Assignment 3

Ausgabe: 6 Nov 2013 Abgabe: 13 Nov 2013

Problem 1: Fixed-point analysis

10 Points
Consider the following AS graph together with total orderings of all path sets:

$$
\begin{array}{l:l}
P^{0} & :(0) \succ_{0} \varepsilon \\
P^{1} & :(1,0) \succ_{1}(1,2,0) \succ_{1}(1,3,0) \succ_{1}(1,3,2,0)={ }_{1}(1,2,3,0) \succ_{1} \varepsilon \\
P^{2} & :(2,3,0) \succ_{2}(2,1,0) \succ_{2}(2,1,3,0) \succ_{2}(2,3,1,0) \succ_{2}(2,0) \succ_{2} \varepsilon \\
P^{3} & :(3,1,0) \succ_{3}(3,1,2,0) \succ_{3}(3,0) \succ_{3}(3,2,0) \succ_{3}(3,2,1,0) \succ_{3} \varepsilon
\end{array}
$$

The AS graph depicted is oriented according to the customers and providers for each node. Note that a directed edge $u \rightarrow v$ indicates that u is a customer of v, and a directed edge $u \leftarrow v$ indicates that u is a provider of v.
(a) Eliminate all paths from the paths sets that are not valley-free or empty.
(b) Determine all customer paths in the remaining path sets.
(c) Is the Gao-Rexford convergence criterion satisfied for the remaining BGP system?

Problem 2: Valley-free orientations

Let $G=(V, E)$ be an undirected graph with vertex set $V=\{0,1,2, \ldots, n-1\}$. An orientation of an edge $e=\{u, v\}, u<v$, in G replaces e by exactly one of the directed edges $u \rightarrow v$ or $u \leftarrow v$. An orientation of G consists of orientations of all edges in G.
(a) Consider the following path set

$$
P=\{(1,2,5),(1,0,3,4,7),(7,4,5,8),(4,3,6,7)\}
$$

Find an orientation of the induced AS graph $G[P]$ such that all paths are valley-free and the oriented AS graph is acyclic.
(b) Find a path set P such that an orientation of $G[P]$ cannot satisfy the following both conditions simultaneously:
i. The oriented AS graph $G[P]$ is acyclic.
ii. All paths in P are valley-free.

Problem 3: Valley-free orientations

10 Points
For a path $p=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right)$ of length $\ell(p)=m \geq 2$, define the set

$$
I_{p}=_{\operatorname{def}}\left\{\left(v_{i-1}, v_{i}, v_{i+1}\right) \mid i \in\{1, \ldots, m-1\}\right\}
$$

of paths of length exactly 2 . We extend this definition to path sets P by defining

$$
I_{P}=\operatorname{def} \bigcup_{\substack{p \in P \\ \ell(p) \geq 2}} I_{p} \quad \cup\{p \in P \mid \ell(p) \leq 1\}
$$

(a) Determine I_{P} for the path set $P=\{(1,3,2,5,0),(4,3,2,1),(1,0),(0),(3,5,2)\}$.
(b) Show that for each path set P (not containing the empy path) the following two statements are equivalent:
i. There is an orientation of $G[P]$ such that all paths in P are valley-free.
ii. There is an orientation of $G\left[I_{P}\right]$ such that all paths in I_{P} are valley-free.

