Assignment 5

Ausgabe: 20 Nov 2013 Abgabe: 27 Nov 2013

Problem 1: Two-mode networks

Suppose that $X \in \mathbb{R}^{n \times m}$ is a $n \times m$ -matrix associated with a two-mode network attribute for A and S such that ||A|| = n and ||S|| = m.

Prove that the matrix $X \cdot X^T$ is symmetrical, i.e., it holds that $X \cdot X^T = (X \cdot X^T)^T$.

Problem 2: Two-mode networks

The Latent Affiliation Problem (LAP) for single-attribute networks is the following: Given a single-attribute network x on an interaction domain $\mathcal{I} \subseteq A \times A$, find a two-mode network x' on an affiliation domain $\mathcal{A} \subseteq A \times S$ such that x is a one-mode projection of x'. Consider the following undirected graph G = (A, E):

Solve the LAP for the single-attribute network associated with G.

Problem 3: Iterated maps

Find a map $F: D^n \to D^n$ for each of the sequences $(x_0, x_1, \ldots, x_n, \ldots)$ listed below such that the given sequence is the trajectory of x_0 with respect to F, if such that an F exists; otherwise prove that no such F exists.

- (a) $(0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n}, \dots)$ for $D = \mathbb{R}_{>0}, n = 1$
- (b) $(1, 1/4, 1/9, 1/16, \dots, (n+1)^{-2}, \dots)$ for $D = \mathbb{R}_{>0}, n = 1$

Network Dynamics Winter 2013/14

10 Points

10 Points

10 Punkte

- (c) $(0, 1, 1, 2, 2, 2, 3, 3, 3, 3, \dots, \underbrace{n, \dots, n}_{n+1 \text{ times}}, \dots)$ for $D = \mathbb{R}_{\geq 0}, n = 1$
- (d) $(0.a_1a_2a_3..., 0.a_1a_1a_2a_3..., 0.a_1a_1a_1a_2a_3..., ..., 0.\underbrace{a_1...a_1}_{n \text{ times}}a_2a_3..., ...)$, where $a_i \in \{0, 1\}$ for all $i \in \mathbb{N}$, for D = [0, 1), n = 1.

Hint: Consult the example describing the BERNOULLI shift in the lecture notes.

(e) $((0,1), (1,1), (1,2), (2,3), (3,5), (5,8), \dots, (F_n, F_{n+1}), \dots)$ for $D = \mathbb{N}$, n = 2, where F_n is the *n*-the FIBONACCI number, i.e., $F_0 =_{def} 0$, and $F_n =_{def} F_{n-1} + F_{n-2}$ for all n > 0.