Assignment 6

Ausgabe: 27 Nov 2013 Abgabe: 04 Dec 2013

Problem 1: Orbits

10 Points
Let $A \in \mathbb{R}^{2 \times 2}$ be a matrix of the following type:

$$
A=\operatorname{def}\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right), \quad a, b \in \mathbb{R}
$$

Consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}: x \mapsto A \cdot x$ (which depends on concrete choices of a, b).
Find all pairs (a, b) of values $a, b \in \mathbb{R}$ such that the orbits of $(-1,1)$ and $(1,1)$ under F are disjoint.

Problem 2: Fixed points

10 Points
Suppose we are given the (symmetrical) interaction domain $\mathcal{I}=\{\{i, j\} \mid i, j \in A\}$ for a set $A=\{1, \ldots, n\}$. An open triangle of the (undirected) network $x: \mathcal{I} \rightarrow\{0,1\}$ is formed by three dyads $\{i, j\},\{j, k\}$, and $\{i, k\}$, where i, j, k are pairwise different, such that $x_{\{i, j\}}=x_{\{j, k\}}=1$ and $x_{\{i, k\}}=0$.

Define $F:\{0,1\}^{\mathcal{I}} \rightarrow\{0,1\}^{\mathcal{I}}$ to be the map that closes all open triangles of a given network x, i.e., if dyads $\{i, j\},\{j, k\}$, and $\{i, k\}$ form an open triangle in the network x then in network $F(x)$, it holds that $F(x)_{\{i, j\}}=F(x)_{\{j, k\}}=F(x)_{\{i, k\}}=1$.

How many fixed points of F (depending on n) are associated with connected graphs? Prove your hypothesis.

Problem 3: Periodic states

Consider the Bernoulli shift $F:[0,1) \rightarrow[0,1): x \mapsto 2 x \bmod 1$.
(a) Show that, for each $x \in[0,1)$, if x is periodic under F then x is rational.
(b) Is it true that, for each $x \in[0,1)$, if x is rational then x is periodic under F ?

