Assignment 5

Ausgabe: 20 Nov 2013 Abgabe: 27 Nov 2013

Problem 1: Two-mode networks

10 Points
Suppose that $X \in \mathbb{R}^{n \times m}$ is a $n \times m$-matrix associated with a two-mode network attribute for A and S such that $\|A\|=n$ and $\|S\|=m$.

Prove that the matrix $X \cdot X^{T}$ is symmetrical, i.e., it holds that $X \cdot X^{T}=\left(X \cdot X^{T}\right)^{T}$.

Problem 2: Two-mode networks

10 Points
The Latent Affiliation Problem (LAP) for single-attribute networks is the following: Given a single-attribute network x on an interaction domain $\mathcal{I} \subseteq A \times A$, find a two-mode network x^{\prime} on an affiliation domain $\mathcal{A} \subseteq A \times S$ such that x is a one-mode projection of x^{\prime}. Consider the following undirected graph $G=(A, E)$:

Solve the LAP for the single-attribute network associated with G.

Problem 3: Iterated maps

10 Punkte
Find a map $F: D^{n} \rightarrow D^{n}$ for each of the sequences $\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)$ listed below such that the given sequence is the trajectory of x_{0} with respect to F, if such that an F exists; otherwise prove that no such F exists.
(a) $(0,1, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{n}, \ldots)$ for $D=\mathbb{R}_{\geq 0}, n=1$
(b) $\left(1,1 / 4,1 / 9,1 / 16, \ldots,(n+1)^{-2}, \ldots\right)$ for $D=\mathbb{R}_{\geq 0}, n=1$
(c) $(0,1,1,2,2,2,3,3,3,3, \ldots, \underbrace{n, \ldots, n}_{n+1 \text { times }}, \ldots)$ for $D=\mathbb{R}_{\geq 0}, n=1$
(d) $(0 . a_{1} a_{2} a_{3} \ldots, 0 . a_{1} a_{1} a_{2} a_{3} \ldots, 0 . a_{1} a_{1} a_{1} a_{2} a_{3} \ldots, \ldots, 0 . \underbrace{a_{1} \ldots a_{1}}_{n \text { times }} a_{2} a_{3} \ldots, \ldots)$, where $a_{i} \in\{0,1\}$ for all $i \in \mathbb{N}$, for $D=[0,1), n=1$.

Hint: Consult the example describing the BERNOULLI shift in the lecture notes.
(e) $\left((0,1),(1,1),(1,2),(2,3),(3,5),(5,8), \ldots,\left(F_{n}, F_{n+1}\right), \ldots\right)$ for $D=\mathbb{N}, n=2$, where F_{n} is the n-the Fibonacci number, i.e., $F_{0}={ }_{\text {def }} 0$, and $F_{n}={ }_{\operatorname{def}} F_{n-1}+F_{n-2}$ for all $n>0$.

