How hard is it to manipulate voting?

Sven Kosub

Theory of Computing

Department of Computer & Information Science

PZ 10** / toc.uni.kn

Lecture Series, October 20, 2016

- complexity theory and algorithms
- logic and discrete mathematics (e.g., game theory)
- communication networks/theory
- distributed computing
- programming/coding social systems

- alternatives, candidates, ... $X = \{x_1, \dots, x_m\}$
- agents, voters, ... $A = \{a_1, \ldots, a_n\}$
- preferences, utilities, ...
 bijective function π_i : X → {1,..., m} for each a_i ∈ A π_i(x) < π_i(y) means "voter a_i strictly prefers x over y"
- social choice function, voting rule, ... $F : \Pi^n \to X : (\pi_1, \dots, \pi_n) \mapsto x_j$

- alternatives, candidates, ... $X = \{x_1, \ldots, x_m\}$
- agents, voters, \dots $A = \{a_1, \dots, a_n\}$
- preferences, utilities, ...
 bijective function π_i : X → {1,..., m} for each a_i ∈ A π_i(x) < π_i(y) means "voter a_i strictly prefers x over y"
- social choice function, voting rule, ... $F : \Pi^n \to X : (\pi_1, \dots, \pi_n) \mapsto x_j$

- alternatives, candidates, ... $X = \{x_1, \dots, x_m\}$
- agents, voters, \dots $A = \{a_1, \dots, a_n\}$
- preferences, utilities, ... bijective function $\pi_i : X \to \{1, ..., m\}$ for each $a_i \in A$ $\pi_i(x) < \pi_i(y)$ means "voter a_i strictly prefers x over y"

• social choice function, voting rule, ... $F : \Pi^n \to X : (\pi_1, \dots, \pi_n) \mapsto x_j$

- alternatives, candidates, ... $X = \{x_1, \dots, x_m\}$
- agents, voters, \dots $A = \{a_1, \dots, a_n\}$
- preferences, utilities, ... bijective function $\pi_i : X \to \{1, ..., m\}$ for each $a_i \in A$ $\pi_i(x) < \pi_i(y)$ means "voter a_i strictly prefers x over y"
- social choice function, voting rule, ... $F : \Pi^n \to X : (\pi_1, \ldots, \pi_n) \mapsto x_j$

Example: 2014 Winter Olympics

119th IOC Session held in Guatemala City, July 4, 2007:

- $X = \{ \text{Pyeongchang}, \text{Sochi} \}, ||X|| = 2$
- $A = \{ \text{ Tamás Aján, Syed Shahid Ali, Béatrice Allen, ...} \}, ||A|| = 95$
- 48 IOC members: $1 = \pi_i$ (Sochi), $2 = \pi_i$ (Pyeongchang) 47 IOC members: $1 = \pi_i$ (Pyeongchang), $2 = \pi_i$ (Sochi)

•
$$F(\pi_1, ..., \pi_n) = \arg \max_{x \in X} ||A_x||$$
 where $A_x = \{a_i \in A \mid \pi_i(x) = 1\}$,
 $F(\pi_1, ..., \pi_{95}) = \text{Soch}$

119th IOC Session held in Guatemala City, July 4, 2007:

- voter a_i ∈ A with preference π_i(Pyeongchang) = 1 should vote for Pyeongchang (independently from voting behavior of other voters)
- voter a_i ∈ A with preference π_i(Sochi) = 1 should vote for Sochi (independently from voting behavior of other voters)
- given two alternatives, truthful voting is a dominant strategy

119th IOC Session held in Guatemala City, July 4, 2007:

 voter a_i ∈ A with preference π_i(Pyeongchang) = 1 should vote for Pyeongchang (independently from voting behavior of other voters)

 voter a_i ∈ A with preference π_i(Sochi) = 1 should vote for Sochi (independently from voting behavior of other voters)

• given two alternatives, truthful voting is a dominant strategy

119th IOC Session held in Guatemala City, July 4, 2007:

- voter a_i ∈ A with preference π_i(Pyeongchang) = 1 should vote for Pyeongchang (independently from voting behavior of other voters)
- voter a_i ∈ A with preference π_i(Sochi) = 1 should vote for Sochi (independently from voting behavior of other voters)

• given two alternatives, truthful voting is a dominant strategy

119th IOC Session held in Guatemala City, July 4, 2007:

- voter a_i ∈ A with preference π_i(Pyeongchang) = 1 should vote for Pyeongchang (independently from voting behavior of other voters)
- voter a_i ∈ A with preference π_i(Sochi) = 1 should vote for Sochi (independently from voting behavior of other voters)
- given two alternatives, truthful voting is a dominant strategy

Voting manipulation

Gibbard-Satterthwaite Theorem

For $||X|| \ge 3$, each (surjective) voting rule such that truthful voting is a dominant strategy for each voter is dictatorial.

interpretation:

- impossibility result
- generally, voting manipulation inavoidable

way out:

• voting rules that make it hard to find a manipulation

Gibbard-Satterthwaite Theorem

For $||X|| \ge 3$, each (surjective) voting rule such that truthful voting is a dominant strategy for each voter is dictatorial.

interpretation:

- impossibility result
- generally, voting manipulation inavoidable

way out:

• voting rules that make it hard to find a manipulation

Gibbard-Satterthwaite Theorem

For $||X|| \ge 3$, each (surjective) voting rule such that truthful voting is a dominant strategy for each voter is dictatorial.

interpretation:

- impossibility result
- generally, voting manipulation inavoidable

way out:

• voting rules that make it hard to find a manipulation

• constructive manipulation (for voting rule *F*):

input: candidate set X;

preference profiles (π_1, \ldots, π_k) with multiplicities (w_1, \ldots, w_k) for non-manipulators; multiplicities (w_{k+1}, \ldots, w_n) for manipulators; candidate $p \in X$

output: preference profiles $(\pi_{k+1}, \ldots, \pi_n)$ such that p wins the voting w.r.t. voting rule F

• destructive manipulation (for voting rule *F*):

input: candidate set X;

preference profiles (π_1, \ldots, π_k) with multiplicities (w_1, \ldots, w_k) for non-manipulators; multiplicities (w_{k+1}, \ldots, w_n) for manipulators; candidate $p \in X$

output: preference profiles $(\pi_{k+1}, \ldots, \pi_n)$ such that a candidate from $X \setminus \{p\}$ wins the voting w.r.t. voting rule F

- positional scoring protocols
- single transferable vote
- method of pairwise comparisons

• . . .

• positional scoring protocol (for *m* candidates):

$$F(\pi_1,\ldots,\pi_n;w_1,\ldots,w_n) =_{\mathrm{def}} \arg \max_{x \in X} \sum_{a_i \in A} w_i \cdot \alpha_{\pi_i(x)}$$

for scoring vector $\alpha = (\alpha_1, \ldots, \alpha_m), \alpha_j \in \mathbb{Z}, \alpha_1 \geq \cdots \geq \alpha_m$

Example: 2014 Winter Olympics

119th IOC Session held in Guatemala City, July 4, 2007:

- $X = \{ Pyeongchang, Salzburg, Sochi \}, ||X|| = 3$
- $A = \{ \text{ Tamás Aján, Syed Shahid Ali, Béatrice Allen, ...} \}, ||A|| = 95$

	20	14	11	14	12	4	8	12	95
Pyeongchang	3.	2.	2.	3.	1.	1.	1.	1.	
Salzburg	2.	3.	1.	1.	2.	3.	2.	3.	
Sochi	1.	1.	3.	2.	3.	2.	3.	2.	

Sven Kosub (University of Konstanz)

Positional scoring protocols

majority: $\alpha = (1, 0, 0)$

	20	14	11	14	12	4	8	12	
Pyeongchang	0	0	0	0	1	1	1	1	36
Salzburg	0	0	1	1	0	0	0	0	25
Sochi	1	1	0	0	0	0	0	0	34

veto: $\alpha = (0, 0, -1)$

	20	14	11	14	12	4		12	
Pyeongchang	-1			-1					-34
		-1				-1		-1	
			-1		-1		-1		-31

Sven Kosub (University of Konstanz)

Positional scoring protocols

majority: $\alpha = (1, 0, 0)$

	20	14	11	14	12	4	8	12	
Pyeongchang	0	0	0	0	1	1	1	1	36
Salzburg	0	0	1	1	0	0	0	0	25
Sochi	1	1	0	0	0	0	0	0	34

veto: $\alpha = (0, 0, -1)$

	20	14	11	14	12	4	8	12		I
Pyeongchang	-1	0	0	-1	0	0	0	0	-34	l
Salzburg	0	-1	0	0	0	-1	0	-1	-30	l
Sochi	0	0	-1	0	-1	0	-1	0	-31	l

Sven Kosub (University of Konstanz)

majority: $\alpha = (1, 0, 0)$

	20	14	11	14	12	4	8	12	
Pyeongchang	3.	2.	2.	3.	1.				
Salzburg	2.	3.	1.	1.	2.				
Sochi	1.	1.	3.	2.	3.				

manipulation goal: Salzburg

	20	14	11	14	12	4	8	12	
Pyeongchang	0	0	0	0	1				
Salzburg	0	0	1	1	0				
Sochi	1	1	0	0	0				

Sven Kosub (University of Konstanz)

majority: $\alpha = (1, 0, 0)$

	20	14	11	14	12	4	8	12	
Pyeongchang	3.	2.	2.	3.	1.	2.	2.	2.	
Salzburg	2.	3.	1.	1.	2.	1.	1.	1.	
Sochi	1.	1.	3.	2.	3.	3.	3.	3.	

manipulation goal: Salzburg

	20	14	11	14	12	4	8	12	
Pyeongchang	0	0	0	0	1	0	0	0	12
Salzburg	0	0	1	1	0	1	1	1	49
Sochi	1	1	0	0	0	0	0	0	34

Sven Kosub (University of Konstanz)

Positional scoring protocols: Borda count

Borda count: $\alpha = (2, 1, 0)$

	20	14	11	14	12	4	8	12	
Pyeongchang	3.	2.	2.	3.	1.	1.	1.	1.	
Salzburg	2.	3.	1.	1.	2.	3.	2.	3.	
Sochi	1.	1.	3.	2.	3.	2.	3.	2.	

	20	14	11	14	12	4	8	12	
Pyeongchang	0	1	1	0	2	2	2	2	97
Salzburg	1	0	2	2	1	0	1	0	90
Sochi	2	2	0	1	0	1	0	1	98

Sven Kosub (University of Konstanz)

Borda count: $\alpha = (2, 1, 0)$

	20	14	11	14	12	4	8	12	
Pyeongchang	3.	2.	2.	3.	1.				
Salzburg	2.	3.	1.	1.	2.				
Sochi	1.	1.	3.	2.	3.				

manipulation goal: Pyeongchang

	20	14	11	14	12	4	8	12	
Pyeongchang	0	1	1	0	2				
Salzburg	1	0	2	2	1				
Sochi	2	2	0	1	0				

Sven Kosub (University of Konstanz)

Borda count: $\alpha = (2, 1, 0)$

Pyeongchang3.2.Salzburg2.3.	2.	3.	1.	1.	1.	1.	
Salzburg 2. 3.							
ů l	1.	1.	2.				
Sochi 1. 1.	3.	2.	3.				

manipulation goal: Pyeongchang

	20	14	11	14	12	4	8	12		l
Pyeongchang	0	1	1	0	2	2	2	2	97	l
Salzburg	1	0	2	2	1				82	l
Sochi	2	2	0	1	0				82	l

Sven Kosub (University of Konstanz)

Borda count: $\alpha = (2, 1, 0)$

	20	14	11	14	12	4	8	12	
Pyeongchang	3.	2.	2.	3.	1.	1.	1.	1.	
Salzburg	2.	3.	1.	1.	2.	2.	2.	3.	
Sochi	1.	1.	3.	2.	3.	3.	3.	2.	

manipulation goal: Pyeongchang

	20	14	11	14	12	4	8	12	
Pyeongchang	0	1	1	0	2	2	2	2	97
Salzburg	1	0	2	2	1	1	1	0	94
Sochi	2	2	0	1	0	0	0	1	94

Sven Kosub (University of Konstanz)

Borda count: $\alpha = (2, 1, 0)$

	20	14	11	14	12	8	8	8	
Pyeongchang	3.	2.	2.	3.	1.	1.	1.	1.	
Salzburg	2.	3.	1.	1.	2.	2.	2.	3.	
Sochi	1.	1.	3.	2.	3.	3.	3.	2.	

manipulation goal: Pyeongchang

	20	14	11	14	12	8	8	8	
Pyeongchang	0	1	1	0	2	2	2	2	97
Salzburg	1	0	2	2	1	1	1	0	98
Sochi	2	2	0	1	0	0	0	1	90

Sven Kosub (University of Konstanz)

Dichotomy theorem für positional scoring protocols [Conitzer, Sandholm, Lang 2007; Hemaspaandra, Hemaspaandra 2007]

For a positional scoring protocol with scoring vector $\alpha = (\alpha_1, \ldots, \alpha_m)$, the constructive manipulation problem

- can be solved in polynomial time, if $\alpha_2 = \cdots = \alpha_m$,
- is NP-complete, otherwise.

(The statement is true already for three candidates.)

Consequence:

- majority easy to manipulate constructively
- veto and Borda count hard to manipulate constructively

Dichotomy theorem für positional scoring protocols [Conitzer, Sandholm, Lang 2007; Hemaspaandra, Hemaspaandra 2007]

For a positional scoring protocol with scoring vector $\alpha = (\alpha_1, \dots, \alpha_m)$, the constructive manipulation problem

- can be solved in polynomial time, if $\alpha_2 = \cdots = \alpha_m$,
- is NP-complete, otherwise.

(The statement is true already for three candidates.)

Consequence:

- majority easy to manipulate constructively
- veto and Borda count hard to manipulate constructively

• single transferable vote (for *m* candidates):

votes are collected in m-1 rounds;

in each round, the candidate with least number of votes (w.r.t. majority) is eliminated;

eliminated candidates are deleted from all preference profiles (i.e., votes are transferred to next ranks);

in final round, winner is determined w.r.t. majority

Vote transfers

first round

20	14	11	14	12	4	8	12	
3.	2.	2.	3.	1.	1.	1.	1.	
2.	3.	1.	1.	2.	3.	2.	3.	
1.	1.	3.	2.	3.	2.	3.	2.	
	2.	2. 3.	2. 3. 1. 1 1 3	2. 3. 1. 1.	2. 3. 1. 1. 2.	2. 3. 1. 1. 2. 3.	2. 3. 1. 1. 2. 3. 2.	2. 3. 1. 1. 2. 3. 2. 3.

majority: $\alpha = (1, 0, 0)$

	20	14	11	14	12	4	8	12	
Pyeongchang	0	0	0	0	1	1	1	1	36
Salzburg	0	0	1	1	0	0	0	0	25
Sochi	1	1	0	0	0	0	0	0	34

Sven Kosub (University of Konstanz)

Vote transfers

second round

	20	14	11	14	12	4	8	12	
Pyeongchang	2.	2.	1.	2.	1.	1.	1.	1.	
Salzburg	_	_	—	_	_	—	_	—	
Sochi	1.	1.	2.	1.	2.	2.	2.	2.	

majority: $\alpha = (1, 0)$

	20	14	11	14	12	4	8	12	
Pyeongchang	0	0	1	0	1	1	1	1	47
Salzburg	_	_	_	_	—	—	_	_	_
Sochi	1	1	0	1	0	0	0	0	48

Sven Kosub (University of Konstanz)

		constr	uctive		destructive		
voting rule	2	3	4, 5, 6	≥ 7	2	≥ 3	
majority	Р	Р	Р	Р	Р	Р	
veto	Р	NP	NP	NP	Р	Р	
Borda	Р	NP	NP	NP	Р	Р	
single transferable vote	Р	NP	NP	NP	Р	NP	
majority with run-off	Р	NP	NP	NP	Р	NP	
regular cup	Р	Р	Р	Р	Р	Р	
Copeland	Р	Р	NP	NP	Р	Р	
Simpson (Maximin)	Р	Р	NP	NP	Р	Р	
Schulze	Р	Р	Р	Р	Р	Р	

Example: 2014 Winter Olympics

119th IOC Session held in Guatemala City, July 4, 2007: What really happened?

- $X = \{ Pyeongchang, Salzburg, Sochi \}, ||X|| = 3$
- overall 111 IOC members but 13 excluded from voting, i.e., ||A|| = 98
- voting rule: single transferable vote

candidate	1st round	2nd round
Sochi	34	51
Pyeongchang	36	47
Salzburg	25	-

(3 IOC members from AUT/GER entitled to vote in 2nd round)

Regular lectures etc.

Theory

- Complexity Theory (WS 16, SS 18, 4+2) \longrightarrow starts Tue, Oct 25, 5pm
- Logic in Computer Science (SS 17, 4+0/2)
- Design and Analysis of Algorithms (WS, 4+2)
- Graph Drawing (SS, 4+2)
- ...
- individual bachelor's/master's projects and theses \longrightarrow by appointment

Compatible study profiles

everything related to algorithmics!

- Network Science
- Data Mining/Big Data
- Systems

Regular lectures etc.

Theory

- Complexity Theory (WS 16, SS 18, 4+2) \longrightarrow starts Tue, Oct 25, 5pm
- Logic in Computer Science (SS 17, 4+0/2)
- Design and Analysis of Algorithms (WS, 4+2)
- Graph Drawing (SS, 4+2)
- ...
- individual bachelor's/master's projects and theses \longrightarrow by appointment

Compatible study profiles:

everything related to algorithmics!

- Network Science
- Data Mining/Big Data
- Systems