Assignment 11

Ausgabe: 15 Jan 2014 Abgabe: 22 Jan 2014

Problem 1: Potential games

10 Points
(a) Prove or disprove that the following bimatrix game

$$
\Gamma_{1}=\left(\begin{array}{ll}
(0,3) & (1,2) \\
(3,1) & (2,0)
\end{array}\right)
$$

is a potential game.
Hint: Use the characterization mentioned in the lecture.
(b) Prove or disprove that the following bimatrix game

$$
\Gamma_{2}=\left(\begin{array}{ll}
(1,0) & (2,0) \\
(2,0) & (0,1)
\end{array}\right)
$$

is an ordinal potential game.

Problem 2: Friendship networks

Consider the formation of a friendship network of n neurotic persons. A neurotic person wants to have many friends but wants these friends not to be friends among each other. We formulate this scenario as a strategic game $\Gamma=(A, S, u)$ such that

- $A=\{1, \ldots, n\}$ is the set of persons,
- $S=S_{1} \times \cdots \times S_{n}$ where $S_{i}=\mathcal{P}(\{(i, j) \mid j \in A \backslash\{i\}\})$, i.e., i 's strategy is basically a set of selected persons; here, we consider friendship as a directed relationship which needs not necessarily be mutually confirmed,
- $u=\left(u_{1}, \ldots, u_{n}\right)$ where $u_{i}\left(s_{1}, \ldots, s_{n}\right)$ is the number of pairs $\{j, k\}$ such that $(i, j),(i, k) \in$ s_{i} but neither $(j, k) \in s_{j}$ nor $(k, j) \in s_{k}$.

Find a Nash equilibrium of Γ for n persons.
Hint: The Nash equilibrium is not unique.

Consider again the neurotic-network formation process in Problem 2. Assume that the utility functions are modified. That is, we consider a game $\Gamma=\left(A, S, u^{\prime}\right)$ where A and S are the same as above but u_{i}^{\prime} is defined as

$$
u_{i}^{\prime}\left(s_{1}, \ldots, s_{n}\right)==_{\operatorname{def}}\left\|s_{i}\right\|-\left\|\left\{\{j, k\} \mid(i, j),(i, k) \in s_{i} \wedge\left((j, k) \in s_{j} \vee(k, j) \in s_{k}\right)\right\}\right\|,
$$

i.e., i 's utility is the out-degree minus the number of pairs of simply connected friends.

For the local transition functions, we further assume that each person i in response to a given strategy profile $s=\left(s_{1}, \ldots, s_{n}\right)$ selects some strategy $\bar{s}_{i} \in S_{i}$ such that $u_{i}^{\prime}\left(\bar{s}_{i}, s_{i}\right)$ is maximized.
(a) Design a Netlogo program to simulate the game Γ for 10 persons assuming that each person updates according to the given local transition functions.
(b) Chart the time-series of the average out-degree for 10 persons and 100 iterations, averaged over 10 runs.

