Assignment 8

Ausgabe: 11 Dec 2013 Abgabe: 18 Dec 2013

Problem 1: Series

10 Points
Consider the following boolean map

$$
F:\{0,1\}^{3} \rightarrow\{0,1\}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1} \oplus\left(x_{2} \vee x_{3}\right), 1 \oplus x_{1} \oplus x_{2}, x_{2} \oplus x_{3}\right)
$$

and the function $\tau:\{0,1\}^{3} \rightarrow \mathbb{R}:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left|\left(x_{1}, x_{2}, x_{3}\right)\right|_{1}-\left|\left(x_{1}, x_{2}, x_{3}\right)\right|_{0}$.
Find the probability that the time series associated with τ and a random orbit of F has a fixed point.

Problem 2: Levels

10 Points
Let $F: D^{n} \rightarrow D^{n}$ be a map. Prove or disprove the following statements:
(a) If L_{1} and L_{2} are levels of F then $L_{1} \cap L_{2}$ is a level of F.
(b) If L_{1} and L_{2} are levels of F then $L_{1} \cup L_{2}$ is a level of F.

Problem 3: Plots

10 Points
Consider again the boolean map (from the first problem)

$$
F:\{0,1\}^{3} \rightarrow\{0,1\}^{3}:\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1} \oplus\left(x_{2} \vee x_{3}\right), 1 \oplus x_{1} \oplus x_{2}, x_{2} \oplus x_{3}\right)
$$

Determine the DERRIDA relation $\mathcal{D}(F)$ of F (as a multiset) and represent $\mathcal{D}(F)$ as a matrix $P=\left(p_{i, j}\right)_{i, j \in\{0,1,2,3\}} \in \mathbb{N}^{4 \times 4}$ such that

$$
p_{i, j}=\|\left\{(x, y) \mid x, y \in\{0,1\}^{3}, d_{H}(x, y)=i, \text { and } d_{H}(F(x), F(y))=j\right\} \|
$$

Hint: You may run a computer program to compute the entries of the matrix.

