# Assignment 4 

Ausgabe: 13 Nov 2013 Abgabe: 20 Nov 2013

## Problem 1: Time-dependent data

10 Points
In a very recent football match, Jordan played Uruguay in a 2014 FIFA World Cup Qualifier at home and lost $0-5$. Suppose we were able to record live data from the match in reverse chronological order. The first column denotes the time when a certain event happened and the second column denotes which side was affected by the event.

```
94:12 Finished
92:09 Goal by Uruguay scored by free kick
91:41 5th Goal for Uruguay: 0:5
90:57 2nd Half added time - 4 minutes
90:08 11th Corner to Uruguay
89:39 10th Corner to Uruguay
88:59 9th Corner to Uruguay
88:40 No clear indication of added time
80:06 6th Substitution Uruguay
78:42 8th Corner to Jordan
77:44 Goal by Uruguay scored by shot
77:16 4th Goal for Uruguay: 0:4
75:13 7th Corner to Jordan
73:56 6th Corner to Jordan
72:47 5th Corner to Jordan
69:43 5th Substitution Uruguay
69:32 4th Substitution Uruguay
69:05 Goal by Uruguay scored by shot
68:24 3rd Goal for Uruguay: 0:3
64:20 3rd Substitution Jordan
63:01 4th Corner to Jordan
59:05 3rd Yellow card Jordan
58:16 2nd Substitution Jordan
53:04 1st Substitution Jordan
45:00 2nd Half
46:07 Halftime
45:20 1st Half added time - 1 minute
44:26 2nd Yellow card to Jordan
43:26 No clear indication of added time
41:46 Goal by Uruguay scored by shot
```

```
41:40 Goal for Uruguay: 0:2
31:27 3rd Corner to Jordan
26:53 Goal by Uruguay scored by shot
21:25 Goal for Uruguay: 0:1
17:51 2nd Corner to Jordan
17:42 1st Corner to Jordan
08:42 1st Yellow card for Jordan
00:00 1st Half
```

How would you transform these event data into panel data when we are only interested in goals, corners, and yellow cards? Enumerate the corresponding panel data.

## Problem 2: Network representation

10 Points
Consider the set $A=\{0,1\}^{3}$ of (atomic) items. That is, items are triples $\left(a_{1}, a_{2}, a_{3}\right)$ with $a_{i} \in\{0,1\}$ such as, e.g., $(0,1,0)$ or $(1,1,1)$. Let $\mathcal{I}=A \times A \backslash\{(i, i) \mid i \in A\}$ by the interaction domain on $A$.

Visualize the weighted, undirected graphs of the following networks:
(a) $x: \mathcal{I} \rightarrow \mathbb{N}:\left(\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)\right) \mapsto\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\left(a_{3}-b_{3}\right)^{2}$
(b) $x: \mathcal{I} \rightarrow \mathbb{N}:\left(\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)\right) \mapsto a_{1} \cdot b_{1}+a_{2} \cdot b_{2}+a_{3} \cdot b_{3}$

## Problem 3: Two-mode networks

10 Punkte
Suppose we are given the following 6 papers addressing BGP issues:

- Nick Feamster, Jennifer Rexford: Network-wide prediction of BGP routes. IEEE/ACM Trans. Netw. 15(2): 253-266 (2007)
- Nick Feamster, Hari Balakrishnan: Detecting BGP Configuration Faults with Static Analysis (Awarded Best Paper). NSDI 2005
- Nick Feamster, Ramesh Johari, Hari Balakrishnan: Implications of autonomy for the expressiveness of policy routing. SIGCOMM 2005: 25-36
- Nick Feamster, Jared Winick, Jennifer Rexford: A model of BGP routing for network engineering. SIGMETRICS 2004: 331-342
- Lixin Gao, Jennifer Rexford: Stable internet routing without global coordination. IEEE/ACM Trans. Netw. 9(6): 681-692 (2001)
- Lixin Gao, Timothy Griffin, Jennifer Rexford: Inherently Safe Backup Routing with BGP. INFOCOM 2001: 547-556

Visualize the graph of the corresponding two-mode network on $A$ and $S$ where $A$ is the set of authors and $S$ is the set of papers.

