ≤ i ≤ n, the set of polynomials Ai

f (z1, . . . , zi)
as

Ai
f (z1, . . . , zi) =

1∑
zi+1=0

. . .
1∑

zn=0

Af (z1, . . . , zn).

Clearly, An
f = Af ; furthermore, A0

f = 0 if and only if f is not satisfiable and,

for each i, Ai−1
f = Ai

f (zi = 0) + Ai
f (zi = 1) (using self-explanatory notation for

substitution).
Let us now show a first application of arithmetization of Boolean formulas.

Theorem 10.2 coNP ⊆ IP.

The power of IP 211

Proof. The proof consists of deriving an interactive proof for the complement of the
3-satisfiability problem which is coNP-complete. Since IP is closed with respect
to polynomial-time reducibility (see Problem 10.6), it follows that coNP ⊆ IP.

Let f be a Boolean formula of m clauses on n variables and denote by Af the
corresponding arithmetic formula.

The protocol is the following. First, the prover chooses a sufficiently large prime
number p and the verifier probabilistically checks that p is indeed prime (see Section
9.1). Successively, the protocol proceeds in n rounds. At the end of the ith round,
the verifier picks a random number ri ∈ {0, 1, . . . , p− 1} and computes a value bi

(with b0 = 0) which is transmitted to the prover. The prover, on the other hand,
will be asked to send the coefficients of a suitable polynomial.

In particular, by the beginning of round i ≥ 1, the numbers r1, . . . , ri−1 have
been selected and the values b0, b1, . . . , bi−1 computed. Now the prover is requested
to state the coefficients of the univariate polynomial

gi(x) = Ai
f (r1, . . . , ri−1, x).

Let g′i denote the polynomial stated by the prover. The verifier first performs a
‘consistency test’ by checking the condition bi−1 = g′i(0) + g′i(1). If this test fails,
the verifier rejects, or else generates the random number ri and computes the value
bi = g′i(ri).

At the end of round n, the verifier performs a ‘final test’ by checking that bn =
Af (r1, . . . , rn). The verifier accepts if all the n consistency tests as well as the final
test have been passed.

Formally, the algorithm for V is the following:

begin {input: f};
construct Af from f ;
send ask prime;
receive p;
if p is not prime or p < 2|f | then reject;
b0 := 0;
for i = 1 to n do
begin

send bi−1;
receive coefficients of univariate polynomial g′i;
if bi−1 6= g′i(0) + g′i(1) then reject;
ri := random(0, p− 1);
bi := g′i(ri);

end;
if bn = Af (r1, . . . , rn) then accept else reject;

end.

First, note that according to Bertrand’s postulate, for any i > 0, a prime p with
2i < p < 2i+1 always exists (see Notes). Moreover, a polynomial-time probabili-
tistic primality testing has been already described in Section 9.1. Thus the above
algorithm operates in polynomial time.

212 Interactive proof systems

Let us now prove the correctness of the algorithm itself. Clearly, if f is not
satisfiable, then it is easy to derive a prover which can always answer correctly
(that is, g′i = gi for each i). In order to prove the correctness of the protocol in
the case where f is satisfiable, we will exploit the fact that if the prover wants to
cheat, he or she is likely to be forced to cheat on polynomials with increasingly fewer
variables, eventually reaching a constant, the correctness of which the verifier can
check by a single substitution into the explicit polynomial behind the summations.

In particular, we shall prove that if f is satisfiable, then, for any i, the probability
that g′i is different from gi assuming that the first i consistency tests have succeeded
is at least (1− 3m/p)i. In particular, the probability that the final test fails is at
least (1 − 3m/p)n. Since p is greater than 2|f |, it follows that such probability is
greater than 2/3.

The proof is by induction on i. The case i = 1 follows from the fact that if g′1
is equal to g1, then the consistency test at the first round always fails. Assume
now that the first i − 1 tests have succeeded and that g′i−1 is distinct from gi−1.
According to the induction hypothesis, this will occur with a probability of at
least (1−3m/p)i−1. Since both g′i−1 and gi−1 are distinct univariate polynomials of
degree, at most, 3m, then they can agree on, at most, 3m points. Thus, for at least
p− 3m points r, g′i−1(r) 6= gi−1(r). For each of such r, since the consistency test at
the ith round succeeds, it follows that g′i must be different from gi. In conclusion,
the probability that g′i is different from gi assuming that the first i consistency
tests have succeeded is at least (1− 3m/p)i−1(1− 3m/p) = (1− 3m/p)i. 2

The above theorem thus shows that IP is more ‘powerful’ than originally believed.
However, it cannot be more powerful than PSPACE as shown by the following
result.

Theorem 10.3 IP ⊆ PSPACE.

Proof. Given an interactive proof system (P, V) and an input x, let us define the
text of a computation as the sequence of messages exchanged between the prover
and the verifier. Since the total number of messages is polynomial in |x| and each
message has a length polynomial in |x|, the length of the text is polynomial in the
length of the input.

Let L ∈ IP and let V be a verifier for L. For any x, we can then derive the tree of
all possible texts. A node of the tree corresponding to a verifier’s turn can be any of
the possible messages from V to the prover (these messages depend on the random
choices of V) and will be called random, while a node of the tree corresponding to
a prover’s turn can be any of the possible messages from the prover to V (these
messages depend on the prover) and will be called existential. An admissibile
subtree is obtained by deleting all but one of the subtrees rooted at each interior
existential node (yes, all this is very similar to alternating Turing machines). It is
then clear that x ∈ L if the corresponding tree contains an admissible subtree in
which more than two-thirds of the leaves are accepting.

The power of IP 213

By simply merging the proof techniques of Theorems 8.6 and 9.9 we can then
visit the entire tree of all possible texts and decide whether x belongs to L. We
leave the details of such a visit to the reader (see Problem 10.8). 2

As usual, the question as to whether the above inclusion is strict arises. Until
1990, the answer would certainly have been ‘Presumably, yes...’. But the technique
introduced in the proof of Theorem 10.2 can be once again applied to state that
the answer is ‘NO!’ In order to prove such a result, we first need a few notations
and a preliminary lemma.

Let p be a multivariate polynomial. For any variable x, we then define

1. ANDx(p) = p(x = 0)p(x = 1).
2. ORx(p) = p(x = 0) + p(x = 1)− p(x = 0)p(x = 1).
3. REDx(p) = p(x = 0) + (p(x = 1) − p(x = 0))x; note that p and REDx(p)

coincide on all (0, 1)-substitutions.

Example 10.2 Since the three above operations will be applied to arithmetizations of
Boolean formulas, let us consider the formula f = (x1 ∨x2 ∨x3)∧ (¬x1 ∨¬x2 ∨x4). The
corresponding polynomial is

Af (z1, z2, z3, z4) = (1− (1− z1)(1− z2)(1− z3))(1− z1z2(1− z4)).

By selecting z1 as x, we obtain

1. ANDx(Af) = (1− (1− z2)(1− z3))(1− z3(1− z4)).

2. ORx(Af) = (1−(1−z2)(1−z3))+(1−z3(1−z4))−(1−(1−z2)(1−z3))(1−z3(1−z4)).

3. REDx(Af) = (1− (1− z2)(1− z3)) + ((1− z3(1− z4))− (1− (1− z2)(1− z3)))z1.

The following lemma states that IP is, in some sense, ‘closed’ with respect to
the above three operations.

Lemma 10.2 Let p(x1, . . . , xn) be a polynomial and let p-check be the problem
of deciding whether, given a1, . . . , an, and b, p(a1, . . . , an) = b. If p-check belongs
to IP, then both ANDx(p)-check, ORx(p)-check and REDx(p)-check belong
to IP.

Proof. We shall limit ourselves to succinctly describing the protocols, leaving to
the reader the tasks of formally defining them and of proving their correctness.

In order to prove that ANDx(p)-check is in IP, consider the following protocol.
Given a2, . . . , an, and b as input, the prover sends to the verifier the coefficients of
an univariate polynomial s′(x) claimed to be equal to s(x) = p(x, a2, . . . , an). The
verifier first performs a consistency test checking whether s′(0)s′(1) = b: if this is
not the case, then the verifier rejects. Otherwise, it generates a random number

214 Interactive proof systems

r and creates the instance r, a2, . . . , an, and s′(r) for the p-check problem. Note
that the prover can fool the verifier either during the protocol for the instance of the
p-check problem (but since this problem is assumed to be in IP, the probability
of this event is negligible) or if s and s′ differ but they coincide on the random
point r (but once again this probability can be made arbitrarily small by choosing
a sufficiently large domain for the variables). Thus, ANDx(p)-check belongs to
IP.

Similarly, we can prove the other two assertions. In the case of the ORx(p)-
check problem the consistency test consists of checking that s′(0) + s′(1) −
s′(0)s′(1) = b, while in the REDx(p)-check problem it consists of checking that
s′(0) + (s′(1)− s′(0))a1 = b. 2

Theorem 10.4 IP = PSPACE.

Proof. In order to prove that PSPACE ⊆ IP, it suffices to derive an interactive proof
for the qbf problem which is PSPACE-complete. In order to do this, we would like
to arithmetize quantified Boolean formulas in a way similar to that used in the proof
of Theorem 10.2. This can easily be done by replacing each existential quantifier
with a summation and each universal quantifier with a product. However, the
resulting intermediate polynomials may have exponential degrees. To circumvent
this problem we can make use of a degree-reduction technique. Intuitively, any
arithmetization of a quantifier will be followed by a sequence of degree reductions
on all the other variables.

Let F = (Q1x1)(Q2x2) . . . (Qnxn)f(x1, . . . , xn) be a quantified Boolean formula
where f is a Boolean formula in conjunctive normal form on n variables x1, . . . , xn

and the Qis are quantifiers. Consider the polynomial Af corresponding to f and
defined in the proof of Theorem 10.2. We then modify Af in the following way:

Step 0 sequentially apply REDx1 , . . . , REDxn .
Step k if Qn−k+1 = ∀ then apply ANDxn−k+1

, otherwise apply ORxn−k+1
; then

sequentially apply REDx1 , . . . , REDxn−k
(if k < n).

Note that after these n + 1 steps, we get a constant which is equal to 0 or 1
depending on the Boolean value of F . Note also that the degree of the intermediate
polynomials cannot be greater than the degree of Af . Indeed, the RED operations
at step 0 reduce it to 1 and later all degrees are no greater than 2. By repeatedly
applying Lemma 10.2, we can then reduce the problem of deciding whether F is
true to that of checking whether Af (a1, . . . , an) = b for given values a1, . . . , an, and
b. This last task can clearly be performed in polynomial time by the verifier. 2

10.3 Probabilistic checking of proofs

A related model of interactive proofs is one where the prover is assumed to be
a non-adaptive entity, that is, an oracle. Intuitively, in this model the proof is

Probabilistic checking of proofs 215

written in a book and the verifier has random access to any part of it. In this
section, we examine such proofs from two points of view. On the one hand, we
ask how robust oracle proofs are with respect to local perturbations, that is, how
many parts of the proof we can change still maintaining the proof recognizable as
a correct one. On the other, we can ask how much randomness we need to check
the correctness of a proof.

Formally, we say that L admits a probabilistically checkable proof if an oracle
BPP-machine PT exists such that

1. PT is allowed only to generate random bits, that is, the random function
of PT can only assume binary values.

2. For every x ∈ L, an oracle Xx exists such that PTXx accepts x.

3. For every x 6∈ L and for every oracle X, PTX rejects x.

Note that the oracle Xx can be viewed as a language depending on the input x
(each true theorem has its own proof). Moreover, it can be assumed to be finite
since, for a given x, the number of possible queries made by PT is bounded by an
exponential function with respect to the length of x.

The class PCP (f, g) is the set of languages which admit a probabilistically check-
able proof such that the corresponding machines PT generate, at most, O[f(n)]
random bits and, at most, O[g(n)] queries.

10.3.1 PCP classes and approximation algorithms

We observed at the end of Chapter 6 that the concept of completeness in the field of
optimization problems has not been as fruitful as in the area of decision problems
(even though we still believe it has yet to be explored in depth).

Besides proving completeness results, however, the non-approximability of an
optimization problem can be proved by making use of the so-called gap technique
which is intuitively summarized as follows. Suppose that an NP-complete language
L can be ‘reduced’ to an NPO-maximization problem A so that, for any x, if x ∈ L
then optA[f(x)] ≥ c(x), otherwise optA[f(x)] < c(x)(1 − g) where f and c are
two polynomial-time computable functions and g is a constant (namely, the gap).
Then it is clear that, for any ε ≤ g, A does not admit an ε-approximating algorithm
unless P = NP. Similarly, this technique can be applied to minimization problems.
Unfortunately, the creation of the above gap in the measure function is usually a
difficult task.

In this last section, we emphasize an interesting (and perhaps surprising) con-
nection between probabilistically checkable proofs and approximation algorithms.
This connection can be intuitively described as follows. A probabilistically check-
able proof for an NP-complete language requires a large gap in the probability of
acceptance of correct and incorrect inputs (e.g. two-thirds versus one-third). Such

216 Interactive proof systems

proofs can then be used to construct a family of instances of an optimization prob-
lem with a large gap in the measure function, thus proving its non-approximability
unless P = NP.

Theorem 10.5 If NP ⊆ PCP(log, log), then the maximum clique problem does
not belong to APX, unless P = NP.

Proof. First note that from Problem 6.15, it follows that if maximum clique is
approximable, then it admits a 1/2-approximating algorithm T .

Assume now that satisfiability ∈ PCP(f, g). For any Boolean formula f of
size n, we will construct a graph Gf with, at most, 2f(n)+g(n) nodes such that if f
is satisfiable then the maximum clique in Gf has size 2

3
2f(n), otherwise it has size

less than 1
3
2f(n). Let us run T on input Gf and distinguish the following two cases:

1. T outputs a clique of size greater than or equal to 1
3
2f(n). In this case the

maximum clique must have size 2
3
2f(n) and thus f is satisfiable.

2. T outputs a clique of size less than 1
3
2f(n). In this case the maximum clique

must have size 1
3
2f(n) since otherwise the relative error is greater than 1/2.

Thus f is not satisfiable.

In both cases, by simply checking the size of the clique yielded by T we are able
to decide whether f is satisfiable. In particular, whenever f(n) = g(n) = log(n)
the above procedure runs in polynomial time (assuming that the construction of
Gf requires a polynomial time). In conclusion, assuming the approximability of
maximum clique implies that P = NP.

It thus remains to show how Gf is constructed. Let PT be a BPP-machine
witnessing that satisfiability belongs to PCP(f, g). In the following qi will
denote a generic query and ai the corresponding answer. Furthermore, a sequence
of random bit generations will be denoted as a binary word r.

A transcript of PT on input x is a tuple 〈r, q1, a1, q2, a2, . . . , ql, al〉 with |r| ≤
c1f(|x|) and l ≤ c2g(|x|) for some constants c1 and c2 such that, for any i with
1 ≤ i ≤ l, qi is the ith query made by PT (x) assuming that the answer to qj is aj

for 1 ≤ j < i and the random bit generations made so far are ‘consistent’ with r. A
transcript t is an accepting transcript if PT with input x, random bit generations
r and query-answer sequence 〈q1, a1, . . . , ql, al〉 accepts x. Finally, we say that two
transcripts t = 〈r, q1, a1, . . . , ql, al〉 and t′ = 〈r′, q′1, a′1, . . . , q′l′ , a′l′〉 are consistent if,
for every i and j, if qi = q′j then ai = a′j.

The nodes of Gf are all the accepting transcripts. In order to construct the set of
nodes of Gf we enumerate all transcripts (this takes exponential time with respect
to the length of the longest transcript, that is, 2f(n)+g(n)), and then run PT on
each transcript to check that it is accepting. Two nodes are adjacent if and only
if they are consistent.

Assume that f is satisfiable. Then an oracle Xf exists such that the ratio of
the number of accepting computation paths of PTXf (f) to the total number of

Problems 217

computation paths of PTXf (f) is at least 2/3. The number of transcripts which
are consistent with oracle Xf is thus 2f(n) and 2/3 of them are accepting. That is,
Gf contains a clique of size 2

3
2f(n).

Conversely, if f is not satisfiable, then for any oracle X the ratio of the number
of accepting computation paths of PTX(f) to the total number of computation
paths of PTX(f) is less than 1/3, that is, Gf does not contain a clique of size
greater than or equal to 1

3
2f(n).

This concludes the proof. 2

The above theorem thus yields a new approach to proving negative results in the
field of approximation algorithms. Indeed, this approach has been found to be very
useful (see Notes). In particular, it has been proved that NP is equal to PCP(log, 1)
(a constant number of queries!) and, as a consequence, that the maximum clique
problem is not approximable (if P 6= NP). Whoever at the beginning of this chapter
thought ‘interactive proofs are just another strange model of computation’ should
now be convinced that, as usual, science is full of surprises!

Problems

10.1. Show that the constant 2/3 in the acceptance criterion of an interactive proof
system can be substituted by any other constant greater than 1/2 without changing the
definition.

10.2. Prove that any interactive proof systems can be simulated by another interactive
proof system such that the messages between V and P are one bit long.

10.3. quadratic residue: given two integers n < m and GCD(n, m) = 1, does an
integer x exist such that x2 ≡ n (mod m)? Consider the following algorithm V :

begin {input: n,m}
k := |m|;
randomly choose z1, . . . , zk such that zi < m and GCD(zi,m) = 1;
randomly choose b1, . . . , bk with bi ∈ {0, 1};
for i = 1 to k do

if bi = 1 then wi := z2
i mod m

else wi := nz2
i mod m;

transmit w1, . . . , wk;
receive c1, . . . , ck;
for i = 1 to k do

if ci 6= bi then reject;
accept;

end.

Prove that V witnesses that the complement of quadratic residue belongs to IP.

218 Interactive proof systems

10.4. Show that if graph isomorphism is NP-complete, then the polynomial hierarchy
collapses to the second level. [Hint: use Problem 9.18 and the fact that the complement
of graph isomorphism belongs to IP.]

10.5. An Arthur–Merlin interactive proof system is an interactive proof system such
that the verifier’s messages consist only of the outcome of its coin tosses. Let AM denote
the class of languages which admit an Arthur–Merlin interactive proof. Prove that AM
coincides with IP. [Goldwasser (1989)]

10.6. Prove that IP is closed with respect to polynomial-time reducibility.

10.7. arithmetic expression equality: given an integer a and a multivariate poly-
nomial p of degree, at most, d in each variable, is it true that

1∑
z1=0

1∑
z2=0

. . .
1∑

zn=0

p(z1, z2, . . . , zn) = a?

Show that this problem admits an interactive proof. [Hint: use the technique of Theorem
10.2.]

10.8. Conclude the proof of Theorem 10.3.

10.9. A quantified Boolean formula is said to be simple if every occurrence of each
variable is separated from its point of quantification by, at most, one universal quanti-
fier. Prove that every quantified Boolean formula of size n can be transformed into an
equivalent simple quantified Boolean formula whose size is polynomial in n. [Hint: add
dummy variables in the following way: after each ∀, add ∃x′(x′ = x)∧ for each c created
between that ∀ and the previous one.]

10.10. Given a quantified Boolean formula F = (Q1x1)(Q2x2) . . . (Qnxn)f(x1, . . . , xn),
let AF denote the arithmetization of F obtained by replacing each universal quantifi-
cation ∀xi with the product

∏
zi∈{0,1}, each existential quantification ∃xi with the sum∑

zi∈{0,1}, and the Boolean formula f(x1, . . . , xn) with the corresponding polynomial
Af (z1, . . . , zn). Prove that, for any quantified Boolean formula F of size n, a prime p

exists of length polynomial in n such that AF 6≡ 0 (mod p) if and only if F is true.
[Hint: use the Chinese remainder theorem.]

10.11. Given a quantified Boolean formula F and the corresponding arithmetization AF ,
let AF (z1) denote the univariate polynomial obtained by AF by eliminating the leftmost
product or sum. Show that if F is simple, then the degree of AF (z1) grows, at most,
linearly with the size of F .

10.12. Give an alternative proof of Theorem 10.4 based on the previous three problems.
Note that this proof is the first that appeared in the literature.

10.13. A natural extension of the notion of interactive proof systems is that of allowing
the verifier to interact with more than one prover. In particular, assume that the verifier
can communicate with each of the provers but different provers cannot communicate with
each other. Clearly, the number of provers must be as large as a polynomial in the size
of the input; otherwise the verifier does not have enough time to access all the provers

Notes 219

(note that if the number of provers is 1, then we obtain the concept of interactive proof
system).

The class MIP is then defined as the set of all languages which admit a multi-prover
interactive proof. Prove that a language belongs to MIP if and only if it admits a
probabilistically checkable proof. [Hint: for the ‘if’ part, define a verifier that asks each
oracle query to a different prover, while for the ‘only if’ part define an oracle whose words
suitably encode the history of the communication between the verifier and each of the
provers.]

10.14. Show that if a language admits a probabilistically checkable proof, then it admits
a two-prover interactive proof. [Hint: repeat a sufficient number of times the following
step. Ask all the oracle queries to the first prover, then select one query at random and
verify the answer with the second prover. Repeat the above a sufficient number of times.]
As a consequence of this result and of that of the previous problem, the multi-prover
model is not more powerful than the two-prover one.

10.15. Prove that if NP ⊆ PCP(log, 1), then the maximum satisfiability problem
(see Problem 6.11) does not belong to PAS, unless P = NP.

Notes

The concept of efficiently verifiable proof can be thought as originating with Cook
(1971). Indeed, Theorem 5.2 can be reinterpreted as showing that NP coincides
with the class of languages which have short and easy-to-verify proofs of mem-
bership (see also Lemmas 5.1 and 10.1). The interactive and probabilistic proof
systems, however, were defined later in Goldwasser, Micali, and Rackoff (1989)
and, independently, in Babai (1985). The main motivation for the former paper
was that of measuring the amount of knowledge required to communicate a proof
in order to develope a mathematical theory of cryptographic protocols, while in
the latter paper the focus was on problems of membership in and on the order of
a matrix group given by a list of generators. Besides having different motivations,
the two papers followed two slightly different approaches: on the one hand, the
interactive proof-systems as described in this text, and, on the other, the Arthur–
Merlin games where, obviously, Arthur plays as a verifier and Merlin plays as a
prover.

The main difference between interactive proof-systems and Arthur–Merlin pro-
tocols is that Arthur’s messages consist only of the outcome of his coin tosses. In
Goldwasser and Sipser (1986), however, it was shown that the two approaches are
equivalent, that is, the corresponding two classes IP and AM coincide (see Problem
10.5).

Before continuing, the reader should be advised that the material covered in
this chapter constitutes only a small part of a subject which is still being actively
developed. Indeed, we preferred to focus on two very important applications of

220 Interactive proof systems

interactive proofs which seem to be particularly promising: proof techniques which
do not relativize and approximation algorithms. However, several other aspects
of this theory have been studied in depth such as the number of rounds in a
computation and the amount of communicated knowledge. We refer the interested
reader to the survey by Goldwasser (1989), to Chapter 11 of Balcazar, Diaz, and
Gabarro (1990), and, particularly for the zero-knowledge area of research, to the
surveys by Blum (1986), Goldwasser (1989), and to the last section of Goldreich
(1988). In these, many other references can be found.

The interactive proof-system for the complement of graph isomorphism is
due to Goldreich, Micali, and Wigderson (1986) while the proof of Theorem 10.1
appeared in Fortnow and Sipser (1988).

The application of algebraic methods in interactive proofs started with Lund
et al. (1992) in order to obtain Theorem 10.2: our presentation of the proof of
that theorem is partly inspired by Babai, Fortnow, and Lund (1991). Immediately
after that result, Theorem 10.4 was proved in Shamir (1992) by making use of the
arithmetization of quantified Boolean formulas (see Problem 10.12); however, our
proof is a simplified version of the original one due to Shen (1992). The proof of
Theorem 10.3 first appeared in Papadimitriou (1983).

Bertrand’s postulate states that, for any positive integer n, a prime p exists such
that n < p < 2n. This postulate was proved by Chebyshev in 1852.

The probabilistic checking of proofs started with Babai et al. (1991) where the
notion of transparent proof was introduced. Informally, a transparent proof that a
word belongs to a given language either proves a correct statement or alternatively
mistakes will appear in the proof almost everywhere, thus enabling a probabilistic
verifier to check it by a cursory examination. The probabilistically checkable proof
is a refinement of this notion and was defined in Arora and Safra (1992) where
the class PCP was also introduced. Theorem 10.5 appeared in a slightly different
formulation in Feige et al. (1991). This paper led to an interesting series of results
which can be summarized as follows:

• NP ⊆ PCP(log(n) log(log(n)), log(n) log(log(n))) in Feige et al. (1991);
• NP ⊆ PCP(log(n), logk(log(n))) in Arora and Safra (1992);
• NP ⊆ PCP(log(n), 1) in Arora et al. (1992).

By using similar techniques, other optimization problems such as node coloring
and set covering have been shown to be non-approximable (see Lund and Yan-
nakakis (1993)).

Chapter 11

Models of parallel computers

As a result of the achievements attained in the area of microprocessor design it
has become possible in the last decade to build massively parallel computers, that
is, computers consisting of a very large number (up to a few tens of thousands)
of processors capable of operating in parallel. At the same time, a theory of
parallel computations whose main objective is to characterize the problems most
suitable for being solved by such new machines has begun to take shape. This
branch of complexity theory is closely related to practical applications. We are no
longer dealing with decidable languages but only about a subset of computationally
tractable problems, namely, those problems in P which can be most effectively
solved by parallel computers. Similarly, the proof that a given problem can be
efficiently solved by a parallel computer will generally consist of a time-complexity
analysis of a parallel algorithm solving that problem.

Unfortunately, even if the concept of parallel computation is rather intuitive,
research activity in this new field has not concentrated on a single model of par-
allel computer, but rather on several classes (see Notes), paying differing levels of
attention to physical constraints such as the placements of components on a chip
or the interconnection pattern between processors. In agreement with the objec-
tives of asymptotic complexity, we shall ignore real-life constraints and we shall
concentrate on a class of models that ignore the communication costs between
processors and on the computational costs of parallel computations. Although the
level of performance predicted by such models is unreachable with real-life parallel
computers, the results we shall obtain must be considered quite significant since
they represent useful lower bounds on the execution times one can hope to obtain
while solving specific problems with parallel computers.

We shall start in Section 11.1 by describing a model whose processing units
have limited power since they are only able to compute Boolean functions. We
shall then introduce in Section 11.2 a model of parallel computer known as PRAM
which views parallel computers as sets of powerful processors connected to a global
memory whose cells can be accessed in unit time by any processor. The relations

221

222 Models of parallel computers

between circuits and PRAMs are considered in Section 11.5. Finally, in Section
11.6, we shall prove that sequential space and parallel time are polynomially related
to each other, at least for the models of parallel computers considered in this
chapter.

11.1 Circuits

A circuit c consists of n+ q gates gi connected by lines. The first n gates are called
input gates while the remaining q are called circuit gates; in particular, gate gn+q

is called the output gate. Each circuit gate gh computes a Boolean function oh.
It is common to restrict oneself to circuits based on unary and binary functions
only. It is well known that a single binary function exists (for instance, the NAND
function) which forms a complete basis1 by itself. We shall refer, however, to the
most common circuit basis according to which oh ∈ {∨,∧,¬} (note that either the
∨ or the ∧ could be avoided but, for clarity, we prefer to make use of both). The
∨ and the ∧ circuit gates have two inputs and one output while the ¬ circuit gates
have only one input and one output. The input gates have one output and no
input. A single circuit line connects the output of a gate with the input of another
gate. Altogether, the set of circuit lines must satisfy the following properties:

1. Exactly one line is connected to each input of each gate (with the exception
of the input gates which have no input line).

2. At least one line is connected to the output of each gate (with the exception
of the output gate whose output line is not connected to other gates).

3. If a line connects the output of a gate, say gi, with an input of another gate,
say gj, then i < j, that is, we are assuming that the enumeration of the gates
corresponds to a topological ordering of the gates themselves.

Alternatively, a circuit may be defined as a directed acyclic graph where the
nodes correspond to gates and the edges to lines. The n input gates correspond to
nodes with no incoming edge, the output gate to a node with no outgoing edge,
and the number of incoming edges of the circuit gates depends on their operation
type (one for ¬ gates, two for ∨ and ∧ gates).

An example of circuit is illustrated in Figure 11.1 where, according to a standard
notation, whenever a gate has several output lines, those lines are drawn as a single
line connected to several inputs.

Let c be a circuit with n input gates and let x = x1x2 . . . xn denote a binary input
of length n. The function fi associated with a gate gi is then defined inductively
as follows (we are assuming that the inputs of gi are connected to the outputs of

1Recall that, informally, a complete basis for Boolean algebra is a set of functions able to
express by suitable combinations any other Boolean function.

Circuits 223

∧ ∨ ∧ ∧ ∨

∧ ∨

∨ ∨

∧

Input gates

Circuit gates

Output gate

x1 x2
x3 x4

¬ ¬

� � � � � �

Figure 11.1 A simple example of a circuit

gj and gk):

fi(x) =

xi if 1 ≤ i ≤ n,
¬fj(x) if n + 1 ≤ i ≤ n + q and oi = ¬,
fj(x) ∨ fk(x) if n + 1 ≤ i ≤ n + q and oi = ∨,
fj(x) ∧ fk(x) if n + 1 ≤ i ≤ n + q and oi = ∧

(note that in circuit notation, the Boolean constants true and false are denoted
as 1 and 0, respectively).

The function fn+q is said to be the function computed by c.

Example 11.1 Refer to the circuit shown in Figure 11.1. If x = 0000, then the value of
the function computed by c is equal to 0 while if x = 1100 it is equal to 1.

In general, determining the value of the function computed by a circuit with a
given input is a well-known problem.

Example 11.2 Given a circuit c of n + q gates, its standard encoding denoted as c
consists of q triples 〈oi, j, k〉 with n + 1 ≤ i ≤ n + q such that oi is the Boolean function
computed by gi, and gj , gk are the gates connected to the inputs of gi.

circuit value: given the encoding of an (n + q)-gate circuit and a binary input x of
length n, is fn+q(x) equal to 1? Clearly, this problem belongs to P (see Problem 11.5).
In the next chapter we shall see that this problem is P-complete.

224 Models of parallel computers

The previous definitions refer to acceptor circuits: indeed, each circuit can com-
pute only one n-variable binary function. However, these definitions can readily
be extended to transducer circuits. For that purpose, it suffices to consider circuits
having m output gates and thus simultaneously computing m Boolean functions.

11.1.1 Circuit complexity of Boolean functions

The two most natural complexity measures of a circuit are those of size and depth
which correspond roughly to the number of processors and to the time needed to
compute a function.

Given a circuit c, its size, in symbols SIZE(c), is defined as the number of circuit
gates of c while its depth, in symbols DEPTH(c), is defined as the length of the
longest path from an input gate to the output gate of c (in general, the depth of
an arbitrary gate is similarly defined).

Note that since each gate has, at most, two inputs, SIZE(c) ≤ 2DEPTH(c).
In contrast to TIME and SPACE which are dynamic measures, DEPTH and
SIZE are static measures since they can be derived from the circuit characteristics,
independently from the input value. At the same time, they can also be considered
as dynamic measures since they express, respectively, the time and the amount of
hardware or number of processors needed to compute a given function with a fixed
number of variables. This double role of a measure is caused by the fact that
circuits are a very elementary model of computation which correspond somehow
to the class of programs without loops or cycles.

Returning to the evaluation of the complexity of functions, it is reasonable to
consider as simple functions those which can be computed by simple circuits. The
circuit complexity of a Boolean function f , in symbols SIZEf , is then defined as

SIZEf = min{q : ∃c with SIZE(c) = q which computes f}.

The next theorem shows that the circuit complexity of Boolean functions is
exponentially bounded by the number of their variables.

Theorem 11.1 Let f be any n-variable Boolean function. Then SIZEf < 2n+2.

Proof. Let us make use of the following identity between n-variable Boolean for-
mulas:

f(x1, . . . , xn) = (x1 ∧ f(1, x2, . . . , xn)) ∨ (¬x1 ∧ f(0, x2, . . . , xn)).

The previous identity ensures that a circuit for an n-variable Boolean function
can always be obtained by appropriately connecting two circuits for two (n − 1)-
variable Boolean functions. This connection, in turn, requires, at most, two ∧

Circuits 225

gates, one ∨ gate and one ¬ gate, that is, four additional gates. In conclusion, for
any n ≥ 1, SIZEf ≤ g(n) where

g(n) =

{
2 if n = 1,
2g(n− 1) + 4 otherwise.

It is easy to verify (see Problem 11.2) that g(n) < 2n+2 for all n. 2

Let us now show by a counting argument that Boolean functions exist whose
circuit complexity is close to the bound set by the previous theorem.

Theorem 11.2 For n sufficiently large, an n-variable Boolean function f exists
such that SIZEf > 2n/n.

Proof. Denote with M(q, n) the number of distinct circuits having n input gates and
q circuit gates. We make use of the circuit encoding introduced in Example 11.2.
According to that encoding, a circuit is described as a word consisting of q triples.
Since there are, at most, 3(n + q)2 ‘legal’ triples, the number of distinct (n + q)-
gate circuits is thus bounded by (3(n+ q)2)q. We can obtain an even better bound
by partitioning the (3(n + q)2)q possible words into classes such that all words
in the same class either describe a circuit which computes the same function or
they do not describe a proper circuit because the topological order implicit in the
enumeration of the gates is not respected. More precisely, each class of words
consists of a word w encoding a circuit together with the q! − 1 additional words
corresponding to permutations of the triples of w where the gate indices of the
triples have been suitably modified in agreement with the new enumeration of the
q gates. (See the example illustrated in Figure 11.2, which describes a circuit with
n = 4 and q = 3.)

We have thus proved that M(q, n) ≤ (3(n + q)2)q/q! and we are now almost
finished. Indeed, according to Stirling’s approximation, q! <

√
2πq(q/e)q, that is,

M(q, n) < (3e(n + q)2)q/(
√

2πqqq).

By choosing q = 2n/n, we get q > n for any n > 4 and thus

M(2n/n, n) < (c2n/n)2n/n

with c constant. Finally, for any n sufficiently large,

M(2n/n, n) < (2n)2n/n = 22n

.

In other words, it is not possible to compute all possible 22n
Boolean functions of n

variables by making use of circuits consisting of n input gates and q = 2n/n circuit
gates, hence the thesis. 2

226 Models of parallel computers

∨

∧ ∧

x1 x2 x3 x4

!!!!!

aaaaa

〈∧, 1, 2〉〈∧, 3, 4〉〈∨, 5, 6〉 567

〈∧, 1, 2〉〈∨, 5, 7〉〈∧, 3, 4〉 576

〈∧, 3, 4〉〈∧, 1, 2〉〈∨, 6, 5〉 657

〈∧, 3, 4〉〈∨, 7, 5〉〈∧, 1, 2〉 675

〈∨, 6, 7〉〈∧, 1, 2〉〈∧, 3, 4〉 756

〈∨, 7, 6〉〈∧, 3, 4〉〈∧, 1, 2〉 765

Figure 11.2 Permutations associated with the encoding of a circuit

Unbounded fan-in circuits

Define the number of input (respectively, output) lines of a gate as the gate fan-in
(respectively, fan-out). According to such terminology, the circuit just described
has a bounded fan-in of 2. Since the ∨ and ∧ operations are distributive, it
makes sense (at least from a theoretical point of view!) to consider ∨ and ∧
gates with m > 2 input lines. Such strange circuits which are appropriately called
circuits with unbounded fan-in are found to be useful in making some proofs clearer.
The following result establishes a connection between circuits with bounded and
unbounded fan-in.

Lemma 11.1 Given a circuit of size s(n) and depth d(n) with unbounded fan-
in, an equivalent circuit with fan-in 2, size O[s2(n)], and depth O[log(s(n))d(n)]
exists.

Proof. Since any unbounded fan-in gate can have, at most, s(n) inputs, then it can
be replaced by a tree of depth O[log(s(n))] of fan-in 2 gates. 2

Circuits 227

11.1.2 Circuit families

A single circuit cannot be considered as a parallel model of computation since it
is only able to decide a finite language, that is, a language consisting of words
of length n (with the obvious convention that a binary word is accepted if the
output function is 1). This limitation may be overcome by considering not just
one circuit but an infinite sequence of them. A circuit family C is a sequence
of circuits C = {cn : n ≥ 1} such that each cn includes n input gates. A
family C decides the language L if every cn ∈ C decides the language Ln. The
size of a family C, in symbols SIZEC(n), is a function defined as SIZEC(n) =
SIZE(cn). Similarly the depth of C, in symbols DEPTHC(n), is a function de-
fined as DEPTH(C, n) = DEPTH(cn). In particular, a circuit family C is said
to be polynomial if SIZEC(n) ∈ O[p(n)] where p denotes a polynomial.

Circuit families as defined above are also called non-uniform circuit families since
no constraint whatsoever is put on the number of steps needed to derive, given any
n, the nth circuit of the family. This broad definition leads to some contradictory
results. Very hard languages which can be decided by circuit families of a negligible
size do exist.

Example 11.3 Let L be a binary language such that, for all n ≥ 0, either Ln = Σ∗
n or

Ln = ∅. Such an L can be decided by a circuit family of constant size. Indeed, each
circuit of the family must only compute either the constant function 1 or the constant
function 0. On the other hand, L can be a very hard language, even a non-decidable
one.

The converse proposition is not true.

Theorem 11.3 Let T be a deterministic Turing machine deciding a language L
in time f(n). Then a circuit family C with SIZEC(n) ∈ O[f 2(n)] can be derived
which decides the same language.

Proof. Let us use a top-down approach. For any input x of length n, the entire
circuit will be formed by f(n) identical layers, one for each step of the computa-
tion T (x) (without loss of generality, we shall assume that the computation halts
after exactly f(n) steps). Intuitively, each layer encodes a global state and the
connections between successive layers are flexible enough to yield from one global
state the next one in the computation.

Next, the yes/no answer will be derived from the output of the last layer. This
can be easily done by a circuit which examines the state of the Turing machine
included in the global state and ouputs 1 if and only if that state is the accepting
one. The structure of the resulting circuit is shown in Figure 11.3.

We shall prove later that each of the circuit layers can be implemented by making
use of O[f(n)] gates. Similarly, it will be easy to verify that the topmost circuit
also requires O[f(n)] gates. Since the computation T (x) consists of exactly f(n)

228 Models of parallel computers

 XXXXXXXX

6

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6

6 6 6 6 6 St∗

S0

S1

Si−1

Si

St∗−1

Layer 1

Layer i

Layer t∗

Figure 11.3 Simulation of a set of computations by a circuit

steps, the resulting circuit has size O[f 2(n)] and this concludes the outline of the
proof.

Now, let us consider in more detail the inner structure of a layer and its connec-
tions with adjacent layers.

At any instant t of the computation T (x), we can associate with each cell i a
binary word wt

i of length 2 + dlog(|Q|)e where Q denotes the set of states of T .
The first two bits of wt

i encode the symbol contained in cell i (either 0, or 1, or
2) while the remaining dlog(|Q|)e bits are the binary representation of j if T is in
state qj and T ’s head is positioned on cell i, otherwise, they are all equal to 0. Note
that the value of wt

i depends only on the three words wt−1
i−1 , wt−1

i and wt−1
i+1 . It is

thus easy to derive a constant depth transducer circuit which, on input wt−1
i−1 ,w

t−1
i ,

and wt−1
i+1 , computes the correct value of wt

i (clearly, this circuit depends on the
quintuples of T).

Each layer consists of f(n) such transducer circuits, one for each cell potentially
scanned during the computation T (x), and the connection between two adjacent
layers are shown in Figure 11.4. It follows immediately from the construction
outlined above that each circuit layer requires O[f(n)] gates to be implemented.
We encourage the reader to choose a simple Turing machine and to detail the
structure of the corresponding layers. 2

Circuits 229

6

@
@

@
@

@
@

@
@I

@
@

@
@

@
@

@
@I

@
@

@
@

@
@

@
@I6 6

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
���

�
�

�
�

�
�

�
���

Layer t− 1

Layer t

wt−1
i−1

wt
i−1

wt−1
i

wt
i

wt−1
i+1

wt
i+1

Figure 11.4 Structure of a circuit layer

11.1.3 Uniform circuit complexity

We already observed that an obvious limitation of non-uniform circuit complexity
is that very difficult languages (from a ‘time complexity’ point of view) may have
a very low circuit complexity. This problem can be avoided by considering only
families of circuits that are uniformly constructible, i.e. families for which the nth
circuit cn can ‘easily’ be determined from n. Our choice of ‘easy’ obviously affects
the circuit complexity of problems. If the uniformity condition is too weak, the
theory may become trivial since most of the computational power lies in the circuit
constructor rather than in the circuit itself (see Example 11.3). On the other hand,
if it is too strong, i.e. if a requirement is made for the circuits to be computed very
easily, then it is no longer possible to establish a correspondence between circuit
families and realistic parallel computers. For instance, requiring the circuit to be
derived in constant working space seems to be too restrictive since no handling of
gate indices would be allowed.

It is therefore clear that a compromise has to be found between the weak and
the strong uniformity. In fact, several plausible definitions have been proposed but

230 Models of parallel computers

Processor 1 Processor i. . .

Global memory

6

?

6

?

. . .

.

Figure 11.5 The PRAM model

no practical basis exists for choosing one instead of another. Fortunately, it has
been shown that uniform circuit complexity is fairly insensitive to minor changes
in the definition of uniformity (as an example, the class NC that will be defined in
the next chapter is identical under several uniformity conditions).

Let us now introduce a first and rather intuitive uniformity condition. A circuit
family C = {cn : n ≥ 1} of size s(n) is logspace-uniform if the mapping 1n → cn is
computable by a deterministic Turing machine T in space O[log(s(n))].

Alternative approaches to defining uniformity, perhaps less intuitive but more
useful in obtaining proofs of uniformity have also been considered (see Notes). For
the sake of uniformity (pun intended), we have preferred to present the main results
on the complexity of parallel computations by referring in a consistent manner to
logspace uniformity.

11.2 The PRAM model

The PRAM model is the parallel extension of the RAM model already introduced
in Chapter 2. It is a synchronous model (all processors perform a step of the
computation at the same time, driven by a centralized clock) and all instructions
considered require the same time to be executed.2 In particular, a PRAM consists
of a potentially infinite sequence of processors able to operate on a shared global
memory which, in turn, consists of a potentially infinite number of cells.

The PRAM cannot be considered a physically realizable model, since, as the
number of processors and the size of the global memory increase, the assumption
that any processor can access any memory word in constant time is no longer
realistic. Nevertheless, the PRAM has shown to be a quite useful tool for studying
the logical structure of parallel computation in a context where communications

2As for the RAM model, a non-uniform version where the instruction time varies with the
logarithm of the operand values has also been considered.

The PRAM model 231

costs are simply ignored. In fact, it is fair to say that algorithms developed for more
realistic parallel models of computation are often based on algorithms originally
designed for the PRAM.

Each processor of a PRAM executes the same program. However, two basic
types of PRAMs denoted as SIMD-PRAM and MIMD-PRAM, respectively, can
be distinguished, depending on whether processors are allowed to execute only the
same instruction at any instant or not.

11.2.1 The SIMD-PRAM model

Each processor of a SIMD-PRAM includes two registers denoted as ID and ACC,
respectively. The former is a read-only register containing the index of the processor
while the latter can be viewed as a local memory cell. The set of instructions of
the processors is then extended as follows:

1. ACC ← ID (write the index of the processor in the register ACC).
2. The first six types of instructions of a RAM (see Section 2.1.5) are extended

by allowing ACC to replace any occurrence of i, j, k, Mi, Mj, and Mk (as-
suming that MACC denotes the global memory cell whose index is contained
in the register ACC).

Note that the above extension allows different processors to access different
global memory cells, depending on the current values of ACC, at the same time.
Thus, at any time in a SIMD-PRAM, all active processors execute the same in-
struction, although on distinct operands. Indeed, SIMD is a well-known acronym
for ‘Single Instruction Multiple Data’.

As for the RAM model, the input x = x1x2 . . . xN is assumed to be contained in
the cells M1, M2, . . . ,MN of global memory, the result of the computation is stored
in cell M0 and both acceptor and transducer PRAMs will be considered.

As far as processor activation is concerned, a cell of global memory, say Mp,
specifies the number of active processors at any time: if Mp = k, the first k
processors are activated. The value of Mp can be altered by the processors to vary
the number of active processors.

11.2.2 The MIMD-PRAM model

The MIMD-PRAM is similar to the SIMD-PRAM; the only difference is that pro-
cessors are now allowed to execute distinct instructions at the same time. MIMD is
the acronym for ‘Multiple Instruction Multiple Data’. To that purpose, we extend
the set of instructions of a SIMD-PRAM by allowing ACC to replace either i or
Mi in the seventh type of instructions of a RAM (see Section 2.1.5). Because of
this new control instruction, processors are no longer bound to execute the same
instruction at every step.

232 Models of parallel computers

Although the multiple instruction feature seems to yield more flexibility in the
design of parallel algorithms, in practice it is very seldom used. Furthermore, it
can be easily shown (see Problems 11.11 and 11.12) that a MIMD-PRAM can be
simulated with a small overhead by a SIMD-PRAM.

Moreover, theoretical arguments to be discussed in the next chapter ensure that
determining the exact complexity of efficient parallel algorithms can be done more
easily when such algorithms are described by making use of a SIMD-PRAM model.
For the above reasons, we shall restrict our attention to SIMD-PRAMs, which will
be referred to from now on as PRAMs.

11.3 PRAM memory conflicts

PRAMs can be classified according to restrictions on global memory accesses. In
fact, memory conflicts may occur when more than one processor attempts to read
from or to write into the same global memory cell at the same time. The following
four schemes describe all possible occurrences of such conflicts:

1. Exclusive Read Exclusive Write (EREW): neither read conflicts nor write
ones are allowed.

2. Concurrent Read Exclusive Write (CREW): several reads can occur simulta-
neously on the same cell but no write conflict is allowed.

3. Exclusive Read Concurrent Write (ERCW): several writes can occur simul-
taneously on the same cell but no read conflict is allowed.

4. Concurrent Read Concurrent Write (CRCW): several reads or writes can
occur simultaneously on the same cell.

Allowing multiple-read accesses to the same cell should in principle pose no
problem: intuitively, each processor merely receives a copy of the cell’s content.
With multiple-write accesses, however, difficulties arise. If several processors are
simultaneously attempting to write a number in a given cell, which of them should
succeed? Several policies have been proposed to arbitrate such conflicts. Two
popular policies are the following:

1. COMMON: all write operations must write the same (common) value into
the memory cell.

2. PRIORITY: the write operation executed by the processor with smallest ID
(priority) is selected as the one which will set the value of the memory cell.

The intuitive notations PRAM-EREW, PRAM-CREW, PRAM-COMMON, and
PRAM-PRIORITY are used to specify which restriction on global memory access
is assumed for the PRAM (for simplicity, we assume that whenever Concurrent
Writes are allowed, Concurrent Reads are also allowed).

In order to describe PRAM-algorithms, we will continue to make use of the
pseudo-Pascal language enriched with statements of the form

A comparison of the PRAM models 233

14 21 3 5 8 13 23 20
�
�

�
�

�
�

�
�@

@
@
@

@
@

@
@

�
�@
@ �

�@
@

!!
!!

!aaaaa

35 8 21 43

43 64

107

Figure 11.6 Parallel sum of eight numbers in three steps

for i = 1 to k do in parallel instruction;

where, as usual, i takes every integer value from 1 to k. The meaning of the above
statement is the following. Each of the first k processors is active, that is, Mp = k
and executes the specified instruction. Since the processors work in parallel, the
time-complexity of such a statement is simply that of the specified instruction. As
shown in the next example, the instruction usually refers to the variable i so that
different processors perform the same instruction but on different data.

Example 11.4 We wish to write a PRAM program which computes the sum of N
numbers by a ‘tree-like’ technique as shown in Figure 11.6. For simplicity, we assume that
the number of operands N is a power of 2 and is included in the input (see Problem 11.10).

program {input: N,x1, x2, . . . , xN}
begin

for j = 1 to log(N) do
for i = 1 to N/2j do in parallel

xi := x2i−1 + x2i;
end.

Clearly, the above algorithm requires logarithmic time. Note also that the same tech-
nique can be applied to any associative binary operation.

Less trivial examples of PRAM algorithms will be given in the next chapter.

11.4 A comparison of the PRAM models

Let us try to compare the computing power of the PRAM models introduced
previously.

234 Models of parallel computers

According to the definitions, it can immediately be verified that all programs
running on a PRAM-EREW (respectively, PRAM-CREW, PRAM-COMMON)
also run on a PRAM-CREW (respectively, PRAM-COMMON, PRAM-PRIORI-
TY) within the same time bound.

Moreover, the following result shows that any PRAM-PRIORITY algorithm
admits an equivalent PRAM-COMMON one running within the same time bound
even though the number of processors must be squared.

Theorem 11.4 Any set of simultaneous concurrent write operations of p proces-
sors on a PRAM-PRIORITY can be simulated by a constant number of concurrent
write operations of p2-processors on a PRAM-COMMON.

Proof. The idea is to derive a permission array by comparing the write requests
of the p processors pairwise. In particular, the ith entry of such an array will be
either 1 or 0 depending on whether the ith processor is allowed to execute its write
operation, if any. Assume that the jth processor wishes to write the value v(j)
into cell Mc(j). The simulation can then be performed by the following algorithm:

begin {input:c(1), v(1), . . . , c(p), v(p)}
for j = 1 to p do in parallel

perm(j) := 1;
for any pair i < j of processor indices do in parallel

if c(i) = c(j) then perm(j) := 0;
for j = 1 to p do in parallel

if perm(j) = 1 then Mc(j) := v(j);
end.

It can immediately be verified that the above algorithm requires a constant number
of steps. 2

The last simulation result shows that the PRAM-EREW model is powerful
enough to allow an efficient simulation of the three other PRAM models considered.
In order to prove the theorem, we first need the following two lemmas.

Lemma 11.2 Any set of simultaneous concurrent read operations of p proces-
sors can be simulated by, at most, O[log(p)] exclusive-read operations of the same
p-processors.

Proof. In general, several arbitrary subsets of the p processors attempt to access
different memory cells, one cell per subset. The idea of the proof is to simulate
this set of concurrent read operations by a multiple broadcast technique, that is,
by simultaneously broadcasting the contents of addressed cells to the processors
included in the corresponding subsets.

We assume for simplicity that p is a power of 2. We then expand each memory
cell Mi as a set {M ′

j} of cells corresponding to a binary tree of p − 1 internal
nodes and p leaves. The nodes of the tree represent consecutive cells in memory.

A comparison of the PRAM models 235

M ′
0 = M0

M ′
1 M ′

2

M ′
3

#
##
c
cc

L
L
L

�
�
�

L
LL

�
��

M ′
4 M ′

5 M ′
6

M ′
7 = M1

M ′
8 M ′

9

M ′
10

#
##
c
cc

L
L
L

�
��

L
LL

�
��

M ′
11 M ′

12 M ′
13

. . .

Figure 11.7 Expansion of memory cells as trees of memory cells

Figure 11.7 represents the first two trees of 2p−1 = 7 memory cells each. Assuming
p = 4 these trees correspond, respectively, to cells M0 and M1.

The simulation makes use of the following two arrays:

1. Array level whose ith element stores the current level of the tree reached by
the ith processor read request.

2. Array loc whose ith element stores the current node of the tree reached by
the ith processor read request.

Assume that the jth processor wishes to read from cell Mc(j). It places its request
at cell M ′

c(j)(2p−1)+(p−1)+j−1, which is the jth leaf of the tree of cells corresponding
to cell Mc(j). This is done by initializing level(j) to 0 and loc(j) to p− 1 + j − 1.
The simulation then consists of two phases: ascent and descent. During the ascent
phase, the processors execute the following. At each level, a processor occupying
a left child is first given priority to advance its request one level up the tree. It
does so by marking the parent cell with a special marker. It then updates its
level and loc entries. In this case, a request at the right child is immobilized for
the remainder of the procedure. If there is no processor occupying the left child,
then the processor occupying the right child can now ‘claim’ the parent cell. This
continues until, at most, two processors reach level log(p)− 1. At this point, each
of them in turn reads the value stored in the root and the descent phase starts.
During this phase, the value just read goes down the tree of memory cells until
every request has been honored. The above simulation can be performed by the
following algorithm:

begin {input: c(1), . . . , c(p)}
for j = 1 to p do in parallel
begin

level(j) := 0;
loc(j) := (p− 1) + (j − 1);
M ′

c(j)(2p−1)+loc(j) := markerj ;

236 Models of parallel computers

end;
for k = 0 to log(p)− 2 do
begin

for j = 1 to p do in parallel
begin

temp(j) := b(loc(j)− 1)/2c;
if loc(j) is odd and level(j) = k then
begin

loc(j) := temp(j);
M ′

c(j)(2p−1)+loc(j) := markerj ;
level(j) := level(j) + 1;

end;
end;
for j = 1 to p do in parallel

if M ′
c(j)(2p−1)+loc(j) is not marked then

begin
loc(j) := temp(j);
M ′

c(j)(2p−1)+loc(j) := markerj ;
level(j) := level(j) + 1;

end;
end;
for k = log(p)− 1 down to 0 do
begin

for j = 1 to p do in parallel
begin

temp(j) := b(loc(j)− 1)/2c;
temp2(j) := 2loc(j) + 1;
if loc(j) is odd and level(j) = k then
begin

M ′
c(j)(2p−1)+loc(j) := M ′

c(j)(2p−1)+temp(j) ;
level(j) := level(j)− 1;
if M ′

c(j)(2p−1)+temp2(j) = markerj then loc(j) := temp2(j)
else loc(j) := temp2(j) + 1;

end;
end;
for j = 1 to p do in parallel

if loc(j) is even and level(j) = k then
begin

M ′
c(j)(2p−1)+loc(j) := M ′

c(j)(2p−1)+temp(j);
level(j) := level(j)− 1;
if M ′

c(j)(2p−1)+temp2(j) = markerj then loc(j) := temp2(j)
else loc(j) := temp2(j) + 1;

end;
end;

end.

A comparison of the PRAM models 237

PRAM-EREW

PRAM-CREW

PRAM-COMMON

PRAM-PRIORITY

6

6
�
�
�3

@
@
@
@

�
�

@
@

@I

O[log(p)]
O[log(p)]

O[log(p)]
O[1], p2 processors

Figure 11.8 Relations between some PRAM models

Clearly, both the ascent and descent phases require O[log(p)] steps. 2

Lemma 11.3 Any set of simultaneous concurrent write operations of p proces-
sors can be simulated by, at most, O[log(p)] exclusive-write operations of the same
p-processors.

Proof. The proof is similar to that of the previous lemma and is left as an exercise
(see Problem 11.14). 2

Theorem 11.5 Any PRAM-CREW (alternatively, PRAM-COMMON, PRAM-
PRIORITY) algorithm using p processors admits an equivalent PRAM-EREW
algorithm. Moreover, t steps of the former algorithm can be simulated by the
latter one in O[log(p)t] steps.

Proof. The proof follows from the two previous lemmas. 2

Figure 11.8 summarizes the relationships between the four PRAM models ob-
tained so far.

The following two examples show that two of the bounds obtained in Theo-
rem 11.5 cannot be improved. In particular, they yield separations between the
PRAM-EREW and the PRAM-CREW on the one hand, and between the PRAM-
COMMON and the PRAM-CREW on the other.

238 Models of parallel computers

Example 11.5 Given N distinct keys ki and a search key k∗, we want to determine
whether k∗ is equal to some ki. Assuming a PRAM-CREW is available, a parallel search
requiring constant time can be made and, at most, one processor, if any, will write a 1
in cell M0. The concurrent read feature is necessary to allow the N processors to read
in parallel the same value k∗.

A simple argument shows that without such a feature the same problem cannot be
solved in constant time. The key observation is that when reads are exclusive, each step
of the PRAM allows a given piece of information to be copied to, at most, one other
memory cell. Thus the number of cells that can contain a given piece of information, at
most, doubles with each step. After a constant number of steps, only a constant number
of processors can thus know the value k∗ and, clearly, a constant number of processors
is not sufficient to perform the search in constant time.

Example 11.6 Given N distinct numbers ni, we want to determine the maximum
among them. Assuming that a PRAM-CRCW is available, N2 processors can be used to
compare all the pairs of numbers ni and nj and to ‘mark’ the smaller value. Successively,
exactly one processor, that is, the one reading the single unmarked number, will write
it in cell M0. Clearly, the above operations require constant time.The concurrent write
feature is necessary to allow concurrent mark operations. As in the previous example,
the same problem cannot be solved in constant time without such a feature.

11.5 Relations between circuits and PRAMs

In this section we compare the two above parallel models of computation, namely
circuits and PRAMs, by establishing a relation between size and depth on the one
hand, and number of processors and time on the other.

Before proceeding, let us point out that a uniformity condition must be imposed
on the family of PRAM programs dealing with inputs of length n since we do not
want to specify a different program for any n. For that purpose, we shall say that
a PRAM algorithm is uniform if the program can be derived, for any input length
n, by a deterministic Turing machine requiring logarithmic space. Intuitively, all
programs parameterized by n are uniform.

Theorem 11.6 A uniform circuit family of size s(n) and depth d(n) can be sim-
ulated by a uniform PRAM-PRIORITY algorithm using O[s(n)] active processors
and running in time O[d(n)].

Conversely, a uniform PRAM-PRIORITY algorithm requiring p(n) active pro-
cessors and running in time t(n) can be simulated by an unbounded fan-in uniform
circuit family having polynomial size with respect to p(n) and linear depth with
respect to t(n).

Proof. We assume without loss of generality (see Problem 11.1) that the ¬ gates
of the circuits have been pushed back to the inputs and eliminated by supplying

Relations between circuits and PRAMs 239

twice as many input gates. In the simulation of a circuit cn by a PRAM, a distinct
processor is assigned to each circuit line and a distinct memory cell is assigned to
each circuit gate. Denote by n + q the number of gates of cn. Initially, the inputs
or input gates are in memory cells Mi with 1 ≤ i ≤ n and the q circuit gates are
in memory cells Mn+j with 1 ≤ j ≤ q.

The simulation can be described by the following algorithm:

begin {input: x1, . . . , xn}
for i = 1 to q do in parallel

if on+i = ∨ then Mn+i := 0 else Mn+i := 1;
for k = 1 to d(n) do
begin

for any circuit line e = (gi, gj) do in parallel
value(e) := Mi;

for any circuit line e = (gi, gj) do in parallel
if ((value(e) = 0) and (oj = ∨)) or ((value(e) = 1) and (oj = ∧)) then

Mj := value(e);
for any circuit line e = (gi, gj) do in parallel

if ((value(e) = 1) and (oj = ∨)) or ((value(e) = 0) and (oj = ∧)) then
Mj := value(e);

end;
end.

Clearly, after O[d(n)] steps, memory cell Mn+i has the value of gate i for i =
1, . . . , n+q and this proves the first part of the theorem (notice how the concurrent
writes in the same memory cell are needed by the above simulation).

Conversely, we note that each of the binary operations in the instruction set
of a PRAM can be implemented by constant-depth, polynomial size circuit with
unbounded fan-in (see Problem 11.19). It is also fairly easy to implement condi-
tional branching by such circuits by suitably updating the program counter. The
non-trivial part of the simulation lies in simulating the memory accesses. Since
combinatorial circuits have no memory, the simulation retains all the values that
are written in a given memory cell during the computation, and has a bit associated
with each such value that indicates whether the value is current or not. With this
scheme, it is not difficult to construct a constant-depth, unbounded fan-in circuit
to implement reads and writes into memory (see Problem 11.18). Thus, a single
step of the PRAM can be simulated by an unbounded fan-in circuit of polynomial
size and constant depth and the second part of the theorem follows (we leave as
an exercise to the reader the task of proving that the circuit family obtained is
uniform). 2

Note that, according to Lemma 11.1, the second part of the above theorem can
be suitably extended to circuits with bounded fan-in.

240 Models of parallel computers

11.6 The parallel computation thesis

Assume that a time-complexity class of languages has been defined by making use
of a parallel model of computation. Is it possible to characterize the same class
by a sequential model of computation, namely the deterministic Turing machine?
The study of several models of parallel computation has shown that by putting
suitable limitations on both the number and the power of the parallel processors a
general rule seems to hold which has been called the Parallel computation thesis.

Denote by P a parallel model of computation. The thesis holds for the model P
if two polynomials p and q exist such that

P-TIME[f(n)] ⊆ DSPACE[p(f(n))] and DSPACE[g(n)] ⊆ P-TIME[q(g(n))]

where, as usual, the notation P-TIME[f(n)] denotes the class of languages decided
by model P in time O[f(n)]. More concisely, the thesis states that parallel time is
polynomially related to sequential space.

Although the above thesis does not hold for all parallel models of computation
(see Notes), it does for the two models we have considered and this gives further
assurance that we are dealing with models that are coherent with each other.

Theorem 11.7 PRAMs and uniform circuit families satisfy the parallel compu-
tation thesis.

Proof. According to Theorem 11.6, we need to prove the theorem for only one
model, namely for the uniform circuit families.

For the first part of the thesis, consider a circuit of size s(n) and depth d(n).
Given a description of this circuit together with an input, a deterministic Turing
machine can compute its output in O[d(n)] space by starting from the output gates
and working its way back to the input gates while using a stack to keep track of
the paths taken. Since the depth of the circuit is d(n), the stack has, at most, d(n)
entries, each of which has constant size; hence, the value computed by the circuit
can be evaluated in O[d(n)] space. The theorem then follows from the uniformity
condition.

Let us now prove the second part of the thesis, namely that sequential space is
polynomially related to parallel time. Denote by g a space-constructible function
bounding the space used by T . The number of global states is, at most, m = 2cg(n)

for some constant c. Again, we assume that only one accepting global state, say
Sm, exists and we denote by S1 the initial global state.

The general algorithm to be implemented on a specific parallel model is the
following. First, an m by m transition matrix A is constructed in parallel. An
entry A(i, j) is set to 1 if global state Sj can be reached from Si by executing a
0 or 1 quintuple of T , otherwise it is set to 0. Next, the transitive closure of A,
that is, the matrix B = Am, is computed. It can immediately be verified that T
accepts x if and only if B(1, m) = 1, that is, if a sequence of global states exists
which allows T to evolve from S1 to Sm.

Problems 241

It is not hard to verify (see Problem 11.20) that A can be computed in O[log(m)]
steps by making use of a uniform family of circuits. On the other hand, we shall
see in the next chapter that B can be computed in O[log2(m)] steps, that is, in
O[g2(n)] steps by making use of a parallel model of computation.

Note that since the algorithm deals with matrices whose sizes are exponential
with respect to the input size, there is little hope when using this approach of
simulating sequential space in parallel time with realistic parallel computers. 2

Problems

11.1. Prove that any circuit with ∨,∧ and ¬ gates can be transformed into an equiva-
lent circuit where the ¬ gates have been pushed back to the inputs and eliminated by
supplying 2n input gates instead of n. Show that if the original circuit has size s(n) and
depth d(n), the new circuit has size O[s(n)] and depth O[d(n)].

11.2. Prove that the function g defined in the proof of Theorem 11.1 is such that
g(n) < 2n+2. Show that if additional binary Boolean functions are allowed, the bound
can be lowered to 2n. [Hint: lower the value of g(n) for n = 2 from 8 to 1 by making use
of other functions and modify the recursive scheme.]

11.3. Prove that every language in P can be decided by a circuit family having a
polynomial size. [Hint: recall how a Turing machine can be simulated by a circuit
family.]

11.4. Consider the well-known adder circuit consisting of n smaller identical circuits,
one for each bit of the operands x and y. The inputs of such circuits are the bits xi, yi of
the operands and the carry bit ci from the previous stage. The outputs are the sum bit zi

and the next carry bit ci+1. It is easy to prove that this family of circuits is uniform and,
in fact, one can immediately derive circuit cn+1 from circuit cn by concatenating to it
another identical circuit. From this specific example are we allowed to state that if cn+1

can be derived from cn by adding a constant number of gates, then the corresponding
family is logspace uniform? Justify the answer.

11.5. Give a polynomial-time algorithm to solve circuit value.

11.6. Assume that two functions f and g can be computed by two logspace-uniform
circuit families of depth, respectively, d1(n) and d2(n). Prove that an uniform circuit
family exists which computes f(g(x)) and define its depth in terms of d1 and d2.

11.7. Show that a language L ∈ DSPACE[2nk
] for some constant k exists which cannot

be decided by a circuit family having a polynomial size. [Schöning (1985)]

11.8. A language L is said to be p-selective if a function f ∈ FP exists such that, for
any x and y,

1. f(x, y) ∈ {x, y}.

242 Models of parallel computers

2. If x ∈ L or y ∈ L, then f(x, y) ∈ L.

Prove that if L is p-selective then it can be decided by a circuit family having a polynomial
size. [Hint: show that, for any n, a language L′ ⊆ Ln exists with |L′| ≤ n + 1 such that,
for any x, x ∈ Ln if and only if (∃y ∈ L′)[f(x, y) = x ∨ f(y, x) = x].]

11.9. Show that any PRAM algorithm requiring p processors and t steps can be simu-
lated by a RAM algorithm in time O[tp].

11.10. The performance of a PRAM algorithm may vary depending on whether the
number of operands is part of the input or whether it must be computed dynamically.
In the second case, what is the cost of determining such a number?

11.11. Describe a simulation of a MIMD-PRAM by a SIMD-PRAM which has a
O[log(p)] overhead where p denotes the maximum number of active processors. [Hint:
since the MIMD-PRAM program has a constant length, say k, the p processors can be
partitioned into k groups and all processors in a group can be run in parallel executing
the same instruction. Some bookkeeping has to be done in order to update the k lists of
processors after each instruction execution.]

11.12. Consider a MIMD-PRAM which has, at most, p active processors and assume
that processor activation is done via a fork instruction whose effect is to activate a
second processor in addition to the one issuing the instruction. As a result, O[log(p)]
steps are needed in order to activate p processors. Describe a simulation of this type
of MIMD-PRAM by a SIMD-PRAM which has a constant overhead. [Hint: partition
the computation of the MIMD-PRAM in log(p)-step blocks and double at each step the
number of processors. Then compact the p2 SIMD-PRAM processors so that the active
ones effectively correspond to the active MIMD-PRAM processors.]

11.13. Give an efficient PRAM-EREW algorithm to make n copies of the same piece of
information.

11.14. Prove Lemma 11.3.

11.15. Define a strong PRAM-CRCW as a PRAM-CRCW in which the value written
in any concurrent write is the largest of the values the processors are attempting to
write. Show how to simulate such a strong PRAM-CRCW by a PRAM-COMMON with
a constant overhead.

11.16. Define a weak PRAM-CRCW as a PRAM-CRCW in which concurrent writes are
allowed only if all processors performing a concurrent write are writing the value 0. How
do a weak PRAM-CRCW compare with a PRAM-COMMON?

11.17. Prove that a parallel computation which requires t steps on a strong PRAM-
CRCW with, at mos,t p active processors can also be simulated in O[t log(p)] steps by a
PRAM-EREW with the same number of processors. [Nassimi and Sahni (1981)]

11.18. Describe a circuit with unbounded fan-in, polynomial size, and constant depth
simulating the read/write operations relative to a memory cell. [Hint: model the instruc-
tion counter as a set of binary variables corresponding to the cell currently addressed

Notes 243

and to the time step. Model the memory cells as sets of binary variables corresponding
to the cell address and contents and to the the time step. Use an additional variable for
each cell address a and for each step t which is equal to 1 only if the istruction counter
at step t contains the value a.]

11.19. Show that each PRAM instruction can be implemented by a constant-depth,
polynomial size, and unbounded fan-in circuit.

11.20. Describe a uniform circuit family which constructs the matrix A introduced in
the proof of Theorem 11.7. Show that the depth of such a family is O[log(m)]. [Hint:
make use of the circuit layers shown in Figure 11.4.]

11.21. Extend Theorem 11.7 by showing that nondeterministic sequential space is poly-
nomially related to parallel time.

Notes

As stated in the introduction to this chapter, many models of parallel computers
have been proposed which range from very primitve to quite sophisticated ma-
chines. We have chosen to present only two, namely the circuits and the PRAMs.
For additional information on parallel models of computations we refer the reader
to the survey by van Emde Boas (1990).

A large bibliography on circuits is available. To the interested reader we suggest
the introductory text by Harison (1965) and that by Savage (1976) illustrating the
relations existing between circuits and Turing machines.

Circuit complexity started with Shannon (1949), where the size of the smallest
circuit computing a function was first proposed as a measure of complexity. The-
orem 11.1 is a slightly modified version of a result appeared in Lupanov (1958)
where all sixteen possible dyadic Boolean functions were considered. This result
was strengthened in Harison (1965), where it was shown that for each n-variable
Boolean function f ,

SIZE(f) ≤ (1 + ε(n))2n/n with ε(n) ∈ O[n−1/2].

The converse of Lupanov’s theorem, that is, Theorem 11.2, is due to Riordan and
Shannon (1942).

Circuit families were investigated in depth since the existence of lower bounds on
circuit complexity imply separation results for some important complexity classes.
As an example, it was shown in Karp and Lipton (1980) that if all languages in
LEXP had a polynomial circuit complexity, then LEXP would coincide with
Σp

2. Moreover, by limiting the capabilities of the computation model it may be
easier to prove lower bounds on the complexity of specific problems, thus leading
to lower bounds for more powerful models. However, despite many efforts, no
exponential lower bound is known for the circuit complexity of a problem in NP

244 Models of parallel computers

(which, according to Theorem 11.3, would imply P 6= NP). Indeed, the best of
such bounds is linear and is due to Blum (1984).

The connection between circuit size and Turing machine time, that is Theorem
11.3, was first shown in Savage (1972). In Pippenger and Fischer (1979) the size
of the circuit family was lowered from f 2(n) to f(n) log(n).

The distinction between non-uniform and uniform circuit complexity is studied
exhaustively in Ruzzo (1981). The same paper describes five different uniformity
conditions and shows that uniform circuit complexity is relatively insensitive to the
choice of the definition. The logspace-uniformity was introduced in Cook (1979) as
an extension of the uniformity proposed by Borodin (1977). Indeed, the notation
uBC-uniform is also used as a mnemonic for the names of the two authors.

The PRAM model was introduced in Fortune and Wyllie (1978). Our definition
of MIMD-PRAM is quite similar to the original one. The only noticeable differ-
ence is that processor activation was done via a special instruction called fork as
described in Problem 11.12.

In the same spirit, SIMD-PRAMS are equivalent to a parallel model denoted as
SIMDAG which was introduced in Goldschlager (1982). As a minor variation, we
have replaced the infinite local memories of SIMDAGs with finite ones (namely, the
registers IND and ACC) and we have suppressed the SIMDAG’s central processor
by forcing all parallel processors to execute the same instruction simultaneously.

Although only two CRCW models (namely, COMMON and PRIORITY) were
introduced, several other interesting models were proposed, some of which have
been implemented on existing parallel computers. For additional information, we
refer the reader to Vishkin (1984), Groslmusz and Radge (1987) and to the survey
by Eppstein and Galil (1988).

The comparison of PRAM models has been an active field of research. Theorem
11.4 is taken from Kucera (1982) while the multiple broadcast technique used to
prove Lemmas 11.2 and 11.3 is attributed to Eckstein (1979) and nicely presented
in Akl (1989). The separation results illustrated in Examples 11.5 and 11.6 are
due to Snir (1983) and Kucera (1982), respectively. Another important separation
result showing that the PRAM-CREW is strictly less powerful than the PRAM-
CRCW appeared in Cook, Dwork, and Reischuk (1986). A more refined analysis
of the relations among several policies to solve memory conflicts which takes into
account the number of memory cells shared by the processors can be found in Fich,
Radge, and Widgerson (1988).

The relations between circuits and PRAMs were investigated in Stockmeyer and
Vishkin (1984).

The parallel computation thesis was successively verified by Pratt and Stock-
meyer (1976) for a parallel model called a vector machine, by Borodin (1977) for
circuits, and by Fortune and Wyllie (1978) for the MIMD-PRAM model. Finally,
Goldschlager (1982) verified it both for the SIMD-PRAM and for another model
called conglomerate. As pointed out in van Emde Boas (1990), it is easy to define
parallel models of computation which do not obey the parallel computation thesis.
If we allow, for instance, the PRAM to be nondeterministic, or if we add powerful

Notes 245

arithmetic operations to its instruction set, the model becomes too powerful and
the proof techniques of Theorem 11.7 no longer apply. In fact, compliance with
the parallel computation thesis should be viewed not as a general rule, but rather
as an insurance that the parallel model considered is reasonable.

Chapter 12

Parallel algorithms

It is now time to make use of the parallel models of computation introduced in the
previous chapter. Our main objective will be to characterize the problems that are
most suited for being solved by a parallel computer.

Intuitively, the main reason for our interest in parallel algorithms is the possibil-
ity of speeding up the solution of problems, that is, of obtaining algorithms whose
running time is far better than that of the corresponding fastest known sequential
algorithms. For instance, in Example 11.4 we were able to sum N numbers in
O[log(N)] steps while it is known that no sublinear sequential algorithm exists to
compute the same function. However, another important criterion in evaluating a
parallel algorithm is the number of processors it requires, not only because of the
communication costs mentioned in the previous chapter, but also because it costs
money to purchase, maintain and run computers and the price paid to guarantee
a high degree of reliability increases sharply with the number of processors.

The above two measures, namely parallel time and number of processors, are
sometimes combined yielding the so-called cost of a parallel algorithm which is
defined as the product of those two quantities. In other words, the cost equals
the number of steps executed collectively by all processors in solving the problem.
Clearly, the cost of a parallel algorithm cannot be less than the sequential lower
bound. This is because any parallel algorithm can be simulated by a sequential
computer as stated in Problem 11.9. Whenever the cost of a parallel algorithm
matches the lower bound, that algorithm is usually said to be optimal since it
cannot be improved. It may be possible, of course, to reduce the running time of an
optimal parallel algorithm by using more processors (conversely, fewer processors
may be used if we are willing to settle for a higher running time). We shall prefer,
however, to consider the parallel time and the number of processors separately and
our goal will be to develop parallel algorithms which achieve a significant speed-up
while maintaining the number of processors tractable. As usual, significant denotes
exponential while tractable stands for polynomial (with respect to the input size).

These considerations will lead us to introduce in Section 12.1 a new complexity

246

The class NC 247

class denoted as NC which includes all problems that can be efficiently solved by
parallel computers. Next, an alternative characterization of NC is given showing
that the definition of this new class does not depend on the type of parallel model
of computation considered. The inner structure of NC is considered in Section 12.2
where a few significant fast parallel algorithms of different complexity are presented
while randomized parallel algorithms are briefly discussed in Section 12.3. Finally,
we conclude our study of the complexity of parallel algorithms in Section 12.4 by
providing a simple characterization of problems that do not seem to admit fast
parallel algorithms.

12.1 The class NC

Let us be more precise about the definition of fast parallel algorithm. Such an
algorithm will be considered fast if it requires polylogarithmic parallel time, that
is, O[logk(n)] steps for some constant k, while making use of a number of processors
which is polynomially bounded with respect to the input size.

Both requirements are rather stringent. The first rules out trivial parallelizations
consisting of splitting the problem into simpler ones and then combining together
the partial results as shown in the following example.

Example 12.1 A rather inefficient method for finding the largest among n components
of a vector consists of breaking the problem into

√
n subproblems of

√
n elements each.

First, an optimal sequential algorithm is applied in parallel to each subproblem and,
in a second phase, the same algorithm is used to determine the largest among the

√
n

elements computed previously. The number of parallel steps required is O[
√

n] while it
is easy to verify that more efficient parallel algorithms requiring O[log(n)] steps do exist.

The second requirement is also essential not only from a practical point of view
as already discussed in the introduction but also from a theoretical point of view
since a hyperpolynomial number of processors would make the parallel model too
powerful with respect to conventional Turing machines.

Example 12.2 By making use of 2n processors, it is possible to solve any instance of
node cover referring to graphs of n nodes in parallel polynomial time. In the first
step, each processor converts its index into a binary vector. Next, each processor checks
whether the number of ones in the binary vector is, at most, k and, if so, whether the
nodes associated with the ones represent a node cover for the graph. In other words,
if the model includes an exponential number of processors, then it is able to solve in
parallel polynomial time any NP-complete problem.

Let us now give a formal definition, based on logspace-uniform circuit families,
of the class of problems which admit fast parallel algorithms.

A language L belongs to the class NCk with k = 1, 2, . . . if a logspace-uniform
circuit family C and a constant h exist such that

248 Parallel algorithms

1. C decides L.
2. SIZEC(n) ∈ O[nh].
3. DEPTHC(n) ∈ O[logk(n)].

Now the class NC can be defined as

NC =
⋃
k≥1

NCk.

Similarly, we define the classes FNCk and FNC as the classes of functions com-
putable in polylogarithmic depth and in polynomial size by uniform circuit families.

The class NC includes all problems which admit fast parallel algorithms while
the index k of the subclass NCk provides further information on the inherent ‘par-
allelizability’ of problems in that class. As in the case of the class P, most ‘natural’
problems in NC can be placed in the first few levels.

12.1.1 Some properties of NC

As shown in the following lemma, the class NC is a subset of the class P. As we
shall see in Section 12.4, it is conjectured that the inclusion is strict although no
proof exists at present.

Lemma 12.1 NC ⊆ P.

Proof. Given any language L ∈ NC, denote by C the uniform circuit family which
decides it in polylogarithmic time. Since C is uniform, a Turing machine T exists
which derives, for any input x of length n, the corresponding circuit encoding cn

in logarithmic space with respect to SIZEC(n), and thus in polynomial time with
respect to n. A deterministic Turing machine T ′ can then be defined which first
simulates T deriving the circuit cn and then solves the corresponding circuit
value instance. Since the circuit has, at most, a polynomial number of nodes,
this task can also be performed in polynomial time. 2

We have already seen in Theorem 11.7 how sequential space is polynomially
related to parallel time. As an application of that theorem, we can relate the
classes LOGSPACE and NLOGSPACE introduced in Chapter 8 with the first two
levels of NC.

Lemma 12.2 NC1 ⊆ LOGSPACE ⊆ NLOGSPACE ⊆ NC2.

Proof. The first inclusion derives from the first part of the proof of Theorem 11.7.
The third inclusion derives from the second part of the proof of the same theorem.

Although the matrices to be computed by the circuit family have an exponential
size with respect to the input length, since global states have a logarithmic length,

The class NC 249

the number of gates required is polynomial with respect to the input length and
the algorithm belongs to NC2 (see also Problem 11.21). 2

In addition to the logspace reducibility introduced in Chapter 8, some other
reducibilities such as the FNC1 and the FNC reducibilities denoted as ≤NC1 and
≤NC , respectively, have also been considered and used to prove the membership
of a problem in NC. As a consequence of the previous lemma, we may state that
logspace reducibility is somehow included between the FNC1 and the FNC re-
ducibilities. In general, it can be shown that NC is closed with respect to any of
these three reducibilities.

Lemma 12.3 NC is closed with respect to the logspace, the FNC1 and the FNC re-
ducibilities.

Proof. According to Lemma 12.2, it is sufficient to show that if a language L belongs
to NCk for some k > 0 and if L′ ≤NC L holds, then L′ belongs to NC. Indeed,
L′ ≤NC L implies that a uniform transducer circuit family having some depth,
say O[logh(n)], and transforming words of L′ into corresponding words of L must
exist. For any input length n, the transducer circuit c′n of depth O[logh(n)] and
the acceptor circuit cn of depth O[logk(n)] can be cascaded together obtaining a
new circuit of depth O[logk′(n)] with k′ = max{h, k}. It is easy to verify that the
cascading operation maintains the uniformity condition (see Problem 12.1). Thus
the language L′ belongs to NCk′ and consequently to NC. 2

12.1.2 An alternative characterization of NC

The reader may object to the fact that the previous characterization of NC is based
on a rather unrealistic model of computation such as the uniform circuit family
while it has been repeatedly noticed that parallel algorithms are best expressed by
referring to PRAMs.

We can answer such a criticism by introducing new classes denoted as ACk and
AC whose definition is based on uniform PRAM-PRIORITY algorithms (recall
that a PRAM algorithm is uniform if it can be derived, for any input length n, by
a deterministic Turing machine requiring logarithmic space with respect to n). The
classes ACk with k = 1, 2, . . . are defined as the classes of languages decided by
uniform PRAMs in O[logk(n)] steps with a polynomial number of active processors.
The class AC is then defined as

AC =
⋃
k≥1

ACk.

We already know from Theorem 11.6 that the same classes ACk can be alter-
natively defined as the classes of languages decidable by logspace uniform circuit
families with unbounded fan-in of depth O[logk(n)] and of polynomial size.

250 Parallel algorithms

By combining that theorem and Lemma 11.1 we obtain a new lemma which
establishes a close correlation between the classes NCk and ACk.

Lemma 12.4 For all k ≥ 1, NCk ⊆ ACk ⊆ NCk+1.

As stated in the next corollary, we have thus shown that a definition of NC in
terms of PRAMs does exist.

Corollary 12.1 NC = AC.

12.2 Examples of NC problems

Let us begin by describing a few fast parallel algorithms which are slightly more
complex than those considered in the previous chapter. The first deals with a
classical problem in computer science.

Example 12.3 Sorting the n components of a vector x = x1, . . . , xn can be done in
O[log(n)] steps by an enumeration algorithm. The position in which xj should be placed
is calculated by counting the number of xis that are no greater than xj :

begin {input: x = x1, . . . , xn}
for each pair i, j of processor indices do in parallel

if xi ≤ xj then a[i, j] := 1 else a[i, j] := 0;
for j = 1 to n do in parallel

b[j] :=
∑n

i=1 a[i, j] by algorithm of Example 11.4;
for i = 1 to n do in parallel

y[b[i]] := x[i];
end.

The above algorithm makes use of n2 processors. Note that if some xi occurs k times, it
will appear in the resulting vector y only once preceded by k−1 empty entries. It is easy
to extend the above algorithm allowing y to include identical entries (see Problem 12.2).

The next two examples revisit from a parallel point of view problems already
considered in previous chapters.

Example 12.4 The problem shortest weighted path is similar to shortest path
already considered in Example 4.3, except that the graph is weighted, that is, each edge
〈ni, nj〉 is characterized by a positive integer called weight and denoted as w(ni, nj).
Clearly, the length of a path is the sum of the weights of the edges included in it and the
problem consists of finding the shortest path lengths between all pair of nodes.

Let us present a fast parallel algorithm which solves shortest weighted path in
O[log2(n)] steps with n2 processors.

Examples of NC problems 251

Let Ah(i, j) be the length of the shortest path from node i to node j containing, at
most, h edges. Since a path from i to j containing, at most, 2h edges can be divided
into two paths of, at most, h edges each, we have that

A2h(i, j) = mink∈{1,2,...,n}(A
h(i, k) + Ah(k, i)).

Taking into account that a shortest path contains, at most, n− 1 edges, we obtain the
following algorithm which makes use of the O[log(n)] parallel algorithm for finding the
minimum among n elements:

begin {input: G = (N,E)}
n := |N |;
for any pair i, j of processor indices do in parallel

A1[i, j] := w(ni, nj);
for m := 1 to dlog(n)e do
begin

h := 2m;
for any pair i, j of processor indices do in parallel

Ah[i, j] := min{Ah/2[i, k] + Ah/2[k, j] : 1 ≤ k ≤ n};
end;

end.

Example 12.5 Let us describe an efficient parallel algorithm for the problem schedul-
ing fixed jobs introduced in Example 6.8. The algorithm consists of four distinct
phases:

1. Compute the number σj of machines that are busy just after the start of job Jj

and the number τj of machines that are busy just before the completion of Jj

(j = 1, . . . , n).

2. For each job Jj , determine its immediate predecessor Jπ(j) on the same machine
(if it exists). The same stacking discipline used in the sequential algorithm implies
that this job must be, among the σj jobs to be executed after the start of Jj , the
one that terminates last before the start of Jj .

3. For each job Jj , set Jπ(j) as its first predecessor on the same machine.

4. Use the Jπ(j)s to perform the actual machine scheduling.

Figure 12.1 shows an application of the above algorithm to the scheduling problem
illustrated in Figure 6.1.

The full parallel algorithm can then be stated as follows:

begin {input: s1, t1, . . . , sn, tn}
{phase 1}
sort in parallel the sj , tj in non-decreasing order in (u1, . . . , u2n),
if tj = sk for some j, k then insert tj before sk in u;
for k = 1 to 2n do in parallel

if uk ∼ sj then αk := 1 else αk := − 1;

252 Parallel algorithms

j : 1 2 3 4 5 6

sj : 0 0 3 4 7 6

tj : 2 8 6 7 9 8

σj : 2 2 2 3 3 3

τj : 2 3 3 3 1 3

���� ���� ����

������������
� �

�

�@R

�@R

�@R

j3j1 j6

j2

j4 j5

M1 :

M2 :

M3 :

Figure 12.1 Parallel assignment of jobs to machines

for k = 1 to 2n do in parallel
βk := α1 + . . . + αk;

for k = 1 to 2n do in parallel
begin

if uk ∼ sj then σj := βk;
if uk ∼ tj then τj := βk+1;

end;
{phase 2}
for j = 1 to n do in parallel
begin

find k such that τk = σj and tk = max{tm : tm ≤ sj , τm = σj};
if k exists then π(j) := k else π(j) := j;

end;
{phase 3}
for l = 1 to dlog(n)e do

for j = 1 to n do in parallel π(j) := π(π(j));
{phase 4}
for j = 1 to n do in parallel

assign machine σπ(j) to job Jj ;
end.

Examples of NC problems 253

By making use of the maximum, sum and sorting parallel algorithms described in
previous examples, it is easy to verify that this algorithm requires O[log(n)] time and
O[n2] processors.

The next two examples deal with integer matrix computations. In particular,
they refer to the widely used product and power operations.

Example 12.6 The product of two square matrices A and B of n2 elements can be
computed in O[log(n)] steps by a PRAM algorithm in the following way. First, n3

processors are used to compute the products aikbkj with 1 ≤ i, j, k ≤ n. Next, n3/2
processors are used to compute the n2 sums of the type cij = Σn

k=1aikbkj by making use
of the algorithm described in Example 11.4.

Example 12.7 Given an n × n matrix A, it is possible to compute the matrix power
An in O[log2(n)] steps by making use of a PRAM with n3/2 active processors. Assume
for simplicity that n is a power of 2. In the first step, the product A2 is computed by
making use of the parallel algorithm described in Example 12.6; in the next step, the
same algorithm is applied to compute A4, and so on. After the log(n)th step, the value
An has been computed.

12.2.1 Inverting a matrix

A more ambitious task consists of describing a fast parallel algorithm to compute
the inverse of a n×n matrix of integers. We recall that the inverse A−1 of a matrix
A is such that AA−1 = I = A−1A where I denotes the identity matrix, that is, the
diagonal matrix with 1s along the diagonal.

Inverting a lower triangular matrix
Let us start with a simplified case where the matrix A to be inverted is assumed
to be lower triangular, that is, such that all elements above the central diagonal
are equal to 0 (A[i, j] = 0 for all i < j).

For this purpose, a divide-and-conquer technique will be used. According to the
definition, A can be block-decomposed into four matrices of half its size, as follows:

A =

(
A11 0
A21 A22

)

Since A is lower triangular, it follows that the upper right-hand submatrix is the
zero matrix, and that A11 and A22 are lower triangular. The inverse of A is given
by

A−1 =

(
A−1

11 0
−A−1

22 A21A
−1
11 A−1

22

)

254 Parallel algorithms

The above formula hints a recursive parallel algorithm for computing A−1. In a
first phase, A−1

11 and A−1
22 are computed recursively in parallel. Next, −A−1

22 A21A
−1
11

is computed via two matrix multiplications. It is easy to verify that O[log2(n)]
steps are sufficient.

Inverting an arbitrary matrix
To extend the previous result to arbitrary matrices we first need some preliminary
definitions and results. Given an n× n matrix A, the characteristic polynomial of
A is defined as

ϕA(x) = det(xI − A).

Lemma 12.5 For any n × n matrix A, ϕA(x) is a polynomial of degree n such
that the coefficient of xn is 1 and the constant term is equal to det(−A).

Proof. Clearly, ϕA(x) is a polynomial of degree n. Moreover, it is easy to verify by
induction on n that the coefficient of xn is equal to 1. Finally, by simply setting
x = 0 we obtain that the constant term of ϕA(x) is equal to det(−A). 2

From the above lemma it follows that computing the determinant of a matrix is
no harder than computing the coefficients of its characteristic polynomial (remem-
ber that det(A) = (−1)ndet(−A)). Once we are able to compute the determinant,
we can also invert the matrix as follows. The (j, i)th entry of A−1 is given by
(−1)i+jdet(Aij)/det(A) where Aij is the matrix formed by removing the ith row
and the jth column from A. Since all these calculations can be done in parallel,
computing the inverse takes only a few steps more than computing the coefficients
of a characteristic polynomial (even though a higher number of processors is re-
quired). Therefore, it remains to find an efficient parallel algorithm for computing
such coefficients.

In order to do this, we define the trace of a matrix to be the sum of its diagonal
entries. It is a simple fact from linear algebra that the trace of a matrix is equal
to the sum of the roots of its characteristic polynomial, also called eigenvalues.
Moreover, the eigenvalues of Ak are simply the kth powers of the eigenvalues of A.

Lemma 12.6 Given an n × n matrix A, the coefficients c1, . . . , cn of the charac-
teristic polynomial of A satisfy the following equations:

si−1c1 + si−2c2 + . . . + s1ci−1 + ici = −si

where si denotes the trace of Ai, for 1 ≤ i ≤ n.

Proof. Let λ1, . . . , λn denote the eigenvalues of A. Then, we have that

xn + c1x
n−1 + . . . + cn−1x + cn =

n∏
i=1

(x− λi).

Examples of NC problems 255

We will now prove the lemma by differentiating the two sides of the above equal-
ity. The derivative of the left-hand side is given by

nxn−1 + c1(n− 1)xn−2 + . . . + cn−1

while the derivative of the right-hand side is equal to

n∑
i=1

ϕA(x)

x− λi

.

By using the series expansion

1

x− λi

=
1

x(1− λi/x)
=

1

x

(
1 +

λi

x
+

λ2
i

x2
+ . . .

)

which is valid for |x| > |λi|, we obtain that the derivative of the right-hand side
can also be written as

ϕA(x)

x

n∑
i=1

(
1 +

λi

x
+

λ2
i

x2
+ . . .

)

= (xn + c1x
n−1 + . . . + cn−1x + cn)

(
n

x
+

s1

x2
+

s2

x3
+ . . .

)
.

Since the two derivatives must be equal for all values of x satisfying |x| > |λi|
for any i, it follows that the coefficients of each power of x must be the same. By
comparing the first n coefficients we obtain, for 1 ≤ i ≤ n,

ci(n− i) = cin + si−1c1 + si−2c2 + . . . + s1ci−1 + si,

that is,

si−1c1 + si−2c2 + . . . + s1ci−1 + ici = −si

which is the desired system of equations. 2

The above lemma thus suggests the following algorithm for computing the coef-
ficients of a characteristic polynomial:

1. Compute Ak for k = 2, . . . , n.

2. Compute sk for k = 1, . . . , n.

3. Solve the system of equation of the previous lemma.

256 Parallel algorithms

Clearly the first two steps can be performed efficiently in parallel. Also the last
step can also be done efficiently in parallel. Indeed, it suffices to observe that the
coefficient matrix of the system is lower triangular and thus invertible by means of
the algorithm described previously.

In conclusion, the problem of computing the determinant of a matrix and thus
that of inverting the matrix itself belongs to FNC.

The main application of matrix inversion consists of solving a system of n linear
equations in n variables. Indeed, this is quite straightforward. Given the system

Ax = b

where A is an n× n matrix, x is an n-component row vector of variables xi and b
is an n-component column vector of numbers bj, the solution can be obtained as

x = A−1b.

Since fast parallel algorithms exist both for the matrix inversion and for the
matrix product, solving a linear system of equations also belongs to FNC.

12.3 Probabilistic parallel algorithms

We already know from Chapter 9 that probabilistic algorithms with bounded error
probability are found to be useful in efficiently solving some decision problems.
In this section we investigate whether this claim still holds when making use of
parallel computers. To that end, we first need a precise definition of a probabilistic
parallel model of computation.

A probabilistic circuit is a circuit cn with ordinary inputs x = x1 . . . xn and a
polynomial number (with respect to n) of ‘coin tossing’ inputs y = y1 . . . yp(n). For
any ordinary input x, the probability that the function fn+q computed by cn has
value 1 is defined to be the fraction of input combinations y such that fn+q has
value 1.

The acceptance criterion of probabilistic circuits is the same as that of BPP
machines, that is, the error probability must be, at most, 1/2− ε with 0 < ε ≤ 1/2.

We can thus define RNCk as the class of languages decided by a probabilistic
uniform circuit family C with polynomial size and depth O[logk(n)]. As usual,
the class RNC (random NC) shall denote the infinite union of RNCks and the
definition can be readily extended to the classes of functions FRNCk and FRNC.

It is easy to show (see Problem 12.6) that RNC is included in BPP. It is not
clear, however, whether RNC is included in NC or even in P.

As in the case of sequential probabilistic algorithms with bounded error proba-
bility, the error probability of probabilistic circuit families can be made arbitrarily
small while maintaining the size polynomial and the depth polylogarithmic. In
particular, one can arrange many copies of the same circuit (but with different

Probabilistic parallel algorithms 257

coin tossing inputs) in parallel, each computing the same function, and a majority
vote can be taken to obtain a reliable value.

Similarly, a probabilistic PRAM can be defined as a PRAM where each processor
has the capability of making random choices while executing its program based on
a common sequence of coin tossing inputs.

12.3.1 Testing for matching in bipartite graphs

A number of interesting problems have been shown to be in RNC. As for most prob-
abilistic algorithms, these results are based on some probabilistic lemmas which
ensure the correctness of the proposed algorithms. To acquaint the reader with
this kind of result, in this section we present a fast parallel probabilistic algorithm
for the following problem.

bipartite perfect matching: given a bipartite graph G, find a perfect
matching (see Section 9.1.3) if it exists.

First observe that an RNC-algorithm for deciding whether a graph admits a
perfect matching can be easily derived from the results of Sections 9.1.2 and 9.1.3
(see Problem 12.7). However, this result does not directly yield an RNC-algorithm
for finding a perfect matching. For that purpose, we proceed as follows.

Let U = {u1, . . . , un} and V = {v1, . . . , vn} be the two sets of nodes of the
bipartite graph G and let A be the n × n adjacency matrix of G. Let us assign
random integer weights to the edges of G chosen uniformly and independently from
the set {1, . . . , 2m} where m is the number of edges. The binary matrix A can
then be transformed into an integer matrix B by replacing each entry (i, j) equal
to 1 in A by 2wij where wij is the weight assigned to the edge 〈ui, vj〉.

The basic idea is that if it can be assumed that a unique perfect matching
of minimum weight exists, then it can be derived at the cost of a single matrix
inversion by the following sequential algorithm (adj(B) denotes the adjoint matrix
of B whose (i, j)th entry is det(Bij)):

begin {input: G, B}
M := ∅;
compute det(B);
w := max{k : 2k divides det(B)};
compute adj(B);
for all edges 〈ui, vj〉 do

if adj(B)[i, j]2wij/2w is odd then M := M ∪ {〈ui, vj〉};
end.

From the results of the previous section, it is easy to derive a fast parallel version
of the above algorithm. The following lemma ensures that the set M computed by
the above algorithm is the unique perfect matching of minimum weight.

Lemma 12.7 Suppose that a unique minimum weight perfect matching M exists
and denote with w its weight. Then,

258 Parallel algorithms

1. det(B) 6= 0.
2. w = max{k : 2k divides det(B)}.
3. The edge 〈ui, vj〉 ∈M if and only if adj(B)[i, j]2wij/2w is odd.

Proof. First note that each perfect matching in G corresponds to a permutation π
of {1, . . . , n}. For each π let us define vπ =

∏n
i=1 biπ(i). Clearly, vπ 6= 0 if and only

if 〈ui, vπ(i)〉 is an edge of G for all is, that is, if and only if π represents a perfect
matching. By definition,

det(B) =
∑
π

σπ

n∏
i=1

biπ(i) =
∑
π

σπvπ

where σπ is 1 (respectively, −1) if π is an even (respectively, odd) permutation.
Let πM be the permutation corresponding to the minimum weight perfect match-

ing M . Then vπM
= 2w. For any other permutation π, vπ = 0 (π does not cor-

respond to a perfect matching) or vπ is a power of 2 greater than 2w (since M
is the unique minimum weight perfect matching). Since a power of 2 cannot be
obtained as an algebraic sum of higher powers of 2, it then follows that det(B) 6= 0.
Moreover, it is clear that 2w is the greatest power of 2 dividing det(B).

To prove the third part of the lemma, let us first note that, according to the
definitions of det and of minors, for any i, j,

det(Bij)2
wij =

∑
π with π(i)=j

σπvπ.

If the edge 〈ui, vj〉 belongs to M , then exactly one permutation, that is, πM , in the
above sum will have value 2w. The remaining permutations have a value of either
0 or a higher power of 2. Thus, det(Bij)2

wij/2w will be odd. On the other hand,
if 〈ui, vj〉 does not belong to M , all permutations in the sum either have a value
of 0 or are a power of 2 greater then 2w, hence det(Bij)2

wij/2w will be even. The
lemma follows. 2

It remains to be proven that by assigning random weights to the edges of G
as stated above, the probability that a unique minimum weight perfect matching
exists is sufficiently large. In order to prove this, we need the following lemma.

Lemma 12.8 Let C = {c1, . . . , cm} be any non-empty collection of subsets of
X = {1, . . . , n} and let w1, . . . , wn be integer weights chosen uniformly and in-
dependently from {1, . . . , 2n}. Associate with each set cj ∈ C a weight w(cj) =∑

i∈cj
wi. Then, with a probability of at least 1/2, the family C contains a unique

minimum weight set.

Proof. Fix the weights of all elements of X except the ith one. Let us define the
threshold of i to be the number αi such that if wi ≤ αi, then i is contained in some
minimum weight set of C, otherwise i is not contained in any such set.

Clearly, if wi < αi, then i must be in every minimum weight set of C. Indeed,
suppose that two minimum weight sets c and c′ exist such that i ∈ c and i 6∈ c′.

P-complete problems revisited 259

Thus, w(c) = w(c′). If we now set the weight of i to wi + 1, then both c and c′

are still minimum weight sets but they have different weights, which is, of course,
a contradiction.

Hence, ambiguity about i occurs if and only if wi = αi since in this case two
minimum weight sets exist, one containing i and the other not containing it. We
now make the crucial observation that the threshold of i has been defined without
reference to its weight: it follows that αi is independent of wi. Since wi is chosen
uniformly from {1, . . . , 2n}, it then follows that the probability that wi = αi is, at
most, 1/2n.

Since X contains n elements, the probability that an element i exists such that
wi = αi is, at most, 1/2. Thus, with a probability of at least 1/2, no ambiguous
element exists. The lemma follows from the observation that a unique minimum
weight set exists if and only if no ambiguous element exists. 2

We can then view the set of perfect matchings in G as the family C of the
previous lemma. The lemma itself thus ensures that the minimum weight perfect
matching in the weighted version of G will be unique with a probability of at
least 1/2. The above algorithm will identify this perfect matching. In conclusion,
bipartite perfect matching belongs to RFNC. On the other hand, no FNC
algorithm is known for the same problem.

12.4 P-complete problems revisited

We know from Lemma 12.1 that NC is included in P and it is conjectured that the
inclusion is strict although no proof exists at present.

According to Lemma 12.3, NC is closed with respect to logspace-reducibility.
Thus, if NC 6= P holds, any problem which is P-complete with respect to ≤log, in
short a P-complete problem, must belong to P− NC.

P-complete problems thus play a second important role. Besides being problems
that do not seem to be solvable in logarithmic space, it also appears that they do
not admit fast parallel algorithms (in fact, the parallel computation thesis discussed
in the previous chapter provides some hints in this direction).

Example 12.8 The P-completeness of solvable path systems has been proved in
Example 8.5, thus we are allowed to state that fast parallel algorithms for such a problem
are unlikely to exist. It is interesting to note that the reason for which solvable path
systems does not seem to belong to LOGSPACE (the algorithm must keep in its memory
the list of all the nodes that have been identified as connected to some source node of
Xs) is different from the reason for which the same problem does not seem to admit fast
parallel algorithms (even though the problem may be divided into subproblems, logical
constraints forbid solving many subproblems in parallel).

Let us present a few more significant P-complete problems arising in several
fields of combinatorics.

260 Parallel algorithms

Example 12.9 The circuit value problem has been defined in Example 11.2. The
P-completeness of this problem follows immediately from Theorem 11.3 and by reasoning
as in the proof of the NP-completeness of satisfiability. Indeed, it is easy to verify
that the construction of the circuit described in the proof of Theorem 11.3 requires
logarithmic space (see Problem 11.3).

Example 12.10 linear programming: given an n×m integer matrix A, an n integer
row vector B, an m integer column vector C and an integer k, does an m non-negative
rational row vector X exist satisfying both AX ≤ B and CX ≥ k? This problem has
been shown to belong to P (see Notes) and it is also P-complete. A straightforward
reduction can be obtained from circuit value in the following way (we assume without
loss of generality that the circuit does not include ∨ gates):

1. Transform each input gate gj with value 1 into the equation xj = 1 and each input
gate gj with value 0 into the equation xj = 0 (note that an equality x = y can be
replaced by the two inequalities x ≤ y and −x ≤ −y).

2. Transform each ∧ gate gj whose inputs are from gates gh and gi into the inequalities
xj ≤ xh, xj ≤ xi, xj ≥ xh + xi − 1.

3. Transform each ¬ gate gj whose input is from gate gi into the equation xj = xi−1.

4. If gj is the circuit output gate, then add the equation xj = 1 to the previous ones.

Consider the circuit represented in Figure 12.2. Thus, the corresponding set of in-
equalities obtained from the above reduction is the following:

1. Input gates: x1 = 1, x2 = 0, x3 = 0, x4 = 1.

2. ∧ gates: x7 ≤ x1, x7 ≤ x4, x7 ≥ x1 + x4 − 1, x8 ≤ x2, x8 ≤ x6, x8 ≥ x2 + x6 − 1,
x9 ≤ x5, x9 ≤ x8, x9 ≥ x5 + x8 − 1, x10 ≤ x9, x10 ≤ x7, x10 ≥ x9 + x7 − 1.

3. ¬ gates: x5 = x1 − 1, x6 = x3 − 1.

4. Output gate: x10 = 1.

We leave it to the reader to verify that each feasible solution is a 0-1 vector, that a
feasible solution exists if and only if the circuit value is 1, and that the reduction requires
logarithmic space.

Example 12.11 generic machine simulation: given an input x, an encoding of a
Turing machine T , and an integer t coded in unary, does T accept x within t steps?

Clearly, this problem belongs to P since the unary encoding of t gives enough time for
the universal Turing machine to simulate the computation T (x) in polynomial time with
respect to the input length.

Reducing an arbitrary language L in P to generic machine simulation is also easy
since the reduction f must only transform x into the new word of the form

f(x) = 〈x, T, 1p(|x|)〉

Problems 261

1 0 0 1

¬¬

∧

∧

� � � � ∧

∧

Figure 12.2 A simple circuit without ∨ gates

where T denotes the encoding of a Turing machine deciding L in polynomial time p(n).
This transformation is easily performed in logarithmic space, and thus generic machine
simulation is P-complete.

Let us conclude with two comments on P-complete problems.

First, since it seems unlikely that P ⊆ RNC, a proof that a problem is P-complete
is a strong indication that the same problem does not belong to RNC.

Second, note that the set of problems which do not admit fast parallel algo-
rithms is not necessarily limited to P-complete problems. Indeed, according to
Lemma 12.2, the set P − NC (assuming P 6= NC holds) may also include other
problems which are not P-complete. As an example, any problem (if it exists)
which is complete with respect to ≤NC but not to ≤log also belongs to P− NC.

Problems

12.1. Complete the proof of Lemma 12.3.

12.2. Extend the algorithm described in Example 12.3 to the case where x may include
components having the same value.

262 Parallel algorithms

12.3. Derive a fast parallel algorithm to check whether a graph is connected.

12.4. A minimum spanning tree of a weighted connected graph G = (N,E) is defined as
an acyclic subgraph G′ = (N,E′) such that the total weight of its edges is minimum. De-
rive a fast parallel algorithm to compute the minimum spanning tree. [Hint: ‘parallelize’
the well-known sequential greedy algorithm.]

12.5. Prove that computing the determinant is FNC1-reducible to solving a system of
linear equations. [Csanky (1976)]

12.6. Show that RNC is included in BPP.

12.7. Show that the problem of deciding whether a graph admits a perfect matching
belongs to NC. [Hint: use Theorem 9.4.]

12.8. Consider a restriction of circuit value in which the gates are only of type ∨
and ¬. Show that such a problem is P-complete. [Hint: show that circuit value is
logspace-reducible to the new problem.]

12.9. Given a graph G = (N,E) and a node, consider the problem of determining
whether that node is contained in the lexicographically first subset E′ of E such that
no two nodes in E′ are adjacent. Show that this problem is P-complete. [Hint: refer to
previous problem.]

12.10. A term is a composition of variables and function symbols. A substitution for
a variable x in a term s is the replacement of all the occurrences of x in s by another
term t. Given two terms s and t, consider the problem of deciding whether a series of
substitutions exists that unifies s and t, that is, such that, at the end of the substitutions,
the two terms coincide. Prove that this problem is P-complete. [Hint: refer to Problem
12.8.]

12.11. A weaker concept of P-completeness refers to algorithms instead of languages.
Given an algorithm T , let us consider the following language:

LT = {〈x, b, i〉 : the ith bit of T (x) is b}.

An algorithm is said to be P-complete if the corresponding language is P-complete.
Given a graph G and a node n, find a path starting from n that cannot be extended.

Consider the following greedy algorithm to solve this problem:

begin {input: G = (N,E), n}
path := {n};
m := n;
while m has an adjacent node not in path do
begin

u := adjacent node of m not in path with lowest index;
add u to path;
m := u;

end;
end.

Prove that the above algorithm is P-complete. [Hint: refer to Problem 12.8.]

Notes 263

Notes

The class NC was first studied in Pippenger (1979) who defined it as the class of
languages decided by polynomial-time deterministic Turing machines performing a
logarithmic number of tape head reversals (the reversals associated with a compu-
tation correspond to the number of times the tape heads changes direction). The
definition of NC in terms of uniform circuit families is due to Cook (1979) who also
coined the term NC which stands for ‘Nick’s Class’ as a reminder of Pippenger’s
first name.

The class AC, and thus the characterization of NC in terms of PRAMs, was
described in Stockmeyer and Vishkin (1984).

Two additional important contribution to the understanding of NC were given in
Ruzzo (1981). First, several circuit uniformity conditions were considered besides
the logspace-uniformity introduced in Chapter 11 and it was proved that the defini-
tion of NC remains substantially the same when referring to these other conditions.
Next, a characterization of NC in terms of random access alternating Turing ma-
chines was given. This kind of alternating Turing machine does not make use of
the input tape but rather of an index tape onto which the computation writes the
index i of the input symbol to be read. Random access alternating machines are a
convenient model to prove the inclusion in NC of some difficult problems. As an
example, it was shown in Ruzzo (1980) that deciding whether an input x can be
derived from a given type 2 grammar is in NC2.

We may conclude from the above discussion that NC is a rather robust class
which captures efficiently the concept of problem admitting a fast parallel algo-
rithm.

The parallel algorithms described in Sections 12.2 and 12.3 are only a very lim-
ited and somewhat arbitrarily chosen sample. In fact, the introduction of massively
parallel computers has stimulated researchers to revisit the field of sequential al-
gorithms and provide whenever possible corresponding fast parallel algorithms.
Techniques useful for designing parallel algorithms were reviewed, among many
others, in the books of Gibbons and Rytter (1988) and of Akl (1989). Further
surveys of parallel algorithms may be found in Kindervater and Lenstra (1986),
Eppstein and Galil (1988), Karp and Ramachandran (1990).

The algorithms illustrated in Examples 12.3, 12.4, and 12.5 appeared in Muller
and Preparata (1975), Dekel, Nassimi, and Sahni (1981), and Dekel and Sahni
(1983), respectively.

Thanks to the results contained in Borodin (1977), a large class of natural prob-
lems have been shown to be in NC, namely, those belonging to NLOGSPACE and
to coNLOGSPACE. Further enrichments of NC were discussed in Cook (1985).

One of the first parallel algorithms for inverting a matrix was given in Csanky
(1976). Further extensions to non-numeric fields, that is, methods which do not
make use of divisions, were developed in Berkowitz (1984).

The applications of matrix inversion are well known and, not surprisingly, a
subclass of NC included between NC1 and NC2 and denoted as DET was introduced

264 Parallel algorithms

in Cook (1985) and it was shown that the problems of computing the determinant
and the power of a matrix, and that of inverting a matrix are DET-complete with
respect to NC1-reducibility.

The RNC algorithm for bipartite maximum matching and the companion
lemmas illustrated in Section 12.3.1 appeared in Mulmuley, Vazirani, and Vazirani
(1987). Other problems in RNC2 can be found in Borodin, von zur Gathen, and
Hopcroft (1982). New results are still appearing and we refer the reader to the
technical literature for an updated survey of additional RNC algorithms.

The P-completeness of circuit value was proved in Ladner (1975b). The
problem linear programming deserves some additional comments. The simplex
method commonly used cannot be considered a polynomial-time algorithm since in
the worst case the execution time becomes exponential with respect to the size of
the problem instance and it had been conjectured for several years that this problem
does not belong to P. The work of Khachiyan (1979) and of Karmakar (1984)
has shown that linear programming does belong to P although the practical
sgnificance of this result has yet to be understood. In the same work by Khachiyan
and in a successive work by Dobkin and Reiss (1980), the P-completeness of linear
programming was proved.

Finally, a few comments on the problem generic machine simulation in-
troduced in Example 12.11. In Greenlaw, Hoover, and Ruzzo (1991), its P-
completeness is used to provide evidence that NC 6= P: their reasoning can be
summarized as follows. First, note that the universal machine used in the proof
need not be a Turing machine since it could be replaced by any interpreter writ-
ten for some high-level programming language such as Pascal or Lisp. We are
thus looking for a programming language interpreter that is able to achieve highly
parallel execution on completely arbitrary programs. Since program code can be
remarkably obscure, our ability to deduce (mechanically) non-trivial properties of
programs given just the text of the sequential progam is severely limited. In fact,
parallel compiler optimizations rarely make radical alterations to the set of interme-
diate values computed by a program, to the method by which they are computed,
or even to the order in which they are computed, while such transformations would
certainly be necessary to achieve a highly parallel generic simulation.

References

Abrahamson, K., Fellows, M. R., Langston, M. A., and Moret, B., “Construc-
tive complexity”, Technical Report, Department of Computer Science, Washington
State University, 1988.

Adleman, L.M. and Huang, M.A., “Recognizing primes in random polynomial
time”, Technical Report, University of Southern California, 1988.

Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The design and analysis of computer
algorithms, Addison-Wesley, 1974.

Akl, S.G. The design and analysis of parallel algorithms, Prentice Hall, 1989.

Arora, S. and Safra, S., “Probabilistic checking of proofs; a new characterization
of NP”, Proc. IEEE Symposium on Foundations of Computer Science, 2-13, 1992.

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M., “Proof verifica-
tion and the hardness of approximation problems”, Proc. IEEE Symposium on
Foundations of Computer Science, 14-23, 1992.

Aspvall, B., Plass, M. F., and Tarjan, R. E., “A linear time algorithm for testing
the truth of certain quantified Boolean formulas”, Information Processing Letters,
8, 121-123, 1979.

Ausiello, G., “Abstract computational complexity and cycling computations”, Jour-
nal of Computer and System Sciences, 5, 118-128, 1971.

Ausiello, G., D’Atri, A., and Protasi, M., “Structure preserving reduction among
convex optimization problems”, Journal of Computer and System Sciences, 21,
136-153, 1980.

Ausiello, G., Marchetti Spaccamela, A., and Protasi, M., “Towards a unified ap-
proach for the classification of NP-complete optimization problems”, Theoretical
Computer Science, 12, 83-96, 1980.

Babai, L., Talk presented at Proc. IEEE Symposium on Foundations of Computer
Science, 1979.

265

266 References

Babai, L., “Trading group theory for randomness”, Proc. ACM Symposium on
Theory of Computing, 421-429, 1985.

Babai, L., Fortnow, L., and Lund, C., “Non-deterministic exponential time has
two-prover interactive protocols”, Computational Complexity, 1, 3-40, 1991.

Babai, L., Fortnow, L., Levin, L., and Szegedy, M., “Checking computations in
polylogarithmic time”, Proc. ACM Symposium on Theory of Computing, 21-31,
1991.

Baker, B.S., “Approximation algorithms for NP-complete problems on planar gra-
phs”, Proc. IEEE Symposium on Foundations of Computer Science, 265-273, 1983.

Baker, T., Gill, J., and Solovay R., “Relativizations of the P=?NP question”, SIAM
Journal on Computing, 4, 431-442, 1975.

Balcazar, J.L., Diaz, J., and Gabarro, J., Structural complexity I, Springer-Verlag,
1988.

Balcazar, J.L., Diaz, J., and Gabarro, J., Structural complexity II, Springer-Verlag,
1990.

Balcazar, J.L. and Russo, D.A., “Immunity and simplicity in relativizations of
probabilistic complexity classes”, Theoretical Informat. Applied, 22, 227-244, 1988.

Beigel, R., Reingold, N., and Spielman, D., “PP is closed under intersection”,
Technical Report, Yale University, 1990.

Bennett, C. and Gill, J., “Relative to random oracle A, PA 6= NPA 6= coNPA with
probability 1”, SIAM Journal on Computing, 10, 96-113, 1981.

Berge, C. “Two theorems in graph theory”, Proc. of National Academy of Science,
43, 842-844, 1957.

Berkowitz, S.J., “On computing the determinant in small parallel time using a
small number of processors”, Information Proc. Letters, 18, 147-150, 1984.

Berman, P., “Relationships between density and deterministic complexity of NP-
complete languages”, Lecture Notes in Computer Science, Vol. 62, Springer-Verlag,
63-71, 1978.

Berman, L. and Hartmanis, J., “On isomorphisms and density of NP and other
complete sets”, SIAM Journal on Computing, 6, 305-322, 1977.

Blass, A. and Gurevich, Y., “On the unique satisfiability problem”, Information
and Control, 55, 80-88, 1982.

Blum, M., “A machine independent theory of the complexity of recursive func-
tions”, Journal of ACM, 14, 322-336, 1967a.

Blum, M., “On the size of machines”, Information and Control, 11, 257-265, 1967b.

Blum, M., “How to prove a theorem so no one else can claim it”, International
Congress of Mathematicians, 1986.

References 267

Blum, N., “A Boolean function requiring 3n network size”, Theoretical Computer
Science, 28, 337-345, 1984.

Book, R.V., “Tally languages and complexity classes”, Information and Control,
26, 186-193, 1974.

Book, R.V., “Restricted relativizations of complexity classes”, in: Hartmanis, J.,
ed., Computational complexity theory, Proc. Symposia in Applied Mathematics, 38,
47-74, 1989.

Book, R.V., Long T., and Selman A., “Qualitative relativization of complexity
classes”, Journal of Computer and System Sciences, 30, 395-413, 1985.

Borodin, A., “Computational complexity and the existence of complexity gaps”,
Journal of ACM, 19, 158-174, 1972.

Borodin, A., “On relating time and space to size and depth”, SIAM Journal on
Computing, 6, 733-743, 1977.

Borodin, A., von zur Gathen, J., and Hopcroft, J., “Fast parallel matrix and GCD
computations”, Proc. IEEE Symposium on Foundations of Computer Science, 65-
71, 1982.

Bovet, D.P., Crescenzi, P., and Silvestri, R., “Complexity classes and sparse ora-
cles”, Proc. IEEE Structure in Complexity Theory Conference, 102-108, 1991.

Bovet, D.P., Crescenzi, P., and Silvestri, R., “A uniform approach to define com-
plexity classes”, Theoretical Computer Science, 104, 263-283, 1992.

Bruschi, D., Joseph, D., and Young, P., “A structural overview of NP optimization
problems”, Algorithms Reviews, 2, 1-26, 1991.

Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L.A., Sewelson, V., Wag-
ner, K., and Wechsung, G., “The Boolean Hierarchy I: structural properties”,
SIAM Journal on Computing, 17, 1232-1252, 1988.

Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L.A., Sewelson, V., Wag-
ner, K., and Wechsung, G., “The Boolean Hierarchy II: applications”, SIAM Jour-
nal on Computing, 18, 95-111, 1989.

Cai, J. and Hemachandra, L.A., “The Boolean hierarchy: hardware over NP”,
Lecture Notes in Computer Science, Vol. 223, Springer-Verlag, 105-124, 1986.

Carmichael, R.D., “On composite numbers p which satisfy the Fermat congruence
ap−1 ≡ 1 (mod p)”, American Mathematical Monthly, 19, 22-27, 1912.

Chandra, A.K., Kozen, D.C., and Stockmeyer, L.J., “Alternation”, Journal of
ACM, 28, 114-133, 1981.

Chomsky, N., “On certain formal properties of grammars”, Information and Con-
trol, 2, 137-167, 1959.

Chomsky, N., “Formal properties of grammars”, in: Luce, R.D., Bush, R.R, and
Galanter, E., eds., Handbook of mathematical psychology, vol 2, Wiley, 323-418,
1963.

268 References

Cobham, A., “The intrinsic computational difficulty of functions”, Proc. Congress
for Logic, Mathematics, and Philosophy of Science, 24-30, 1964.

Constable, R.L., “The operator gap”, Journal of ACM, 19, 175-183, 1972.

Conway, J. and Gordon, C., “Knots and links in spatial graphs”, Journal of Graph
Theory, 7, 445-453, 1983.

Cook, S.A., “The complexity of theorem proving procedures”, Proc. ACM Sympo-
sium on Theory of Computing, 151-158, 1971.

Cook, S.A., “An observation on time-storage trade off”, Journal of Computer and
System Sciences, 7, 308-316, 1974.

Cook, S.A., “Deterministic CFL’s are accepted simultaneously in polynomial time
and log squared space”, Proc. ACM Symposium on Theory of Computing, 338-345,
1979.

Cook, S.A., “A taxonomy of problems with fast parallel algorithms”, Information
and Control, 64, 2-22, 1985.

Cook, S.A., Dwork, C., and Reischuk, R., “Upper and lower time bounds for
parallel random access machines without simultaneous writes”, SIAM Journal on
Computing, 15, 87-97, 1986.

Cormen, T.H., Leiserson, C.E., and Rivest, R.L., Introduction to algorithms, The
MIT Press, 1990.

Crescenzi, P. and Panconesi, A., “Completeness in approximation classes”, Infor-
mation and Computation, 93, 241-262, 1991.

Csanky, L., “Fast parallel matrix inverison algorithms”, SIAM Journal on Com-
puting, 5, 618-623, 1976.

Davis, M., Computability and unsolvability, McGraw-Hill, 1958.

Davis, M., ed., The undecidable, Raven Press, 1965.

Dekel, E., Nassimi, D., and Sahni, S., “Parallel matrix and graph algorithms”,
SIAM Journal on Computing, 10, 657-675, 1981.

Dekel, E. and Sahni, S., “Parallel scheduling algorithms”, Oper. Res., 31, 24-29,
1983.

de Leeuw, K., Moore, E.F., Shannon, C.E., and Shapiro, N., “Computability
by probabilistic machines”, in: Shannon, C.E., ed., Automata studies, American
Mathematical Society, 183-198, 1956.

Deming, K. W., “Independence numbers of graphs - an extension of the Konig -
Egervary property”, Discrete Mathematics, 27, 23-24, 1979.

Dijkstra, E.W., “A note on two problems in connection with graphs”, Numerische
Mathematik, 1, 269-271, 1959.

Dobkin, D.P. and Reiss, S., “The complexity of linear programming”, Theoretical
Computer Science, 11, 1-18, 1980.

References 269

Eckstein, D.M., “Simultaneous memory accesses”, Technical Report 79-6, Depart-
ment of Computer Science, Iowa State University, 1979.

Edmonds, J.R., “Paths, trees and flowers”, Canadian Journal of Mathematics, 17,
449-467, 1965.

Elgot, C.C. and Robinson, A., “Random access stored program machines”, Journal
of ACM, 11, 365-399, 1964.

Eppstein, D. and Galil, Z., “Parallel algorithmic techniques for combinatorial com-
putation”, Ann. Rev. Comput. Sci., 3, 233-283, 1988.

Even, S. and Tarjan, R.E., “A combinatorial problem which is complete in poly-
nomial space”, Journal of ACM, 23, 710-719, 1976.

Feige, U., Goldwasser, S., Lovasz, L., Safra, S., and Szegedy, M., “Approximating
clique is almost NP-complete”, Proc. IEEE Symposium on Foundations of Com-
puter Science, 2-12, 1991.

Fellows, M.R. and Langston, M.R., “Non constructive tools for proving polynomi-
al-time decidability”, Journal of ACM, 35, 727-739, 1988.

Fich, F.E., Radge, P., and Widgerson, A., “Relations between concurrent-write
models of parallel computations”, SIAM Journal on Computing, 17, 606-627, 1988.

Ford, L.R. Jr and Fulkerson, D.R., Flows in networks, Princeton University Press,
1962.

Fortnow, L. and Sipser, M., “Are there interactive protocols for co-NP languages?”,
Information Processing Letters, 28, 249-251, 1988.

Fortune, S. and Wyllie, J., “Parallelism in random access machines”, Proc. ACM
Symposium on Theory of Computing, 114-118, 1978.

Friedman, H., Robertson, N., and Seymour, P., “The metamathematics of the
graph-minor theorem,” AMS Contemporary Mathematics Series, 65, 229-261, 1987.

Furst, M., Hopcroft, J., and Luks, E., “A subexponential algorithm for trivalent
graph isomorphism”, Congressus Numerantium, 28, 421-446, 1980.

Furst, M., Saxe, J., and Sipser, M., “Parity, circuits, and the polynomial-time
hierarchy”, Mathematical System Theory, 17, 13-27, 1984.

Galil, Z., “Efficient algorithms for finding maximum matching in graphs”, ACM
Computing Surveys, 18, 23-38, 1986.

Garey, M.R. and Johnson, D.S., “Strong NP-completeness results: motivation,
examples, and implications”, Journal of ACM, 25, 499-508, 1978.

Garey, M.R. and Johnson, D.S., Computers and intractability: a guide to the theory
of NP-completeness, Freeman, 1979.

Gavril, F., “Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph”, SIAM Journal on
Computing, 1, 180-187, 1972.

270 References

Gibbons, A.M. and Rytter, W., Efficient parallel algorithms, Cambridge University
Press, 1988.

Gill, J., “Computational complexity of probabilistic Turing machines”, SIAM Jour-
nal on Computing, 6, 675-695, 1977.

Goldreich, O., “Randomness, interactive proof, and zero-knowledge. A survey”, in:
Herken, R., ed., The universal Turing machine. A half-century survey, Kammerer
und Unverzagt, 377-405, 1988.

Goldreich, O., Micali, S., and Wigderson, A., “Proofs that yield nothing but their
validity and a methodology for protocol design”, Proc. IEEE Symposium on Foun-
dations of Computer Science, 174-187, 1986.

Goldschlager, L.M., “The monotone and planar circuit value problems are logspace
complete for P”, SIGACT News, 9, 25-29, 1977.

Goldschlager, L.M., “A universal interconnection pattern for parallel computers”,
Journal of ACM, 29, 1073-1086, 1982.

Goldwasser, S., Micali, S., and Rackoff, C., “The knowledge complexity of interac-
tive proof systems”, SIAM Journal on Computing, 18, 186-208, 1989.

Goldwasser, S. and Sipser, M., “Private coins versus public coins in interactive
proof-systems”, Proc. ACM Symposium on Theory of Computing, 59-68, 1986.

Goldwasser, S., “Interactive proof systems”, Proc. Symposia in Applied Mathemat-
ics, 38, 108-128, 1989.

Graham, R.L., Knuth, D.E., and Patashnik, O., Concrete mathematics, Addison-
Wesley, 1989.

Greenlaw, R., Hoover, H.J., and Ruzzo, W., “A compendium of problems com-
plete for P”, Technical Report, Department of Computer Science and Engineering,
University of Washington, 1991.

Groslmusz, V. and Radge, P., “Incomparability in parallel computation”, Proc.
IEEE Symposium on Foundations of Computer Science, 89-98, 1987.

Gupta, U.I., Lee, D.T., and Leung, J.Y., “An optimal solution for the channel-
assignment problem”, IEEE Transactions on Computers, 28, 807-810, 1979.

Harison, M.A., Introduction to switching and automata theory, McGraw-Hill, 1965.

Hartmanis, J., “On sparse sets in NP-P”, Information Processing Letters, 16, 55-60,
1983.

Hartmanis, J., “Gödel, von Neumann and the P=?NP problem”, EATCS Bulletin,
38, 101-107, 1989.

Hartmanis, J. and Hopcroft, J.E., “An overview of the theory of computational
complexity”, Journal of ACM, 18, 444-475, 1971.

Hartmanis, J., Immerman, N., and Sewelson, W., “Sparse sets in NP-P: EXPTIME
versus NEXPTIME”, Information and Control, 65, 158-181, 1985.

References 271

Hartmanis, J. and Mahaney, S., “An essay about research on sparse NP-complete
sets”, Lecture Notes in Computer Science, Vol. 88, Springer-Verlag, 40-57, 1980.

Hartmanis, J. and Stearns, R.E., “On the computational complexity of algo-
rithms”, Transactions of the American Mathematical Society, 117, 285-306, 1965.

Hermes, H., Enumerability, decidability, computability, Springer-Verlag, 1969.

Hoffmann, C.M., “Group-theoretic algorithms and graph isomorphism”, Lecture
Notes in Computer Science, Vol. 136, Springer-Verlag, 1982.

Homer, S. and Maas, “Oracle-dependent properties of the lattice of NP sets”,
Theoretical Computer Science, 24, 279-289, 1983.

Hopcroft, J.E., Paul, J.W., and Valiant, L., “On time versus space”, Journal of
ACM, 24, 332-337, 1977.

Hopcroft, J.E. and Ullman, J.D., “Relations between time and tape complexities”,
Journal of ACM, 15, 414-427, 1968.

Hopcroft, J.E. and Ullman, J.D., Introduction to automata theory, languages, and
computation, Addison-Wesley, 1979.

Hunt, J.W., “Topics in probabilistic complexity”, PhD Dissertation, Stanford Uni-
versity, 1978.

Immerman, N., “Nondeterministic space is closed under complementation”, SIAM
Journal on Computing, 17, 935-938, 1988.

Johnson, D.S., “Approximation algorithms for combinatorial problems”, Journal
of Computer and System Sciences, 9, 256-278, 1974.

Johnson, D.S., “A catalog of complexity classes”, in: van Leeuwen, J., ed., Hand-
book of theoretical computer science, vol. A, Elsevier, 67-161, 1990.

Jones, N.D., “Space-bounded reducibility among combinatorial problems”, Journal
of Computer and System Sciences, 11, 68-85, 1975.

Joseph, D. and Young, P., “Some remarks on witness functions for nonpolynomial
and noncomplete sets in NP”, Theoretical Computer Science, 39, 225-237, 1985.

Karmakar, N., “A new polynomial-time algorithm for linear programming”, Com-
binatorica, 4, 373-395, 1984.

Karp, R.M., “Reducibility among combinatorial problems”, in: Miller, R.E. and
Tatcher, J.W., eds., Complexity of computer computations, Plenum Press, 85-103,
1972.

Karp, R.M., “An introduction to randomized algorithms”, Technical Report, Uni-
versity of California, Berkeley, 1990.

Karp, R.M. and Lipton, R.J., “Some connections between nonuniform and uniform
complexity classes”, Proc. ACM Symposium on Theory of Computing, 302-309,
1980.

272 References

Karp, R.M. and Ramachandran, V., “Parallel algorithms for shared-memory ma-
chines”, in: van Leeuwen, J., ed., Handbook of theoretical computer science, vol.
A, Elsevier, 871-941, 1990.

Khachiyan, L.G., “A polynomial algorithm in linear programming”, Soviet Math.
Dokl., 20, 191-194, 1979.

Kleene, S.C., “General recursive functions of natural numbers”, Matematische An-
nalen, 112, 727-742, 1936.

Kleene, S.C., Introduction to metamathematics, North-Holland, 1962.

Knuth, D.E., The art of computer programming, vol. 1: fundamental algorithms,
Addison-Wesley, 1968.

Ko, K., “Some observations on the probabilistic algorithms and NP-hard prob-
lems”, Information Processing Letters, 14, 39-43, 1982.

Kobayashi, K., “On proving time constructibility of functions”, Theoretical Com-
puter Science, 35, 215-225, 1985.

Kolaitis, P.G. and Thakur M.N., “Approximation properties of NP minimization
classes”, Proc. IEEE Structure in Complexity Theory Conference, 353-366, 1991.

Kozen, D.C., The design and analysis of algorithms, Springer-Verlag, 1992.

Kranakis, E., Primality and cryptography, Wiley-Teubner, 1986.

Krentel, M., “The complexity of optimization problems”, Journal of Computer and
System Sciences, 36, 490-509, 1988.

Kucera, L., “Parallel computation and conflicts in memory access”, Information
Processing Letters, 14, 93-96, 1982.

Kuroda, S.Y., “Classes of languages and linear-bounded automata”, Information
and Control, 7, 207-223, 1964.

Kurtz, S.A., Mahaney, S.R., and Royer, J.S., “The structure of complete degrees”,
in: Selman, A., ed., Complexity theory retrospective, Springer-Verlag, 108-146,
1990.

Ladner, R.E., “On the structure of polynomial-time reducibility”, Journal of ACM,
22, 155-171, 1975a.

Ladner, R.E., “The circuit value problem is logspace complete for P”, SIGACT
News, 7, 18-20, 1975b.

Ladner, R.E, Lynch, N.A., and Selman, A.L., “A comparison of polynomial time
reducibilities”, Theoretical Computer Science, 1, 103-124, 1975.

Landweber, L., Lipton, R., and Robertson, E., “On the structure of sets in NP
and other complexity classes”, Theoretical Computer Science, 15, 181-200, 1981.

Lewis, H.R. and Papadimitriou, C.H., Elements of the theory of computation, Pren-
tice Hall, 1981.

References 273

Li, M. and Vitany, P.M.B., “Kolmogorov complexity and its applications”, in:
van Leeuwen, J., ed., Handbook of theoretical computer science, vol. A, Elsevier,
187-254, 1990.

Liskiewicz, M. and Lorys, K., “Some time-space bounds for one-tape deterministic
Turing machines”, Lecture Notes in Computer Science, Vol. 380, Springer-Verlag,
297-307, 1989.

Long, T.J. and Selman, A.L., “Relativizing complexity classes with sparse sets”,
Journal of ACM, 33, 618-628, 1986.

Lorys, K. and Liskiewicz, M., “Two applications of Fürer’s counter to one-tape
nondeterministic TMs”, Lecture Notes in Computer Science, Vol. 324, Springer-
Verlag, 445-453, 1988.

Lovasz, L., “On determinants, matchings, and random algorithms”, in: Budach, L.,
ed., Proc. Symposium on Fundamentals of Computing Theory, Akademia-Verlag,
565-574, 1979.

Lund, C., Fortnow, L., Karloff, H., and Nisan, N., “Algebraic methods for interac-
tive proof systems”, Journal of ACM, 39, 859-868, 1992.

Lund, C. and Yannakakis, M., “On the hardness of approximating minimization
problems”, Proc. ACM Symposium on Theory of Computing, 1993.

Lupanov, O.B., “On the synthesis of contact networks”, Doklady Akademia Nauk
SSSR, 119, 23-26, 1958.

Machtey, M. and Young, P., An introduction to the general theory of algorithms,
Elsevier, 1978.

Mahaney, S.R., “Sparse complete sets for NP: solution of a conjecture by Berman
and Hartmanis”, Journal of Computer and System Sciences, 25, 130-143, 1982.

Markov, A.A., “Theory of algorithms”, Trudy Mathematicheskogo Instituta imeni
V.A. Steklova, 42, 1954.

Meyer, A.R. and Stockmeyer, L.J., “The equivalence problem for regular expres-
sions with squaring requires exponential space”, Proc. IEEE Symposium on Switch-
ing and Automata Theory, 125-129, 1972.

Miller, G.L., “Riemann’s hypothesis and tests for primality”, Journal of Computer
and System Sciences, 13, 300-317, 1976.

Miller, G.L., “On the nlog n isomorphism technique: a preliminary report”, Proc.
ACM Symposium on Theory of Computing, 51-58, 1978.

Minsky, M.L., Computation: finite and infinite machines, Prentice Hall, 1967.

Miyano, S., Shiraishi, S., and Shoudai, T., “A list of P-complete problems”, Tech-
nical Report RIFIS-TR-CS-17, Kyushu University 33, 1989.

Muller, D.L. and Preparata, F., “Bounds to complexity of networks for sorting and
for switching”, Journal of ACM, 22, 195-201, 1975.

274 References

Mulmuley, K., Vazirani U.V., and Vazirani, V.V., “Matching is as easy as matrix
inversion”, Proc. ACM Symposium on Theory of Computing, 345-354, 1987.

Nassimi, D. and Sahni, S., “Data broadcasting in SIMD computers”, IEEE Trans-
actions on Computers, C-30, 101-107, 1981.

Norman, R.Z. and Rabin, M.O., “An algorithm for a minimum cover of a graph”,
Proc. of the American Mathematical Society, 10, 315-319, 1959.

Orponen, P. and Mannila, H., “On approximation preserving reductions: complete
problems and robust measures”, Technical Report, University of Helsinki, 1987.

Papadimitriou, C.H., “Games against nature”, Proc. IEEE Symposium on Foun-
dations of Computer Science, 446-450, 1983.

Papadimitriou, C.H. and Steiglitz, K., Combinatorial optimization: algorithms and
complexity, Prentice Hall, 1982.

Papadimitriou, C.H. and Wolfe, D., “The complexity of facets resolved”, Journal
of Computer and System Sciences, 37, 2-13, 1988.

Papadimitriou, C.H. and Yannakakis, M., “The complexity of facets (and some
facets of complexity)”, Journal of Computer and System Sciences, 28, 244-259,
1984.

Papadimitriou, C.H. and Yannakakis, M., “Optimization, approximation, and com-
plexity classes”, Journal of Computer and System Sciences, 43, 425-440, 1991.

Paz, A. and Moran, S., “Non deterministic polynomial optimization problems and
their approximation”, Theoretical Computer Science, 15, 251-277, 1981.

Petreschi, R. and Simeone, B., “Experimental comparison of 2-satisfiability algo-
rithms”, RAIRO Operation Research, 25, 241-264, 1991.

Pippenger, N., “On simultaneous resource bounds”, Proc. IEEE Symposium on
Foundations of Computer Science, 307-311, 1979.

Pippenger, N. and Fischer, M.J., “Relations among complexity measures”, Journal
of ACM, 26, 361-381, 1979.

Post, E.L., “Formal reductions of the general combinatorial decision problem”,
American Journal of Mathematics, 65, 197-215, 1943.

Pratt, V.R., “Every prime has a succinct certificate”, SIAM Journal on Computing,
4, 214-220, 1975.

Pratt, V.R. and Stockmeyer, L.J., “A characterization of the power of vector ma-
chines”, Journal of Computer and System Sciences, 12, 198-221, 1976.

Rabin, M.O., “Degree of difficulty of computing a function and a partial ordering
of recursive sets”, Technical Report 2, Hebrew University, Jerusalem, 1960.

Rabin, M.O., “Probabilistic algorithms”, in: Traub, J.F., ed., Algorithms and
complexity, recent results and new direction, Academic Press, 21-40, 1976.

References 275

Rabin, M.O., “Probabilistic algorithm for testing primality”, Journal of Number
Theory, 12, 128-138, 1980.

Riordan, J. and Shannon, C.E., “The number of two-terminal series-parallel net-
works”, Journal of Mathematics and Physics, 21, 83-93, 1942.

Robson, J.M., “N by N checkers is Exptime complete”, SIAM Journal on Com-
puting, 13, 252-267, 1984.

Rogers, H. Jr, Theory of recursive functions and effective computability, McGraw-
Hill, 1967.

Ruzzo, W.L., “Tree-size bounded alternation”, Journal of Computer and System
Sciences, 21, 218-235, 1980.

Ruzzo, W.L., “On uniform circuit complexity”, Journal of Computer and System
Sciences, 22, 365-383, 1981.

Santos, E., “Probabilistic Turing machines and computability”, Proc. of the Amer-
ican Mathematical Society, 22, 704-710, 1969.

Savage, J.E., “Computational work and time of finite machines”, Journal of ACM,
19, 660-674, 1972.

Savage, J.E., The complexity of computing, Wiley, 1976.

Savitch, W.J., “Relationship between nondeterministic and deterministic tape com-
plexities”, Journal of Computer and System Sciences, 4, 177-192, 1970.

Schmidt, D., “The recursion-theoretic structure of complexity classes”, Theoretical
Computer Science, 38,143-156, 1985.

Schöning, U., “A uniform approach to obtain diagonal sets in complexity classes”,
Theoretical Computer Science, 18, 95-103, 1982a.

Schöning, U., “Relativization and infinite subsets of NP sets”, unpublished manu-
script, 1982b.

Schöning, U., “On the structure of ∆p
2”, Information Processing Letters, 16, 209-

211, 1983.

Schöning, U., “Complexity and structures”, Lecture Notes in Computer Science,
Vol. 211, Springer-Verlag, 1985.

Schöning, U., “Graph isomorphism is in the low hierarchy”, Lecture Notes in Com-
puter Science, Vol. 247, Springer-Verlag, 114-124, 1986.

Schöning, U. and Book, R.V., “Immunity, relativizations and nondeterminism”,
SIAM Journal on Computing, 13, 329-337, 1984.

Schroeder, M.R., Number theory in science and communication, Springer-Verlag,
1984.

Schwartz, J.T., “Fast probabilistic algorithms for verification of polynomial iden-
tities”, Journal of ACM, 27, 701-717, 1980.

276 References

Seiferas, J.J., “Machine-independent complexity theory”, in: van Leeuwen, J., ed.,
Handbook of theoretical computer science, vol. A, Elsevier, 163-186, 1990.

Selman, A.L., “Complexity issues in cryptography”, Proc. Symposia in Applied
Mathematics, 38, 92-107, 1989.

Shamir, A., “IP=PSPACE”, Journal of ACM, 39, 869-877, 1992.

Shannon, C.E., “The synthesis of two-terminal switching circuits”, Bell Systems
Technical Journal, 28, 59-98, 1949.

Shen, A., “IP=PSPACE: simplified proof”, Journal of ACM, 39, 878-880, 1992.

Shepherdson,J.C. and Sturgis, H.E., “Computability of recursive functions”, Jour-
nal of ACM, 10, 217-255, 1963.

Simon, J., “On some central problems in computational complexity”, Technical
Report, Cornell University, 1975.

Sipser, M., “On relativization and the existence of complete sets”, Lecture Notes
in Computer Science, Vol. 140, Springer-Verlag, 523-531, 1982.

Snir, M., “On parallel searching”, Research Report 83-21, Department of Computer
Science, The Hebrew University of Jerusalem, 1983.

Solovay, R. and Strassen, V., “A fast Monte-Carlo test for primality”, SIAM Jour-
nal on Computing, 6, 84-85, 1977.

Spaan, E., Torenvliet L., and van Emde Boas, P., “Nondeterminism, fairness and
a fundamental analogy”, EATCS Bulletin, 37, 186-193, 1989.

Stearns, R.E., Hartmanis, J., and Lewis, P.M., “Hierarchies of memory limited
computations”, Proc. 6th Annual Symp. on Switching Circuit Theory and Logical
Design, 179-190, 1965.

Stockmeyer, L.J., “The polynomial-time hierarchy”, Theoretical Computer Science,
3, 1-22, 1977.

Stockmeyer, L.J., “On approximation algorithms for #P”, SIAM Journal on Com-
puting, 14, 849-861, 1985.

Stockmeyer, L.J. and Meyer, A.R., “Word problems requiring exponential time”,
Proc. ACM Symposium on Theory of Computing, 1-9, 1973.

Stockmeyer, L. and Vishkin, U., “Simulation of parallel random access machines
by circuits”, SIAM Journal on Computing, 13, 409-422, 1984.

Toda, S., “On the computational power of PP and ⊕P”, Proc. IEEE Symposium
on Foundations of Computer Science, 514-519, 1989.

Turing, A.M., “On computable numbers, with an application to the Entschei-
dungsproblem”, Proc. London Mathematical Society ser. 2, 42, 230-265, 1936.

Turing, A.M., “Systems of logic based on ordinals”, Proc. London Mathematical
Society ser. 2, 45, 161-228, 1939.

References 277

Tutte, W.T., “The factors of graphs”, Canadian Journal of Mathematics, 4, 314-
328, 1952.

Valiant, L.G., “Relative complexity of checking and evaluating”, Information Pro-
cessing Letters, 5, 20-23, 1976.

van Emde Boas, P., “Machine models and simulations”, in: van Leeuwen, J., ed.,
Handbook of theoretical computer science, vol. A, Elsevier, 1-66, 1990.

van Leeuwen, J., “Graph algorithms”, in: van Leeuwen, J., ed., Handbook of theo-
retical computer science, vol. A, Elsevier, 525-632, 1990.

Vishkin, U. “On the choice of a model of parallel computation”, manuscript, 1984.

Wechsung, G., “On the Boolean closure of NP”, Lecture Notes in Computer Sci-
ence, Vol. 199, Springer-Verlag, 485-493, 1985.

Wrathall, C., “Complete sets and polynomial time hierarchy”, Theoretical Com-
puter Science, 3, 23-33, 1977.

Yao, A.C., “Separating the polynomial-time hierarchy by oracles”, Proc. ACM
Symposium on Theory of Computing, 1-10, 1985.

Young, P., “Easy constructions in complexity theory: gap and speed-up theorems”,
Proc. of the American Mathematical Society, 37, 555-563, 1973.

Young, P., “Juris Hartmanis: fundamental contributions to isomorphism prob-
lems”, in: Selman, A., ed., Complexity theory retrospective, Springer-Verlag, 28-58,
1990.

Index

algorithm
ε-approximating 120
exponential 150
fast parallel 247
Las Vegas 187
Monte Carlo 187
polynomial-time 52
pseudo-polynomial 124
uniform PRAM 238
with bounded error probability 186

alphabet 10
assignment of values 54

bijection 4
Boolean formula

arithmetization of 210
equivalent 143
Horn 65
in conjunctive normal form 54
satisfied 54

Boolean hierarchy 140
breadth-first technique 7

Carmichael number 180
characteristic polynomial 254
Church’s thesis 12
circuit 222

acceptor 224
probabilistic 256
standard encoding of 225
transducer 224

circuit complexity 224

circuit family 227
depth 227
logspace-uniform 230
non-uniform 227
polynomial 227
size 227

class of languages
Boolean closure of 140
closed under finite variations 45
closed with respect to reducibility 38
closed with respect to the complement

44
complement of 36
constructively enumerable 45

classes
AC 249
AP 171
APX 120
BH 140
BPP 194
coNP 134
coR 195
∆p

k 144
FLOGSPACE 165
FNC 248
FNP 105
FP 52
FPAS 123
FRNC 256
IP 207
LEXP 150

278

Index 279

LOGSPACE 165
MIP 219
NC 248
NLEXP 150
NLOGSPACE 165
NP 70
NPC 72
NPEXP 150
NPI 88
NPO 112
O[] 42
P 52
PAS 122
PCp 93
PCP 215
PEXP 150
PH 144
Πp

k 144
PO 113
PP 194
PSPACE 171
PVp 93
R 194
RNC 256
Σp

k 144
UP 105
ZPP 194

clause (of a Boolean formula) 54
clique (see graph-complete)
COMMON 232
complexity measure

static 33
dynamic 33

DEPTH 224
NSPACE 36
NTIME 36
SIZE 224
SPACE 35
TIME 34
WSPACE 165

computation
deterministic 15
halting 15
nondeterministic 19
path 19

accepting 19

tree 19
connective 2
CRCW 232
CREW 232
cycle (of a graph) 9

diagonalization technique 7
slow 99

edge (of a graph) 8
ERCW 232
EREW 232
error probability 189

Fermat test 136
function 4

argument 4
bijective 4
computable 17
census 10
honest 65

one-way 105
injective 4
inverse 5
length-decreasing 79
length-increasing 79
multi-valued 93

computable 93
polynomially limited 93
verifiable 93

partial 4
polynomial-time computable 52
space-constructible 157
surjective 4
time-constructible 44
total 4
value 4

gap technique 215
gate 222

circuit 222
fan-in 226
fan-out 226
input 222
output 222

graph 8
bipartite 113
chordal 129

280 Index

complete 9
connected 9
directed 8
embedding 57
planar 129
spanning tree of 262
subgraph of 8
weighted 9

greatest common divisor (GCD) 52
group 89

isomorphic 90

induction technique 7
interactive proof systems 206

Arthur–Merlin 218
input (of a computation) 15

accepted 15

language 10
accepted 16
acceptable 26
C-immune 99
complement 10
complete

BHi- 141
C- 37
NP- 72
P- 167
PP- 197
PSPACE- 173
Σp

k- 148
decidable 26
diagonal 26
join 10
non-acceptable 26
p-isomorphic 79
p-selective 241
recursively enumerable 31
self-reducible 106
separator 37
sparse 11
tally 11
underlying 116

lexicographic order 10
line (of a circuit) 222
literal 54

matrix inversion 253
matroid 129

node (of a graph) 8
adjacent 8
children of 9
degree of 8
end-point 8
height 9

pair 3
parallel computation thesis 240
path (of a graph) 9

length 9
polynomial approximation scheme 122

fully 123
polynomial hierarchy 144
PRAM 230

memory cell 230
memory conflict 232
MIMD- 231
probabilistic 257
processor 230
SIMD- 231

PRIORITY 232
problem

decision 38
encoding of 40
language associated to 40

optimization 111
approximable 120
prefix version 117
NPO-complete 126

problems
bin packing 130
chess 39
circuit value 223
clique 78

exact 152
k- 56

colorability

2- 61
3- 70

cover 106
degree one 165
directed graph accessability 165

Index 281

equivalent formulas 143
generalized hexagon 176
generic machine simulation 260
graph isomorphism 207
group isomorphism 89
hamiltonian circuit 105
hitting set 78
integer expression inequivalence

153
knapsack 39
knotlessness 57
linear equations with integer co-

efficients 65
linear programming 260
longest path 40
matching

bipartite 113
bipartite perfect 257
perfect 184
3-dimensional 105

matrix product 199
maximum clique 112
maximum cut 129
maximum knapsack 131
maximum 2-satisfiability 130
minimum bin packing 130
minimum cover 112
minimum node cover 113
minimum partition 122
minimum satisfiability 127
minimum traveling salesman 113
minimum 0-1 programming 128
node cover 75

exact 140
partition 106

k-bounded 65
prime number 135
quadratic residue 217
qbf 173

k- 148
satisfiability 70

(i) 141
maximum 198
1/2- 189
3- 77
2- 54

scheduling fixed jobs 114
shortest path 39

weighted 250
solvable path systems 167
system of generators 106
traveling salesman 71
zero polynomial 183

proof
interactive 206
probabilistically checkable 215

pseudo-Pascal 47

quantifier 2
existential 2
universal 2

RAM 24
instruction 24
memory cell 24

index of 24
processor 24
program 24
state 24

RASP 30
reducibility

APX- 126
logspace- 167
m- 28
polynomial-time 60

relative error 120
relativization 95
relation 3

binary 3
codomain 3
domain 3
equivalence 4
inverse 5
n-ary 3
range 3
reflexive 4
symmetric 4
transitive 4

set 1
cardinality 5
Cartesian product 3
closed with respect to a relation 4

282 Index

countable 5
difference 2
disjoint 2
empty 1
equal 1
finite 1
infinite 1
intersection 2
partition 2
power 2
singleton 1
subset of 2

proper 2
symmetric difference 2
uncountable 5
union 2

simulation technique 37
solution (of a problem)

feasible 39
measure of 111
optimum 111
possible 39

space-complexity class
deterministic 157
nondeterministic 157

symbol 10
blank 13

tautology 65
time-complexity class

deterministic 44
nondeterministic 47
relativized 47

tree 9
alternating 22

value of 23
binary 9

complete 9
perfect 9

height 9
leaf 9
root 9

subtree of the 9
Turing machine

acceptor 15
alternating 22

k- 23

BPP- 190
degree of nondeterminism 19
deterministic 13
equivalent 20
global state 14

final 15
initial 15

nondeterministic 19
unambiguous 105

oracle 21
PP- 189
probabilistic 188
quintuple 13
R- 192
state 13

accepting 15
don’t know 193
existential 22
final 13
initial 13
no 21
query 21
rejecting 15
universal 22
yes 21

step 14
tape 13

cell 13
input 165
head 13
oracle 21
output 17
two-way infinite 58
working 165

transducer 17
universal 18
ZPP- 193

witness 179
compositeness 181

word 10
concatenation 10
empty 10
length 10
palindrome 42
prefix 10

