Assignment 6

Ausgabe: 27 Nov 2013 Abgabe: 04 Dec 2013

Problem 1: Orbits

Let $A \in \mathbb{R}^{2 \times 2}$ be a matrix of the following type:

$$A =_{\operatorname{def}} \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, \qquad a, b \in \mathbb{R}$$

Consider the function $F : \mathbb{R}^2 \to \mathbb{R}^2 : x \mapsto A \cdot x$ (which depends on concrete choices of a, b).

Find all pairs (a, b) of values $a, b \in \mathbb{R}$ such that the orbits of (-1, 1) and (1, 1) under F are disjoint.

Problem 2: Fixed points

Suppose we are given the (symmetrical) interaction domain $\mathcal{I} = \{ \{i, j\} \mid i, j \in A \}$ for a set $A = \{1, \ldots, n\}$. An open triangle of the (undirected) network $x : \mathcal{I} \to \{0, 1\}$ is formed by three dyads $\{i, j\}, \{j, k\}$, and $\{i, k\}$, where i, j, k are pairwise different, such that $x_{\{i, j\}} = x_{\{j, k\}} = 1$ and $x_{\{i, k\}} = 0$.

Define $F : \{0,1\}^{\mathcal{I}} \to \{0,1\}^{\mathcal{I}}$ to be the map that closes all open triangles of a given network x, i.e., if dyads $\{i,j\}, \{j,k\}$, and $\{i,k\}$ form an open triangle in the network x then in network F(x), it holds that $F(x)_{\{i,j\}} = F(x)_{\{j,k\}} = F(x)_{\{i,k\}} = 1$.

How many fixed points of F (depending on n) are associated with connected graphs? Prove your hypothesis.

Problem 3: Periodic states

Consider the BERNOULLI shift $F : [0, 1) \to [0, 1) : x \mapsto 2x \mod 1$.

- (a) Show that, for each $x \in [0, 1)$, if x is periodic under F then x is rational.
- (b) Is it true that, for each $x \in [0, 1)$, if x is rational then x is periodic under F?

Network Dynamics Winter 2013/14

10 Points

10 Points

10 Punkte