Assignment 12

Ausgabe: 22 Jan 2014 Abgabe: 29 Jan 2014

Problem 1: Ordinal potential games

Prove or disprove that the following bimatrix game

$\Gamma = \left(\begin{array}{ccc} (1,2) & (2,3) & (3,1) \\ (2,2) & (3,1) & (1,3) \\ (3,3) & (1,1) & (2,2) \end{array} \right)$

is an ordinal potential game.

Hint: Check the Finite Improvement Property for Γ .

Problem 2: Improvement paths

Find a nondegenerate 2×3 -game Γ (i.e., a game with 2 players each of which has 3 strategies) such that the length of the longest (finite) improvement path of Γ is minimum among all nondegenerate 2×3 -games.

Hint: Construct an appropriate strict order for Γ .

Problem 3: Netlogo

For a loopless, directed graph G = (V, E) with *n* vertices, the *in-degree distribution* \mathbf{P}^{in} : $\{0, \ldots, n-1\} \rightarrow [0, 1]$ is given by

$$\mathbf{P}^{\text{in}}(i) = \frac{\|\{ v \in V \mid \text{in-deg}_G(v) = i \}\|}{n}.$$

Identify \mathbf{P}^{in} with a sequence $p = (p_0, p_1, \dots, p_{n-1})$ such that $p_i = \mathbf{P}^{\text{in}}(i)$, and define the *entropy* H(p) of the sequence p by

$$H(p) =_{\text{def}} - \sum_{i=0}^{n-1} p_i \log_2(p_i),$$

where $\log_2(0) = 0$ by convention.

Suppose you are given n persons each of which points to exactly one other person. Thus, a loopless, directed graph is constructed. Consider the associated potential game Γ (the strategies being pointers to other persons) with the potential function H.

Network Dynamics Winter 2013/14

10 Points

10 Points

10 Points

- (a) Design a Netlogo program for the game Γ which implements the best-response principle; ties are broken randomly. Initially, persons point to teach other in a circular fashion, i.e., person 1 points to person 2, person 2 points to person 3, ..., person n points to person 1. Find the maximum entropy of the game Γ . How does your fixed-point distribution look like?
- (b) Run a similar Netlogo program for the game Γ' where each person points to exactly two different persons. Assume that in each update step only one pointer can be redirected. Find the maximum entropy of the game Γ' . How does your fixed-point distribution look like?