
Lecture Notes

Network Dynamics

taught in Winter terms 2010, 2011, 2012, 2013

by

Sven Kosub

February 18, 2014
Version v3.25

Contents

1 An Internet example 1

1.1 The routing hierarchy . 1

1.2 Policy routing . 2

1.3 Best-response dynamics . 4

1.4 Fixed-point analysis . 6

2 Networks 9

2.1 Network exploration and analysis . 9

2.2 Network data . 9

2.2.1 Data . 9

2.2.2 Dyadic data . 10

2.2.3 Time-dependent data . 11

2.3 Network representations . 11

2.3.1 Whole networks . 11

2.3.2 Two-mode networks . 12

2.3.3 Ego and personal networks . 13

2.3.4 Time-dependent networks . 14

2.4 Networks as dynamical systems . 14

2.4.1 Iterated maps . 15

2.4.2 The phase space . 17

2.4.3 Series, levels, and plots . 21

2.4.4 Local maps . 24

version v3.25 as of February 18, 2014

vi Contents

3 Simulation 29

3.1 Agent-based modelling . 29

3.2 The agency problem . 29

3.2.1 Push or pull? . 29

3.2.2 Dyads or actors? . 29

3.3 Sequential dynamical systems∗ . 29

3.3.1 Permutation schedules . 29

3.3.2 Functional equivalence . 30

3.3.3 The update graph . 31

3.3.4 Acyclic orientations and the chromatic polynomial 34

3.4 Ensemble approaches . 38

4 Models 39

4.1 Potentials . 39

4.1.1 Games with utility functions . 39

4.1.2 Potential games . 44

4.1.3 A structural characterization of potential games 45

4.1.4 A dynamical characterization of potential games 48

4.1.5 Congestion games . 50

4.2 Thresholds . 52

4.3 Opinion Dynamics . 55

A Mathematical tools 63

A.1 Sets and relations . 63

A.2 Graph theory . 65

A.3 Algorithmics . 67

Network Dynamics – Lecture Notes

Contents vii

B The Border Gateway Protocol 69

B.1 Background . 69

B.2 Terminology . 70

B.2.1 Physical networks . 70

B.2.2 Logical networks . 71

B.2.3 Datagrams and forwarding . 73

B.3 Autonomous Systems . 74

B.3.1 Definition . 75

B.3.2 Interrelationships . 75

B.3.3 Routing policies . 77

B.3.4 Routing hierarchy . 78

B.4 Protocol outline . 79

B.4.1 Operating mode . 79

B.4.2 Message formats . 80

B.4.3 Path attributes . 81

B.4.4 Route propagation . 83

B.4.5 Route-selection algorithms and filters 83

B.5 The Selective Export Rule . 85

Bibliography 89

version v3.25 as of February 18, 2014

viii Contents

Network Dynamics – Lecture Notes

An Internet example 1

Internet routing involves the next-hop principle in the following way:

• A path is a sequence of entities which pairwise share a direct data link.

• Sending data from an entity to an entity (the next hop) over a direct data link is
called forwarding.

• A transmission is the process of successively forwarding data from a source to a
destination over a path with source as its first and the destination as its last element.

• The selection of a path for a transmission is called routing.

1.1 The routing hierarchy

A routing hierarchy reduces the number of paths through a communication network. Note
that the number of paths can be exponential in the number of nodes, e.g., in a Kn network.

Example: Suppose a small portion of the Internet is

1 2

5 6

3 4
s t

Then, there are 29 different (s, t)-paths. This represents a part of Internet
graph at the router level. Now, introduce a partition of {s, 1, 2, . . . , 6, t}:

A =def {s}, B =def {1, 2, 3}, C =def {4, 5, 6}, D =def {t}

If we consider the path p

s → 1 → 4 → 5 → 6 → 3 → 2 → t
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
A B C C C B B D

then p traverses B twice. This is inappropriate, if A,B,C,D are subnets that
belong to independent administrative domains (a.k.a. Autonomous Systems).

version v3.25 as of February 18, 2014

2 Chapter 1. An Internet example

In a routing hierarchy, first, the path consisting of subnets is chosen and, second, the path
through each subnet is selected.

Example (cont’d): The number of paths according to the routing hierarchy
is as follows:

• A→ B → D: 2 paths

• A→ C → D: 2 paths

• A→ B → C → D: 6 paths

• A→ C → B → D: 6 paths

That is, the number of paths is reduced to 16.

According to the routing hierarchy, there are two types of protocols:

• Intra-Domain: RIP, OSPF within a subnet

• Inter-Domain: BGP between subnets

The Border Gateway Protocol (BGP) is the “real” Internet routing protocol.

1.2 Policy routing

We consider the formal routing problem for destination node 0. Given an undirected AS
graph G = (V,E) where 0 ∈ V , the path set P u is defined as follows

P u =def { p | p is a path in G starting at u and ending at 0 } ∪ {ε}

for each node u ∈ V . Here, ε denotes the empty path. We assume that all path sets are
ranked, i.e., (P u,�u) is a total preorder (a total, reflexive, and transitive relation) for each
u ∈ V . Furthermore, p �u ε for all p ∈ P u \ {ε}. This assumption states that reachability
is always superior to non-reachability.

Example: To clarify the notions above, consider the following AS graph
G = (V,E) together with ranked path sets P u is given

0

1 2

3
P 0 : (0) �0 ε

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 ε

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 ε

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 ε

Network Dynamics – Lecture Notes

1.2. Policy routing 3

For instance, node 3 always prefers a route over node 1 over a direct route to
zero or a route over node 2.

Each node in the As graph chooses one path from its path set. Then, a configuration is
a mapping π : u 7→ π(u) ∈ P u. A configuration π is said to be confluent if and only if
the union of all paths π(u) is a tree with root 0. A configuration π is said to be stably
confluent if and only if π is confluent and no node u can choose a better path to 0 without
losing confluency.

Example (cont’d): If all nodes in the AS graph above choose their best paths
according to ranked path sets, i.e.,

π(1) = (1, 0), π(2) = (2, 3, 0), π(3) = (3, 1, 0),

then the configuration is not confluent:

0

1 2

3
P 0 : (0) �0 ε

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 ε

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 ε

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 ε

If nodes 1 and 3 still choose their best paths and node 2 chooses its second
best path to 0, i.e.,

π(1) = (1, 0), π(2) = (2, 1, 0), π(3) = (3, 1, 0),

then the configuration is stably confluent:

0

1 2

3
P 0 : (0) �0 ε

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 ε

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 ε

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 ε

Finally, if nodes 1 and 3 both choose their best paths and node 2 chooses the
second-to-worst path, i.e.,

π(1) = (1, 0), π(2) = (2, 0), π(3) = (3, 1, 0),

then the resulting configuration is confluent but not stably confluent.

version v3.25 as of February 18, 2014

4 Chapter 1. An Internet example

0

1 2

3
P 0 : (0) �0 ε

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 ε

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 ε

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 ε

1.3 Best-response dynamics

We give a formal description of a simplified BGP dynamics.

We are given a set P of paths toa (destination) node 0. For a path p(a0, a1, . . . , an) ∈ P
such that an = 0, define

Γ(p) =def { (ai, . . . , an) | i ∈ {0, 1, . . . , n} }

Furthermore, we define the following path sets:

P ∗ =def

⋃
p∈P

Γ(p) ∪ {ε}

P a =def { p ∈ P ∗ | p = (a, . . . , 0) } ∪ {ε} for each a lying on some path p ∈ P

There is an AS graph G[P] induced by the path set P :

• vertex set V = V [P] is defined to consist of all nodes occurring on some path p ∈ P

• edge set E = E[P] is the defined to consist of all (undirected) edges occurring on
some path p ∈ P , i.e., if p = (. . . , a,ai+1, . . .) ∈ P then {ai, ai+1} ∈ E.

Given a configuration π : V → P ∗, how should a node choose a new path and how does
this choice affect the configuration? For a ∈ V , define

βa(π) =def max�a{ p ∈ P a | G[π(V \ {a}) ∪ {p}] is a forest }

In order to avoid tie-breaks, (P a,�a) is a total order satisfying p �a ε. We extend β· to
map configurations to configurations as follows

β(π) : a 7→ βa(π),

i.e., β(π) is the configuration assigning to node a path βa(π).

Proposition 1.1 Let P be a set of paths such that G[P] is connected. Let π be any
configuration on G[P]. Then, it holds

π = β(π)⇐⇒ π is stably confluent

Network Dynamics – Lecture Notes

1.3. Best-response dynamics 5

Proof: We argue for both directions individually.

(⇐): By definition.

(⇒): Suppose π = β(π). Then, G[π(V)] is a forest. Assume G[π(V)] is not a tree. Then,
there is an a ∈ V such that π(a) = ε (as each path leads to the root 0). Let a ∈ V
be a node such that π(a) = ε and distance to 0 is minimal in G[P]. Let b ∈ V
be the next node on a shortest path from a to 0. Then, π(b) 6= ε. Consider path
p = (a, π(b)) ∈ P a. Then, p �a ε. We obtain that βa(π) is not maximal with respect
to �a, in contradiction to our assumption. Thus, G[π(V) is a tree. Therefore, π is
stably confluent.

This proves the proposition.

Actually, BGP uses only the next hop on the best path.

Example (cont’d): Consider the AS graph and the sets of paths from above.
Suppose all nodes update their paths simultaneously. Then, we could obtain
the following evolution of the routing network when starting with the inital
configuration in time step t = 0:

0

1 2

3
P 0 : (0) �0 ε

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 ε

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 ε

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 ε

After one update step of each nodes given the network in t = 0, the resulting
routing network is the following (t = 1):

0

1 2

3
P 0 : (0) �0 ε

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 ε

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 ε

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 ε

Observe that node 2 has chosen path (2, 3, 0) as the new best path. However,
as only the edge (2, 3), i.e., the edge to the next hop of the best path, has been
included in the routing network, and node 3 has chosen (3, 1, 0) as the new
best path, adding the edge (3, 1) to the routing network, the current available

version v3.25 as of February 18, 2014

6 Chapter 1. An Internet example

path of node 2 to destination 0 is (2, 3, 1, 0) which is an alternative worse than
the originally chosen one.

Given the network for t = 1, another simultaneous update step of all nodes
gives the routing network for time step t = 2.

0

1 2

3
P 0 : (0) �0 ε

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 ε

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 ε

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 ε

For t > 2, the configurations do not change anymore. We have reached an
equilibrium or fixed point.

1.4 Fixed-point analysis

A fundamental question in Interdomain routing is: When does BGP converge?

If we investigate this question algorithmically then we ask if a given BGP system has a
fixed point or allows for reaching a fixed point. Here, a BGP system is defined to consist
of an AS graph G = (V,E) and a family of ranked path-set in G to destination 0 ∈ V (in
the above-mentioned sense) where we assume that not all paths to 0 need be included.

Answers to these questions are negative, in general:

• There is no guarantee of convergence (see examples on the Assignments).

• It is NP-complete to decide if a BGP system has a stably confluent state [16].

• It is PSPACE-complete to decide if a BGP system always converges into some stably
confluent state [?].

Why, then, does BGP appear to be rather stable in everyday experience?

There are rational rules for local policies which ensure convergence, but they are not
part of the protocol specification. These rules are based on contractual business relation-
ships between Autonomous Systems which typically belong to a certain Internet Service
Provider. For simplification, let us assume that there are only two types of Autonomous
Systems: customers and providers. Customers buy routes from providers to get global
connectivity to 0. Accordingly, providers sell routs to customers.

Given an AS graph G = (V,E) we can decompose the neighborhood of a node v ∈ V :

• Cust(v) is the set of all customers of v (buying routes from v)

Network Dynamics – Lecture Notes

1.4. Fixed-point analysis 7

• Prov(v) is the set of all providers of v (selling routes to v)

The AS graph can be oriented given such a decmposition. Let u, v ∈ V be two nodes such
{u, v} ∈ E. Then,

• an oriented edge u→ v indicates that u ∈ Cust(v) and

• an oriented edge u← v indicates that u ∈ Prov(v).

The orientation can be extended to paths. A path p in G is said to be valley-free if and
only if its orientation pattern belongs to →∗←∗.

Example: We consider an AS graph with contracts among the nodes:

0

1 2

3

• The path (1, 3, 2, 0) is valley-free: → → →

• The path (3, 1, 2, 0) is not valley-free: ← → →

• The path (1, 3, 0, 2) is valley-free: → → ←

A path p = (u0, u1, . . . , um) (with um = 0) is called a customer route iff u1 ∈ Cust(u0),
and is called a provider route iff u1 ∈ Prov(u0).

Example (cont’d): We classify routes other than ε for the AS graph above.
Red routes are customer routes, black routes are provider routes.

0

1 2

3

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0)

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0)

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0)

Given these notions we can formulate the Gao-Rexford convergence criterion [13]: A BGP
system converges into a stable confluent state if the following three conditions are fulfilled:

1. All paths are valley-free.

2. The oriented AS graph is acyclic.

3. For all nodes a and all paths p, q beginning with a, if p is a customer route and q is
a provider route then p �a q.

version v3.25 as of February 18, 2014

8 Chapter 1. An Internet example

Note that this criterion expresses only sufficient conditions for convergence.

For instance, if we eliminate all routes from the example above that are not valley-free
then the Gao-Rexford criterion applies to the BGP system.

Network Dynamics – Lecture Notes

Networks 2

We foster a data-driven approach to understanding dynamical network behavior.

2.1 Network exploration and analysis

Sketch of research pipeline in empirical sciences:

1. Theory ← often omitted from the cycle

2. Hypotheses

3. Research design

4. Data collection

5. Exploration and analysis ← often data-driven studies start here

6. Interpretation and presentation

These steps are iterated (when new evidence comes in).

Step 5 will be the focus of this course. We will study

• formal and algorithmic concepts

• simulation and modelling techniques

for evaluting time-dependent network data.

2.2 Network data

2.2.1 Data

Data refers to variables for entites (or units of observation). More specifically,

• A is a set of (atomic) items,

• for i ∈ A, variable xi represents values of a common attribute for all items in A, i.e.,
x is a mapping x : A→ R : i 7→ xi, or x = (xi)i∈A where xi ∈ R,

version v3.25 as of February 18, 2014

10 Chapter 2. Networks

• R is the range of x, A is called the domain of x

Typically in emprical research, multiple attributes are collected in tables where the columns
represent items and the rows represent attributes.

According to the range, attributes can be classified:

• nominal or categorical: there are no relationships among the elements of the range
other than equality or inequality (e.g., names, types, labels)

• ordinal: the range satisfy certain order properties such as required for weak orders,
preference relations, rankings (e.g., paths in policy routing)

• numerical: the range consists of number such as N or R≥0.

We assume that 0 represents a massing or neutral datum.

2.2.2 Dyadic data

Entities need not be atomic; they can be compound objects of more elementary entities.
A dyad is a pair of items.

Example: In a study we could explore relationship among married couples.
The relevant data may include:

• attributes of individuals: gender, income, personality

• attributes of the couple: age difference, duration of marriage, number of
children

The general assumption in (classical) dyadic data analysis is that dyads are independent.

We say that two dyads overlap if and only if they share a member. This gives us the
characteristic of network data:

1. Units of observation are dyads.

2. Dyads are overlapping.

That is, the essential assumption in network analysis is that dyads are dependent. We
even cab define network analysis as the study of effects of overlapping dyads.

Network Dynamics – Lecture Notes

2.3. Network representations 11

2.2.3 Time-dependent data

Attribute values may change over time. And, there are differences in how data can depend
on time. In general, data time-dependent data can be classified as follows:

• panel data (or longitudinal data): we have attributes values of all items for at least
two points in time, i.e., x(1), x(2), . . . , x(k) where x(j) = (xi(j))i∈A.

• time-series data: we have attribute values of a single item over time.

• cross-sectional data: we have attribute values of all items for one specific point in
time.

• event data: we have attribute values for items labelled with a time stamp (e.g., log
files, audit trails, live scores, etc.)

Typically, event data are transformed into panel data.

2.3 Network representations

We adopt a network view where we consider networks to be representations of a specific
format. That is, we are not so much interested in what is represented, but how it is
represented.

2.3.1 Whole networks

As overlapping dyads are the fundamental objects of network analysis, we need a notion
to collect all possible dependencies among dyads. This is done by introducing interaction
domains.

Definition 2.1 Let A be a set of items. An interaction domain I on A is a binary,
symmetric relation I ⊆ A×A.

In many cases, I = A × A or I = (A × A) \ { (i, i) | i ∈ A }. However, when studying
BGP systems, the interaction domain is the AS graph.

Definition 2.2 Let A be a set of items. A (whole) network consists of a set of attributes
on an interaction domain I ⊆ A×A and a (possibly empty) set of attributes on A.

version v3.25 as of February 18, 2014

12 Chapter 2. Networks

For a network, items of A represent actors, and attribute values xi,j 6= 0, where (i, j) ∈ I,
are ties. Notice that xij is a usual abbreviation for x(i,j) for any dyad (i, j) ∈ I.

Definition 2.3 Let x : I → R be an attribute defined on an interaction domain I ⊆ A×A.
The (weighted, directed) graph G(x) = (V,E,w) of network x consists of

• vertex set V =def A,

• edge set E =def { (i, j) ∈ I | xij 6= 0 }, and

• edge weights w : E → R : (i, j) 7→ xij.

If xij = xji for all (i, j) ∈ I, G(x) can be defined correspondingly as an undirected graph.

A completion of an attribute to the full interaction domain A×A by imputing zeroes gives
the adjacency matrix of the associated weighted graph, which is another representation of
a network.

Definition 2.4 Let x : I → R be an attribute defined on an interaction domain I ⊆ A×A.
The (binary) relation →⊆ A×A of network x is defined by

(i, j) ∈→ ⇐⇒def (i, j) ∈ I ∧ xij 6= 0

In infix notation, this is written as i→ j.

2.3.2 Two-mode networks

Assume that the observational units are relations between pairs of items of different types,
e.g., users and fan sites on Facebook, authors and scientific papers, or politicians and
boards.

We generalize interaction domains.

Definition 2.5 An affiliation domain is a relation A ⊆ A× S on disjoint sets A and S.

Definition 2.6 A two-mode network consists of a set of attributes on an affiliation
domain A ⊆ A× S and a (possibly empty) set of attributes on A and S.

All notions for networks translate to two-mode networks. Note that two-mode networks
are bipartite by definition.

Definition 2.7 Let X ∈ Rn×m be the matrix associated with a two-mode network
attribute, ‖A‖ = n and ‖S‖ = m. The networks associated with the matrices X · XT

and XT ·X are called one-mode projections.

Network Dynamics – Lecture Notes

2.3. Network representations 13

Note that the interaction domain of X ·XT is A×A and the interaction domain of XT ·X
is S × S.

Example: Consider sets A = {1, 2, 3} and S = {a, b}. Suppose a two-mode
network attribute is given by the following graph and the associated matrices
X and XT :

a

b

1

2

3

X =

1 0
1 1
0 1

 , XT =
(

1 1 0
0 1 1

)

Then, we calculate

X ·XT =

1 0
1 1
0 1

 · (1 1 0
0 1 1

)
=

1 1 0
1 2 1
0 1 1

The (multi)graph of the network can be drawn as follows:

1 3

2

Analogously, we calculate for the other one-mode projection

X ·XT =
(

1 1 0
0 1 1

)
·

1 0
1 1
0 1

 =
(

2 1
1 2

)

The (multi)graph of the network can be drawn as follows:

a b

Note that each directed edge u→ v respresents one walk from u to v.

2.3.3 Ego and personal networks

Definition 2.8 An affiliation domain A ⊆ A × S is said to be egocentric if and only if
‖{ s | (i, s) ∈ A }‖ = 1 for all i ∈ A. In other words, every element of A is affiliated with
exactly one element of S.

version v3.25 as of February 18, 2014

14 Chapter 2. Networks

In an egocentric domain, elements of S are called egos, and elements of A are called alteri.
An egocentric domains is uniquely decomposable into its ego partition (see example below).

Definition 2.9 Given a two-mode network on an egocentric domain, each restriction of
its attributes to an element of the ego partition defines an ego network.

Definition 2.10 Let A and S be disjoint sets, let I ⊆ A × A be an interaction domain,
and let A ⊆ A × S be an egocentric affiliation domain. For a set of attributes defined on
I and A, every restriction induced by an element of the ego partition defines one personal
network.

Example: . . .

2.3.4 Time-dependent networks

We consider attributes on an interaction (or affiliation) domain changing over time. The
focus is on panel network-data.

Definition 2.11 A time-dependent network is a set of attributes on an interaction
domain I ⊆ A × A and a (possibly empty) set of attributes on A, where all atributes
depend on (same) time t ∈ N.

Note that we consider time-discrete networks.

2.4 Networks as dynamical systems

In this section, we want to introduce specific formal notions for studying the dynamical
behavior of networks. We restrict ourselves to single-attribute networks (with a fixed
interaction domain).

Let x : I → R be an attribute. For the sake of convenience, we assume that x is a
numerical attribute. Furthermore, we consider an infinite sequence of identical copies of
x, i.e., (x(t))t∈N or x : I × N → R. The attribute values are called states. The set of all
possible sequences is called a process; one specific sequence is called trajectory. A dynamic
F is a mechanism for selecting trajectories of a process. A dynamic makes assumptions
on how the state at time step k will look like; here, depending only on the initial state z0
and time k. We thus can express a dynamic as a sequence (ϕt)t∈N where ϕk : RI → RI .

We adopt notions and notations from dynamical systems. That is, the functions ϕk are
iterated maps. Let F : RI → RI be any function. Then, inductively define

F 0(z) =def z, F k(z) =def F (F k−1(z)) for k > 0.

Network Dynamics – Lecture Notes

2.4. Networks as dynamical systems 15

So, ϕk = F k.

The following summarizes the notions schematically:

x(0) → x(1) → x(2) → . . . → x(k) → . . . process
↓ ↓ ↓ ↓
z0 → z1 → z2 → . . . → zk → . . . trajectory
↓ ↓ ↓ ↓

ϕ0(z0) → ϕ1(z0) → ϕ2(z0) → . . . → ϕk(z0) → . . . dynamic
↓ ↓ ↓ ↓

F 0(z0) → F 1(z0) → F 2(z0) → . . . → F k(z0) → . . . iterated map

Notice that iterated maps describe memory-less dynamics. In this sense, they are deter-
ministic versions of Markov chains.

2.4.1 Iterated maps

We investigate dynamics induced by iterating a map F : Dn → Dn where, more commonly,
D denotes the domain of F (i.e., D corresponds to the range of an attribute) and n is the
number of items or dyads.

A fundamental concept in the study of iterated maps is the orbit.

Definition 2.12 Let F : Dn → Dn be a total mapping. Then, the orbit of z0 under F is
defined to be the sequence (z0, z1, z2, . . . , zk, . . .) such that zk = F k(z0) for all k ∈ N.

An orbit is a specific trajectory.

Example: We discuss some examples of iterated maps and orbits.

• Let D = N, n = 1, and F (x) =def x+ 1. The orbit of 0 is (0, 1, 2, 3, . . .).
• Let D = R≥0, n = 1, and F (x) =def

x
x+1 . The orbit of 1 is (1, 1

2 ,
1
3 ,

1
4 , . . .).

• A prominent iterated map is the Bernoulli shift: Let D = [0, 1), n = 1,
and F : D → D : x 7→ 2xmod 1, i.e.,

F (x) =def

{
2x if 0 ≤ x < 1

2
2x− 1 if 1

2 ≤ x < 1

Suppose x ∈ [0, 1) is given in binary expansion as 0.a1a2a2 . . . , ai ∈ {0, 1},
i.e., it holds that x =

∑∞
i=1 ai2

−i. We have two cases:
– Case a1 = 0: That is, x < 1

2 . Applying F to x gives

F

(∞∑
i=1

ai2−i
)

= 2
∞∑
i=1

ai2−i =
∞∑
i=1

ai2−(i−1)

=
∞∑
i=2

ai2−(i−1) =
∞∑
i=1

ai+12−i

version v3.25 as of February 18, 2014

16 Chapter 2. Networks

– Case a1 = 1: That is, x ≥ 1
2 . Analogously to the first case, applying

F to x gives

F

(∞∑
i=1

ai2−i
)

= 2
∞∑
i=1

ai2−i − 1 =
∞∑
i=1

ai2−(i−1) − 1

= 1 +
∞∑
i=2

ai2−(i−1) − 1

=
∞∑
i=2

ai2−(i−1) =
∞∑
i=1

ai+12−i

Hence, F (0.a1a2a3 . . .) = 0.a2a3a4 The orbit of x0 = 0.a1a2a3 . . . is
the sequence (xk)k∈N such that xk = 0.ak+1ak+2ak+3

• Let D = {0, 1}, n = ‖{ (i, j) ∈ I | i < j }‖, and I = A×A\{ (i, i) | ∈ A }
for some set A be given. That is, we consider an interaction domain
representing a complete undirected graph. So, n is the number of edges,
i.e., n =

(‖A‖
2

)
. Suppose edges are lexicographically enumerated. Then,

x ∈ Dn encodes an undirected graph.
Define F : Dn → Dn to be the mapping that satisfies

F (x)max{k|xk=1} = 0 if x contains a cycle

F (x)min{k|xk=0} = 1 if x contains no cycle

with all other components of F (x) unchanged compared to x. Then,
examples of orbits for n = 4 are the following:
. . .

Proposition 2.13 Let F : Dn → Dn be a total mapping, and let x, y ∈ Dn. Then, the
orbits of x and y under F are either disjoint or there exist k ∈ N and r ∈ Z such that
F k
′
(x) = F k

′+r(y) for all k′ ≥ k.

Proof: Suppose the orbits of x and y are not disjoint, i.e., there are t, t′ ∈ N such that
F t(x) = F t

′
(y). Define r =def t

′ − t. So, t′ = t + r. Then, by induction on ` ∈ N, we
obtain that F t+`(x) = F t+r+`(y) for all ` ∈ N:

• Base of induction ` = 0: Then, F t+0(x) = F t(x) = F t
′
(y) = F t+r+0(y).

• Inductive step ` > 0: By the induction assumption we conclude that

F t+`(x) = F (F t+`−1(x)) = F (F t+r+`−1(y)) = F t+r+`(y).

Hence, setting k =def t and k′ =def t+ ` proves the proposition.

Network Dynamics – Lecture Notes

2.4. Networks as dynamical systems 17

2.4.2 The phase space

Given a map F : Dn → Dn, all orbits under F are collected in the phase space. The
fundamental problem (in statistical mechanics) is getting knowledge on the probability
distribution over the phase space, i.e., to determine the visiting probablity of a certain
state in an orbit.

The following concepts are essential for addressing this question.

Definition 2.14 Let F : Dn → Dn be a total mapping.

1. A state x ∈ Dn is called fixed point of F if and only if F (x) = x.

2. A state x ∈ Dn is called periodic under F if and only if there exists a k ∈ N+ such
that F k(x) = x. The number k0 ∈ N+ minimal subject to F k0(x) = x is called the
periodic order of x, and x is then called periodic of order k0.

3. A state x ∈ Dn is called transient under F if and only if F k(x) 6= x or all k ∈ N+,
i.e., x is not periodic.

Obviously, a fixed point is a periodic state of order 1.

Example: We give examples for each part of the definition.

• For the Bernoulli shift, 0 is the only fixed point, 2
3 is an example of a

periodic state of order 2, and 1√
2

is an example of a transient state.

• Consider again the map F : {0, 1}n → {0, 1}n from above for n = 4.
Then, there is no fixed point of F , . . . are periodic of order 2, and . . . is
transient.

The following proposition explains why recurring states are referred to as “periodic.”

Proposition 2.15 Let F : Dn → Dn be a total function. Let x ∈ Dn be a periodic state
of order k0, and let k ∈ N. Then, the following holds:

F k(x) = x ⇐⇒ k0 divides k

Proof: We prove both directions individually.

(⇐) Observe that x = F k0(x) = F k0(F k0(x)). An easy inductive argument shows that
x = F c·k0(x) for all c ∈ N. Hence, if k0 divides k, i.e., k = c · k0 for some c ∈ N, then
F k(x) = x.

version v3.25 as of February 18, 2014

18 Chapter 2. Networks

(⇒) Case k = 0 is trivial. Now, suppose k ≥ k0 > 0. Then, k = c · k0 + r for uniquely
determined c ∈ N+ and r ∈ {0, 1, . . . , k0 − 1}. Thus,

x = F k(x) = F c·k0+r(x) = F r(F c·k0(x)) = F r(x)

Since k0 is the smallest positive number with this property, it follows that r = 0.
Hence, k = c · k0. So, k0 divides k.

This proves the proposition.

Definition 2.16 Let F : Dn → Dn be a total mapping. Let x be a periodic state of order
k. Then, the set {x, F (x), F 2(x), . . . , F k−1(x)} is called a limit cycle (of length k) of F .

Limit cycles (of length k) are also called attractors (of length k). The limit cycle corre-
sponding to a fixed point is also called singleton attractor.

Any easy consequence of Proposition 2.13 is that limit cycles are either disjoint or identical.

Corollary 2.17 Let F : Dn → Dn be a map. If {x1, . . . , x`} and {y1, . . . , yr} are two
limit cycles of F such that {x1, . . . , x`}∩{y1, . . . , yr} 6= ∅ then {x1, . . . , x`} = {y1, . . . , yr}.

For finite domains, orbits have a simple structure.

Proposition 2.18 Let F : Dn → Dn be a map over a finite domain D. Let (xi)i∈N be
the orbit of x0 ∈ Dn under F . Then, there are k0 ∈ N and `0 ∈ N+ such that

(a) {x0, . . . , xk0−1} is the set of k0 transient states of the orbit of x0 under F and

(b) {xk0 , . . . , xk0+`0−1} is a limit cycle of length `0 of F .

Proof: Let (xi)i∈N be the orbit of x0 ∈ Dn under F , i.e., xi = F i(x0). D is finite, so
is Dn. Thus, there are k ≥ 0 and ` > 0 such that F k(x0) = xk = xk+`)F k+`(x0). Define
parameters k0 and `0 as follows (in this order):

k0 =def min { k | F k(x0) = F k+r(x0) for some r > 0 }
`0 =def min { r | F k(x0) = F k0+r(x0) }

Then, for all r > 0, it holds that

F k0+r(x0) = F r
(
F k0(x0)

)
= F r

(
F k0+`0(x0)

)
= F k0+`0+r(x0).

Hence, xi is periodic of order `0 if i ≥ k0, which is tatement (b), and xi is transient if
i < k0, which is statement (a). This proves the Proposition.

Network Dynamics – Lecture Notes

2.4. Networks as dynamical systems 19

The orbit under a iterated, finite-domain map can be visualized by the following transition
diagramm:

. . .

In principle, iterated maps can be studied graph-theoretically. A map F : Dn → Dn over
a finite domain D can be associated with the directed graph Γ(F) = (V,E), called state
graph of F , where

V =def D
n, E =def { (x, F (x)) | x ∈ Dn }.

Note that Γ(F) might have loops.

According to Proposition 2.13, Corollary ??, and Proposition ??, the state graph of F can
be uniquely decomposed into

• disjoint cycles C1, . . . , Ck (representing limit cycles) and

• disjoint (directed) trees T1, . . . , Tr (representing transient states) each of which is
incident with exactly one cycle C1, . . . Ck

Example: We consider the map

F : {0, 1}3 → {0, 1}3 : (x1, x2, x3) 7→ (x2 ⊕ x3, 1⊕ x1 ⊕ x3, x! ⊕ x2)

where ⊕ denotes XOR or, equivalently, addition modulo 2. In order to deter-
mine the state graph of F , we first represent F as a truth table:

(x1, x2, x3) F (x1, x2, x3)
000 010
001 100
010 111
011 001
100 001
101 111
110 100
111 010

From this, we easily obtain the state graph of F :

. . .

A cycle together with all its incident trees is called basin of attraction.

More formally, let F : Dn → Dn be a map over a finite domain D. A set E ⊆ Dn is called
invariant set if and only if for alle k ∈ N, F k(E) ⊆ E. Each invariant set contsains a limit

version v3.25 as of February 18, 2014

20 Chapter 2. Networks

cycle. So, Dn can be uniquely decomposed into r invariant sets where r is the number of
limit cycles of F . A basin of attraction is one component of this decomposition.

It is clear that transient states have visiting probability zero. The following proposition
gives the precise visiting probability of a periodic state in terms of the structure of its
corresponding basin of attraction.

Proposition 2.19 Let F : Dn → Dn be a map over a finite domain D, ‖D‖ = m. Let
z ∈ Dn be periodic, and let E ⊆ Dn be the basin of attraction of (the limit cycle of) z.
Suppose E consists of s transient and r perdiodic states. Then, the visiting probability of
z in a random orbit is (

1 +
s

r

)
·m−n.

Proof: Let x ∈ Dn be an arbitrary state. Consider the orbit (xi)i∈N such that x = x0

and F k(x0) = xk for all k > 0. Suppose x0, . . . , xk0−1 are all transient states and
xk0 , . . . , xk0+r−1 are all periodic states (of order r). Let z ∈ Dn be a state in the orbit
(xi)i∈N. Define

Pz =def P [z is visited in (xi)i∈N] .

Then, Pz is given by a frequency sequence of the initial segments of the orbit:

Pz = lim
N→∞

‖{ i | i ∈ {0, 1, . . . , N − 1} and xi = z }‖
N

To calculate Pz, we have two cases.

• Suppose z is transient. Thus, ‖{ i | i ∈ {0, 1, . . . , N − 1} and xi = t }‖ = 1 for
N ≥ k0. Hence,

Pz = lim
N→∞

1
N

= 0.

• Suppose z is perdiodic. Thus, for N ≥ k0 + 1,⌊
N − k0 − 1

r

⌋
≤ ‖{ i | i ∈ {0, 1, . . . , N − 1} and xi = t }‖ ≤

⌊
N − k0 − 1

r

⌋
+ 1.

Hence, we obtain

Pz ≤ lim
N→∞

N−k0−1
r + 1
N

= lim
N→∞

N − k0 − 1 + r − 1
rN

=
1
r

Pz ≥ lim
N→∞

1 + N−k0−1
r − 1
N

= lim
N→∞

N − k0 − 1− r
rN

=
1
r

Consequently, Pz = 1
r .

Network Dynamics – Lecture Notes

2.4. Networks as dynamical systems 21

Now, consider any periodic z ∈ Dn following the specification given in the proposition.
Then, z lies on s+ r orbits. So, the visiting probability of z is

P[z is visited in some orbit] =
s+ r

mn
· 1
r

=
(

1 +
s

r

)
·m−n.

This proves the proposition.

Example (cont’d): Consider the map F : {0, 1}3 → {0, 1}3 from above. The
visiting probabilities for the periodic states 010, 111, 001, 100 are all 1

4 .

2.4.3 Series, levels, and plots

Even for finite domains D, the state graph Γ(F) for an iterated map F : Dn → Dn can
be too large to construct explicitly. Since ‖V ‖ = ‖E‖ = ‖D‖n, it has size exponential in
the number n. If we consider boolean network attributes then the size 2O(n2). This forces
us to reduce the dimensionality of the phase space. In this subsection, we look at three
methods to achieve this reduction.

(Multivariate) Time series

Let F : Dn → Dn be a map. Let τ : Dn → R be any function. Then, the time series
(τi)i∈N associated with an orbit (xi)i∈N is given by

τi = τ(xi) = τ(F i(x0)).

The following summarizes the construction of a time series schematically:

x0
F→ x1

F→ x2
F→ . . .

F→ xk
F→ . . . orbit

τ ↓ τ ↓ τ ↓ τ ↓
τ0 → τ1 → τ2 → . . . → τk → . . . time series

If τ : Dn → Rm has m-dimensional function values then the sequence (τi)i∈N is called
multivariate (or multidimensional) time series.

Example: A typical example of derived time series from an underlying dynam-
ics is the evolution of the voting distribution among voters over some time
period. (We will study this in the opinion dyamics section.)

For a more technical example, consider the following state graph:

. . .

Several time series can be derived from the orbit of this state graph.

• Define τ1 : {0, 1}4 → R : (x1, x2, x3, x4) 7→ |(x1, x2, x3, x4)|1 (where |x|a
denotes the number of a’s in a tuple x ∈ {0, 1}n)

version v3.25 as of February 18, 2014

22 Chapter 2. Networks

• For a bivariate times series, define

τ2 : {0, 1}4 → R2 : (x1, x2, x3, x4) 7→ (|(x1, x2, x3, x4)|0, |(x1, x2, x3, x4)|1)

• Define τ3 : {0, 1}4 → R : (x1, x2, x3, x4) 7→ x1 ⊕ x2 ⊕ x3 ⊕ x4 (i.e., τ3 is a
parity function)

• Define τ3 : {0, 1}4 → R : (x1, x2, x3, x4) 7→ x2 (i.e., τ4 is a projection
function)

Levels

Let F : Dn → Dn be a map. A subset L ⊆ {1, . . . , n} of size ‖L‖ = m is called level of f
if and only if L = ∅ or there is a map G : Dm → Dm such that for all x ∈ Dn,

π(F (x)) = G(π(x)),

where π : Dn → Dm is the projection that maps (x1, . . . , xn) to those m components
indexed by the set L, i.e., π(x1, . . . , xn) = (xi1 , . . . , xim) and L = {i1, . . . , im}.

Note that by an inductive argument, it follows that:

π(F k(x)) = Gk(π(x)) for all k ∈ N

Indeed, case k = 0 is trivial, and for the case k > 0, we obtain by using the inductive
assumption

π(F k(x)) = π(F (F k−1(x)) = G(π(F k−1(x))) = G(Gk−1(π(x))) = Gk(π(x)).

So, the iterated map G induces a subdynamic on the elements of the level L.

This can be summarized schematically as follows:

x0
F→ x1

F→ x2
F→ . . .

F→ xk
F→ . . . orbit

π ↓ π ↓ π ↓ π ↓
y0

G→ y1
G→ y2

G→ . . .
G→ yk

G→ . . . orbit

Example: We determine all levels for the state graph Γ(F) above:

• {2, 3, 4} is a level of F with the map G : {0, 1}3 → {0, 1}3

. . .

• {3, 4} is a level of F (and of G) with the map G′ : {0, 1}2 → {0, 1}2

. . .

There are no other levels of F . As an example, consider the set {1, 3, 4}. The
sequence (π(F i(.., .., ..)))i∈N

Network Dynamics – Lecture Notes

2.4. Networks as dynamical systems 23

The Derrida plot

This is a method for identifying turbulent behavior in the phase space.

Consider a map F : {0, 1}n → {0, 1}n. Let dH(x, y) denote the Hamming distance between
x = (x1, . . . , xn) and y = (y1, . . . , yn), i.e.,

dH(x, y) =def ‖{ i | xi 6= yi }‖.

The Derrida relation D(F) consists of the following multiset

D(F) =def { (h1, h2) | there are states x, y such that dH(x, y) = h1

and dH(F (x), F (y)) = h2 }

The multiplicity of the pairs (h1, h2) is given by the number of pairs (x, y) that realize the
values specified by h1 and h2.

Now, we can plot the relation D(F) as a diagram (with an appropriate representation of
multiplicities).

Example: We consider the following three maps for n = 4: Then, plot might
look like as follows

The curves are interpolations of resulting distances.

The intuition behind the Derrida plot is the following: The more pairs above the diagonal,
the more chaos.

Using this intuition we can introduce a numerical measure for chaos. The measure is
based on linear regression. Suppose (x1, y1), . . . , (xN , yN) are pairs in D(F) with multiple
occurrences corresponding up to their multiplicities. We try to find a linear function βx
which minimizes the distances to all pairs in the list, i.e., we want to find the right slope
β. According to the methode of least squares we define

L(β) =def

N∑
i=1

(yi − βxi)2.

By taking derivatives, we obtain

L′(β) =
N∑
i=1

2(yi − βxi)(−xi), L′′(β) =
N∑
i=1

2x2
i > 0

Therefore, any zero of L′ minimizes L. Hence, the optimale slope is

β =
∑N

i=1 yixi∑N
i=1 x

2
i

version v3.25 as of February 18, 2014

24 Chapter 2. Networks

The Derrida coefficient Dc(F) of a map is a scaled version of β:

Dc(F) =def log2 β

It is obvious that the Derrida coefficient ranges between −∞ and∞. The coefficient can
be used to make distinction between different behaviors of iterated maps. The interpreta-
tions for F are as follows:

Dc(F)� 0 : F shows chaotic behavior

Dc(F) ≈ 0 : F shows critical behavior

Dc(F)� 0 : F shows frozen behavior

The classification into these three types of behaviors becomes clear by looking at the
following diagrams:

2.4.4 Local maps

An iterated map F : Dn → Dn describes a global behavior:

x1 ← F (x1, x2, . . . , xn)1 = f1(x1, x2, . . . , xn)
x2 ← F (x1, x2, . . . , xn)2 = f2(x1, x2, . . . , xn)

...
xn ← F (x1, x2, . . . , xn)n = fn(x1, x2, . . . , xn)

global map local maps

In many cases, only local descriptions are available or even observable.

Let f : Dn → D be any function. A variable xj (or an index j) is fictive in f if and only if

f(z1, . . . , zj−1, zj , zj+1, . . . zn) = f(z1, . . . , zj−1, z
′
j , zj+1, . . . zn)

for all z1, . . . , zj−1, zj+1, . . . zn ∈ D, zj , z′j ∈ D. Given a collection of functions (local maps)
f1, . . . , fn : Dn → D, we say that xi depends on xj in fi iff xj is not fictive in fi.

The interdependence graph of an iterated maps F : {0, 1}n → {0, 1}n (considered as the
collection of its n local maps) is defined to consist of

• vertex set V =def {1, . . . , n} and

• edge set E = { (i, j) | xi depends on xj in F }

Network Dynamics – Lecture Notes

2.4. Networks as dynamical systems 25

We also uses undirected versions without loops.

Example: Let F : {0, 1}3 → {0, 1}3 be given by the following truth table.

(x1, x2, x3) F (x1, x2, x3)
000 100
001 101
010 011
011 011
100 100
101 101
110 101
111 101

Then, x1 depends on x1, x2, x2 depends on x1, x2, and x3 depends on x2, x3.
So, the interpendence graph of F is as follows:

We briefly discuss the connection between the interdependence graph of an iterated net-
work map and its underlying interaction domain. Suppose F is a map on an attribute x
on a symmetrical interaction domain I ⊆ A×A.

1. Suppose x is an attribute on items, i.e., x : A→ R. Then, xi depends on all xj such
that {i, j} ∈ I. So, the (undirected) interdependence graph of F is a subgraph of I.

2. Suppose x is an attribute on dyads, i.e., x : I → R. Then, xij depends on all
xe such that e ∈ I and e ∩ {i, j} 6= ∅. So, the interdependence graph of F is a
subgraph of L(I), where L(G) is the line graph of an undirected graph G = (V,E),
i.e., L(G) = (V ′, E′) such that

V ′ =def E, E′ =def { (e, f) | e, f ∈ E and e ∩ f = ∅ }

So far, we have considered a given iterated network map F decomposed into a collection
of local network maps. We now turn our point of view and consider iterated network maps
composed by a given collection of local network maps f1, . . . , fn.

Suppose x : I → R is a network attribute. Assume that I is enumerated 1, . . . , n. Let
M = { fi | i ∈ I } be a set of local transitions fi : Ddegi +1 → D where degi denotes
the in-degree of i in the interdependence graph. Additionally, suppose that we are given
a mapping α : {1, . . . T} → P(I) which is called schedule; the parameter T > 0 is any
natural number.

For each i ∈ I and for each subset U ⊆ I, activity function ϕi[U] is defined for configuration
~z = (z1, . . . , zn) ∈ Dn by

ϕi[U](~z) =def

{
fi(zi1 , . . . , zidegi +1

) if i ∈ U
zi if i 6∈ U

version v3.25 as of February 18, 2014

26 Chapter 2. Networks

where {i1, i2, . . . , idegi +1} is the set of neighbors in the interdependence graph.

For each set U ⊆ I, the global transition (function) FM [U] : Dn → Dn is defined for
configuration ~z = (z1, . . . , zn) by

FF [U](~z) =def

(
ϕ1[U](~z), . . . , ϕn[U](~z)

)
Finally, the global network map F(M,α) : Dn → Dn induced by (M,α) is defined by

F(M,α) =def

T∏
k=1

FM [α(k)],

i.e., F(M,α) is defined by the composition of global transition functions specified by the
update schedule. Note that f · g is the function defined by (f · g)(x) = g(f(x)). The
following shall elucidate the above definition in detail. For T = 3 and ~z ∈ Dn, we have

F(M,α)(~z, 3) =

(
3∏

k=1

FM [α(k)]

)
(~z) =

(
FM [α(1)] ·

3∏
k=2

FM [α(k)]

)
(~z)

=

(
3∏

k=2

FM [α(k)]

)(
FM [α(1)](~z)

)
=
(
FM [α(2)] · FM [α(3)]

)(
FM [α(1)](~z)

)
= FM [α(3)]

(
FM [α(2)]

(
FS [α(1)](~z)

))
Also notice that activity functions and global transitions do not depend on schedules.

Example: Suppose I = L(I) = K3. Let M = {f1, f2, f3} consist of local
transitions fi{0, 1}3 → {0, 1} such that for each i ∈ {1, 2, 3}, z1, z2, z3 ∈ {0, 1}

fi : {z1, z2, z3} 7→
{
zi if z1 + z2 + z3 = 1
1− zi otherwise

Let U1 = {1, 2} and U2 = {1, 2, 3} be subsets of I. Then we obtain the
following activity functions:

• ϕ1[U1] = f1, ϕ2[U1] = f2, and ϕ3[U1] = id;

• ϕ1[U2] = f1, ϕ2[U2] = f2, and ϕ3[U2] = f3.

The global transition function looks as follows:

• FM [U1](z1, z2, z3) = (f1(z1, z2, z3), f2(z1, z2, z3), z3); concrete function val-
ues are, e.g.,

FM [U1](1, 1, 1) = (0, 0, 1)

FM [U1](1, 0, 1) = (0, 1, 1)

FM [U1](0, 0, 1) = (0, 0, 1)

Network Dynamics – Lecture Notes

2.4. Networks as dynamical systems 27

• FM [U2](z1, z2, z3) = (f1(z1, z2, z3), f2(z1, z2, z3), f3(z1, z2, z3); concrete
values are, e.g.,

FM [U2](1, 1, 1) = (0, 0, 0)

FM [U2](0, 0, 0) = (1, 1, 1)

The following figure visualizes the global transition functions completely:

12

12

12

13

13

13 13

13

23

23
23

23

23

001100 010

123

1,2,3

12,13,23

123

1,2,3

12,13,23

123

1,2,3

12,13,23

111 000

101011 110

123

123

123

123

123

2

2
2

2

2

3

3

33

3

1

1
1

1

1

12

12

For the update schedules α1 : {1} → P({1, 2, 3}) and α2 : {1, 2, 3} → P({1, 2, 3})
given by

α1 : {1} 7→ {1, 2, 3}, α2 :
{1} 7→ {2}
{2} 7→ {1}
{3} 7→ {3}

the induced network maps are as follows:

(x1, x2, x3) F (x1, x2, x3)
000 111
001 001
010 010
011 100
100 100
101 010
110 001
111 000

(x1, x2, x3) F (x1, x2, x3)
000 010
001 001
010 010
011 001
100 100
101 010
110 100
111 001

version v3.25 as of February 18, 2014

28 Chapter 2. Networks

Network Dynamics – Lecture Notes

Simulation 3

3.1 Agent-based modelling

3.2 The agency problem

3.2.1 Push or pull?

3.2.2 Dyads or actors?

3.3 Sequential dynamical systems∗

Theory loves synchronous schedules, computers love sequential schedules.

A sequential dynamical system results from a dynamical system on n items or dyads by
replacing each update step with a sequence of n update steps in which only one item or
dyad is allowed to update its state. Of course, the coice of the schedule matters. For
instance, each item or dyads should appear in the schedule.

3.3.1 Permutation schedules

Let (X,E,R) be any state process with population size n = ‖X‖ and attribute type D.
Let L be a set of local transitions with interdependence structure E.

A schedule α : N+ → X(= P1(X)) is said to be sequential if and only if

1. α(t) = a(t+ k · n) for all k ∈ N,

2. α is surjective,

3. α(t1) 6= α(t2) for all t1, t2 ∈ {1, . . . , n} such that t1 6= t2.

A sequential schedule can be described by a permutation π : X → X. A local state
dynamic (L,α) over a sequential update schedule α can be written as (L, π), where π is
the permutation that generates α in the sense of the definition above.

version v3.25 as of February 18, 2014

30 Chapter 3. Simulation

3.3.2 Functional equivalence

Definition 3.1 Let L be a set of local transitions on X, ‖X‖ = n. Let π, π′ : X → X
be permutations on X. Then, π and π′ are said to be functionally equivalent, π ≡f π

′ in
symbols, if and only if

F(L,π)(·, k · n) = F(L,π′)(·, k · n)

for all k ∈ N+.

Clearly, it is logically equivalent to require the equation F(L,π)(·, n) = F(L,π′)(·, n) for π
and π′ to be functionally equivalent.

A deeper analysis of the notion of functional equivalence is based on update orders given
by permutations. Let X be a population, without loss of generality, X = {1, . . . , n}, let
E be an interdependence structure, and let SX denote the symmetric group of X, i.e.,
the set all permutations π : X → X. For different π, π′ ∈ SX , we say that π and π′ are
adjacent (with respect to (X,E)) if and only if there is a k such that {π(k), π(k+ 1)} /∈ E
and π(i) = π′(i) for i /∈ {k, k + 1}. In other words, π and π′ are adjacent with respect to
(X,E) iff π′ is obtained by swapping consecutive elements, not neighbored in E, in the
permutation order of π.

Proposition 3.2 Let π, π′ ∈ SX be adjacent with respect to (X,E). Let k be such that
{π(k), π(k + 1)} /∈ E and π(i) = π′(i) for all i /∈ {k, k + 1}. Then,

FL[π(k)] · FL[π(k + 1)] = FL[π(k + 1)] · FL[π(k)]

for all sets L of local transition functions with interdependence structure E.

Proof: Since {π(k), π(k + 1)} /∈ E, π(k) is fictive in fπ(k+1) and π(k + 1) is fictive in
fπ(k). That is, we can replace the π(k)-th argument in fπ(k+1) as well as the π(k + 1)-st
argument in fπ(k) arbitrarily. Suppose L is a set of local transitions. Let ~z = (z1, . . . , zn)
be any configuration. Assume that, without loss of generality, π(k) < π(k + 1). Then,(

FL[π(k)] · FL[π(k + 1)]
)
(~z)

= FL[π(k + 1)]
(
FL[π(k)](~z)

)
= FL[π(k + 1)](z1, . . . , fπ(k)(z1, . . . , zn), . . . , zn)

= (z1, . . . , fπ(k)(z1, . . . , zn), . . . , fπ(k+1)(z1, . . . , fπ(k)(z1, . . . , zn), . . . , zn), . . . , zn)

= FL[π(k)](z1, . . . , fπ(k+1)(z1, . . . , zn), . . . , zn)

= FL[π(k)]
(
F[π(k + 1)](~z)

)
=

(
FL[π(k + 1)] · FL[π(k)]

)
(~z)

This proves the proposition.

Network Dynamics – Lecture Notes

3.3. Sequential dynamical systems∗ 31

3.3.3 The update graph

The update graph (or ugraph, for short) U = U(X,E) consists of vertex set SX and edge
set {(π, π′) | π and π′ are adjacent}

Example: We determine update graph for Circ4, with populationX = {1, 2, 3, 4}.

(0,1,2,3) (1,2,3,0)

(2,3,0,1) (3,0,1,2)

(2,1,3,0) (2,3,1,0)

(0,1,3,2) (0,3,1,2)

(0,2,1,3) (0,2,3,1)

(2,0,1,3) (2,0,3,1)

(3,2,1,0) (2,1,0,3)

(1,0,3,2) (0,3,2,1)

(1,2,0,3) (1,0,2,3)

(1,0,2,3) (1,2,0,3)

(1,3,2,0) (3,1,2,0)

(1,3,0,2) (3,1,0,2)

Based on the update graph, we define an equivalence relation on SX with respect to
U = U(X,E):

π ∼U π′ ⇐⇒def π and π′ are connected by a path in U

Proposition 3.3 Let G = (X,E) be an undirected graph, ‖X‖ = n. Let π, π′ ∈ SX and
let U = U(X,E) be the update graph. If π ∼U π′ then

F(L,π)(·, n) = F(L,π′)(·, n)

for all sets L of local transition functions with interdepence structure E.

Proof: The proof is by induction on the distance d between permutations in the update
graph U = U(X,E). The distance dU (π, π′) is defined to be the length of a shortest path
from π to π′ in U .

• Base of induction: Let d = 0. So, dU (π, π′) = 0, i.e., π = π′.

• Induction step: Let dU (π, π′) = dU (π′, π) = d > 0. Let (π0, . . . , πd−1, πd) be a
shortest path in U such that π0 = π′ and πd = π. It follows that πd−1 and πd are
adjacent with respect to U . Thus, there is a k such that {π(k), π(k + 1)} /∈ E and
π(i) = πd−1(i) for all i /∈ {k, k + 1}. We obtain for any set L of local transition

version v3.25 as of February 18, 2014

32 Chapter 3. Simulation

functions and ~z ∈ Dn

F(L,π)(~z, n)

=

 n∏
j=1

FL[π(j)]

 (~z)

=

k−1∏
j=1

FL[π(j)] · FL[π(k)] · FL[π(k + 1)] ·
n∏

j=k+2

FL[π(j)]

 (~z)

=

k−1∏
j=1

FL[π(j)] · FL[π(k + 1)] · FL[π(k)] ·
n∏

j=k+2

FL[π(j)]

 (~z)

(by Proposition 3.2)

=

k−1∏
j=1

FL[πd−1(j)] · FL[πd−1(k)] · FL[πd−1(k + 1)] ·
n∏

j=k+2

FL[πd−1(j)]

 (~z)

=

 n∏
j=1

FL[πd−1(j)]

 (~z)

= F(L,πd−1)(~z, n)

= F(L,π′)(~z, n) (by induction assumption)

This proves the proposition.

We consider the equivalence class [π]U of a permutation π with respect to U = U(X,E),
i.e.,

[π]U =def {π′ | π ∼U π′},

together with the quotient set with respect to the equivalence relation ∼U

SX/ ∼U= {[π]U | π ∈ SX} .

Proposition 3.4 Let G = (X,E) be an undirected graph and let U = U(X,E) be the
update graph. Then, there exists a bijective mapping

fG : SX/ ∼U → Acyc(G),

where Acyc(G) is the set of all acyclic orientations of G.

Proof: We first construct an appropriate mapping f̃G : SX → Acyc(G). Any permutation
π ∈ SX induces a linear ordering ≤π on X by

i ≤π j ⇐⇒def π(i) ≤ π(j).

Network Dynamics – Lecture Notes

3.3. Sequential dynamical systems∗ 33

Any linear ordering ≤π on X induces an acyclic orientation: for each {i, j} ∈ E set

i→ j ⇐⇒def i <π j

Let f̃G map each permutation to the according orientation. We have to argue that
f̃G(π) = f̃G(π′) for π ∼U π′. It suffices to show f̃G(π) = f̃G(π′) for adjacent permutations
π, π′ (proof of the general case is then by induction): If π and π′ are adjacent, they differ
in exactly two consecutive entries not connected by an edge in E. Thus, f̃G(π) = f̃G(π′).

Now, define fG : SX/ ∼U→ Acyc(G) by fG([π]U) =def f̃G(π). Observe that fG is injective
(exercise!). It remains to show that fG is surjective. Consider an acyclic orientation of G.
For vertex i ∈ X define the rank of i as follows:

rank(i) =def length of a longest directed path to i
(with respect to the given acyclic orientation)

We should note that rank(i) = rank(j) implies {i, j} /∈ E for i 6= j. We define

H =def {h | rank−1(h) 6= ∅}

and for h ∈ H
rnk−1(h) =def (i1, . . . , imh

),

where rank(ij) = h and ij < ik for j < k. Furthermore, consider[(
rnk−1(0), rnk−1(1), . . . , rnk−1(t)

)]
U

with t = maxH. Then, clearly, fG maps
[(

rnk−1(0), . . . , rnk−1(t)
)]
U

to the given orien-
tation. Thus, fG is surjective. Hence, fG is bijective.

Example: Consider Circ4

[(0, 2, 1, 3)]U 7−→
3 2

0 1

[(0, 2︸︷︷︸
rnk−1(0)

, 1, 3︸︷︷︸
rnk−1(1)

)]U ←− [
3 2

0 1

1 0

0 1

Proposition 3.5 For any undirected graph G = (X,E), ‖X‖ = n, and any set L of local
transition functions with interdepence structure E,

‖
{
F(L,π)(·, n) | π ∈ SX

}
‖ ≤ ‖Acyc(G)‖;

and the bound is sharp.

version v3.25 as of February 18, 2014

34 Chapter 3. Simulation

Proof: Using Proposition 3.3 and Proposition 3.4, we obtain the following:∥∥{F(L,π)(·, n) | π ∈ SX
}∥∥ ≤ ‖{[π]U | π ∈ SX}‖ = ‖SX/ ∼U‖ = ‖Acyc(G)‖

Sharpness is left as an exercise. This proves the proposition.

Example: It holds that ‖Acyc(Circn)‖ = 2n − 2, since only two of the 2n

possible orientations of Circn are not acyclic. Thus, there are at most 2n − 2
essentially different local state dynamics on Circn.

3.3.4 Acyclic orientations and the chromatic polynomial

How to compute ‖Acyc(G)‖?

Let G = (V,E) be an undirected graph. A vertex coloring with k colors 1, . . . , k is a
mapping f : V → {1, . . . , k} such that f(u) 6= f(v) if {u, v} ∈ E. Define PG(k) to be
the number of different vertex colorings with k colors of G. The pausible choices for
the number of colors are 0, 1, . . . , n. Thus, we know the function values of PG for n + 1
arguments. Hence, there is a uniquely determined normal polynomial (i.e., the leading
coefficient in the expanded form of the polynomial is 1) of degree n which takes on these
specified function values. We identify PG with this polynomial, and we call PG(x) the
chromatic polynomial of graph G.

Example: Let G = Kn. It holds that PG(k) = 0 for k ∈ {0, 1, . . . , n − 1}.
Moreover, PG(n) = n!. Thus, the chromatic polynomial of G is given by

PG(x) =
n−1∏
j=0

(x− j).

Lemma 3.6 Let G,H be undirected graphs.

1. If G is a one-vertex graph, PG(x) = x.

2. PG⊕H(x) = PG(x) · PH(x)

3. PG(x) = PG−e(k)− PG/e(x)

Example: Let T be a tree with n vertices. Let u be an arbitrary leaf of T
and e = {u, v} be the edge connecting u with T . Then, it holds

PT (x) = PT−e(x)− PT/e(x)

= PT ′(x) · x− PT ′′(x)

Network Dynamics – Lecture Notes

3.3. Sequential dynamical systems∗ 35

Here, T ′ is a tree with n−1 vertices, T ′′ is a tree with n−1 vertices. Actually,
T ′ ' T ′′. We conclude

PT (x) = PT ′(x) · (x− 1).

By iteration, we obtain PT (x) = x(x− 1)n−1.

Thus, each tree with n vertices has the same chromatic polynomial independent
of its structure. Moreover, a graph G with n vertices is a tree if and only if
PG(x) = x(x− 1)n−1.

Lemma 3.7 Let G be an undirected graph. Suppose there are graphs G1, G2 such that
G = G1 ∪G2 and G1 ∩G2 = Kn. Then,

PG(x) =
PG1(x) · PG2(x)

PKn(x)

Proof: Each vertex coloring f of G corresponds to exactly one pair (f1, f2) of colorings
of G1 and G2 which are identical on Kn. So, let f1 be a k-coloring of G1. Then, there
are PG2(k)/PKn(k) k-colorings of G2 which are identical on Kn with f1. This proves the
lemma.

Example: We want to compute, once more, the chromatic polynomial for Kn.
We start with the following recursion:

PKn(x) = PKn−e(x)− PKn/e(x)

=
PKn−1(x)2

PKn−2(x)
− PKn−1(x)

=
PKn−1(x)
PKn−2(x)

(PKn−1(x)− PKn−2(x))

By induction we can prove that Pkn(x) = xn:

• Base of induction: We have two case here, n ∈ {1, 2}: PK1(x) = x = x1

and PK2(x) = x(x− 1) = x2.

• Induction step: For n > 2, we have

PKn(x) =
xn−1

xn−2 ·
(
xn−1 − xn−2

)
(by induction assumption)

= (x− (n− 1) + 1) · xn−2 · ((x− (n− 1) + 1)− 1)

= xn−2 · (x− (n− 2)) · (x− (n− 1))

= xn

version v3.25 as of February 18, 2014

36 Chapter 3. Simulation

We give a different interpretation of PG(x).

Proposition 3.8 Let G = (V,E) be an undirected graph. Then, PG(k) is equal to the
numbers of pairs (f,O) where f : V → {1, . . . , k} and O is an orientation of G such that

1. the orientation O is acyclic,

2. if u→ v in orientation O then f(u) > f(v).

Proof: Consider a pair (f,O) satisfying (i), (ii). From (ii) it follows that f(u) 6= f(v)
for {u, v} ∈ E. Thus, f is a vertex coloring with k colors. Moreover, (ii) implies (i).
Conversely, if f is a vertex coloring with k colors then f defines a unique acyclic orientation
O by u → v if and only if f(u) > f(v). Hence, the number of allowed pairs (f,O) is the
number of vertex colorings with colors 1, . . . , k and is, thus, PG(k).

Proposition 3.8 suggests the following modification: Let G = (V,E) be an undirected
graph and let k ∈ {1, . . . , n} where n = ‖V ‖. Define PG(k) to be the number of pairs
(f,O) where f : V → {1, . . . , k} and O is an orientation of G such that:

1. the orientation O is acyclic,

2. if u→ v in orientation O then f(u) > f(v).

We say that the function f is compatible with O if f satisfies the second conditions.

Lemma 3.9 Let G,H be undirected graphs.

1. If G is one-vertex graph then PG(x) = x.

2. PG⊕H(x) = PG(x) · PH(x)

3. PG(x) = PG−e(x) + PG/e(x) for any e ∈ E

Proof: The first two statements are obvious.

In order to show the third statement, let f : V → {1, . . . , k} be a mapping and let O be
an acyclic orientation of G−e compatible with f , where e = {u, v} ∈ E. Let O1 be the
orientation of G obtained by adjoining u→ v to O, and O2 that is obtained by adjoining
v → u to O. We show that for each pair (f,O) exactly one of O1 and O2 is an acyclic
orientation compatible with f , except for PG/e(k) of the pairs, in which case both O1 and
O2 are acyclic orientations compatible with f . Thus, PG−e(k) = PG(k) − PG/e(k). We
consider the following three cases:

• If f(u) > f(v) then O2 is not compatible with f while O1 is compatible. Moreover,
O1 is acyclic, since if u→ v → w1 → w2 → · · · → u were a directed cycle in O1, we
would have f(u) > f(v) ≥ f(w1) ≥ f(w2) ≥ · · · ≥ f(u), which is a contradiction.

Network Dynamics – Lecture Notes

3.3. Sequential dynamical systems∗ 37

• If f(u) < f(v) then we can argue symmetrically to the first case.

• If f(u) = f(v), both O1 and O2 are compatible with f . Then, at least one of
them is acyclic; if not: O1 contains a cycle u → v → w1 → w2 → · · · → u and
O2 contains a cycle v → u → w′1 → w′2 → · · · → v. Hence, O contains a cycle
v → w1 → w2 → · · · → u→ w′1 → w′2 → · · · → u which is not possible.

It remains to prove that O1 and O2 are acyclic for exactly PG/e(k) pairs (f,O) with
f(u) = f(v). Define Φ(f,O) =def (f ′, O′) such that f ′ : V (G/e) → {1, . . . , k} (note that
f(u) = f(v)) and O′ is an acyclic orientation of G/e compatible with f ′. Let z be the
vertex obtained by identifying u and v. Define f ′ to be the following function:

f ′(w) =def

{
f(w) if w ∈ V \ {u, v}
f(u) if w = z

Define O′ by w1 → w2 in O′ if and only if w1 → w2 in O. Then, Φ is a bijection. This
proves the proposition.

Theorem 3.10 (Stanley 1973) For each graph G = (V,E) such that ‖V ‖ = n,

PG(x) = (−1)nPG(−x).

Proof: Using the recursive rules according to Lemma 3.9 and Lemma ??, we prove the
statement by induction on the number n of vertices.

• Base of induction: Let n = 1. Then, PG(x) = x = (−1)1(−x) = (−1)1PG(−x).

• Induction step: Suppose n > 1. Again, we argue inductively, in this case however,
on the number of edges. For the base of induction, let G be the empty graph on n
vertices. Then, PG(x) = xn = (−1)n(−x)n = (−1)nPG(−x). For the induction step,
suppose ‖E‖ ≥ 1. Then, for some edge e ∈ E

PG(x) = PG−e(x) + PG/e(x)

= (−1)n PG−e(−x) + (−1)n−1 PG/e(−x)

= (−1)n
(
PG−e(−x)− PG/e(−x)

)
= (−1)n PG(−x)

This proves the theorem.

Corollary 3.11 ‖Acyc(G)‖ = (−1)n PG(−1).

version v3.25 as of February 18, 2014

38 Chapter 3. Simulation

Proof: It holds that ‖Acyc(G)‖ = PG(1) = (−1)n PG(−1).

Example: We want to compute ‖Acyc(Circn)‖ for n ≥ 3. First, we prove that
PCircn(x) = (x− 1)n + (−1)n(x− 1) by induction on n ≥ 3.

• Base of induction: For n = 3, we calculate

PCirc3(x) = x(x− 1)(x− 2)

= x3 − 3x2 + 2x

= x3 − 3x2 + 3x− 1− (x− 1)

= (x− 1)3 + (−1)3(x− 1)

• Induction step: For n > 3, we calculate

PCircn(x) = PCircn−e(x)− PCircn/e(x)

= x(x− 1)n−1 −
(
(x− 1)n−1 + (−1)n−1(x− 1)

)
= (x− 1)n(x− 1)− (−1)n−1(x− 1)

= (x− 1)n + (−1)n(x− 1)

Now, from Corollary 3.11, we obtain ‖Acyc(Circn)‖ = 2n − 2 by considering
two distinctive cases:

• If n is even then PCircn(1) = PCircn(−1) = 2n − 2

• If n is odd then PCircn(1) = −PCircn(−1) = − (−2n − (−2)) = 2n − 2

Proposition 3.12 Unless P = NP, there is no algorithm for computing the number of
acyclic orientations of a given graph with n vertices, which runs in time polynomial in n.

3.4 Ensemble approaches

Network Dynamics – Lecture Notes

Models 4

4.1 Potentials

Models based on maximizing a potential function are typical for rational actors (aka
agents). They belong to a class of mechanisms where actors choose their decisions on
changing attribute values depending on the decisions of other actors in such a way they
maximize their benefits, utilities, or preferences. In the following, we use game theory to
analyze such models.

4.1.1 Games with utility functions

Definition 4.1 A game with utilities Γ is a triple (A, (S1, . . . , Sm), (u1, . . . , um)), where

1. A = {1, . . . ,m} is a finite, non-empty set of agents,

2. Si is a non-empty set of strategies of agent i ∈ A, and

3. ui : S1 × · · · × Sm → R is a utility function for agent i.

According to the definiton above, we introduce some notations:

• S =def

m

×
k=1

Sk denotes the set of all strategy profiles of all agents; S−i =def

m

×
k=1
k 6=i

Sk

denotes the set of all strategy profiles of all agents except agent i.

• For a strategy profile s = (s1, . . . , sm) ∈ S, let s−i denote the (m−1)-tuple consisting
of strategies of all agents except agent i, i.e., s−i = (s1, . . . , si−1, si+1, . . . , sm).

• So, s = (si, s−i) and S = Si × S−i, by convention.

• We use u = (u1, . . . , um) : S → Rm to denote the vector utility function, and we use
ui(s) = ui(s1, . . . , sm) = ui(si, s−i) to denote agent’s i utility of a strategy profile

We consider a game Γ as a one-shot non-cooperative game. Each agent u chooses a strategy
si ∈ Si independently of other agents and without knowing the choices of the other agents.
The result is a strategy profile s = (s1, . . . , sm). Each agent i evaluates strategy profile s
according to the utility function ui.

version v3.25 as of February 18, 2014

40 Chapter 4. Models

A notion central to game theory is the Nash equilibrium.

Definition 4.2 Let Γ = (A,S, u) be a game with utilities, involving m agents. A strategy
profile s∗ = (s∗1, . . . , s

∗
m) is called Nash equilibrium if and only if ui(s∗i , s

∗
−i) ≥ ui(si, s∗−i)

for all si ∈ Si and all i ∈ A.

Intuitively, in a Nash equilibrium, no agent has an incentive to deviate from the chosen
strategy.

Example: We exemplify the notions for three standard games.

• Battle of sexes: Male M and Female F want to spend time together, i.e.,
A = {M,F}. Alternatives are cinema (c) or football (f). So, the sets of
strategies for both are SM = SF = {c, f}. The set of strategy profiles is

S = SF × SM = { (c, c), (c, f), (f, c), (f, f) }

where the first component of a pair denotes Female’s strategy and the
second component is Male’s strategy. Now, on the one hand-side, Male
prefers football over cinema but together is better than alone. So, M ’s
preference can be described by the following utility function:

uM :

(f, f) 7→ 3
(c, c) 7→ 2
(c, f) 7→ 1
(f, c) 7→ 0

On the other hand-side, Female prefers cinema over football but together
is better than alone. So, F ’s utilities could be as follows:

uF :

(c, c) 7→ 3
(f, f) 7→ 2
(c, f) 7→ 1
(f, c) 7→ 0

Combined, both utility functions can be modelled as a payoff (bi-)matrix:

M

f c

F
f

c

(
(2, 3) (0, 0)
(1, 1) (3, 2)

)

Since all information on the game is contained in this representation, we
will also identify such a matrix with a 2-person game.

Network Dynamics – Lecture Notes

4.1. Potentials 41

Which strategy profiles are Nash equilibria? We examine all strategy
profiles individually:

– (c, c) is a Nash equilibrium, since

uF (c, c) = 3 > 0 = uF (f, c)

uM (c, c) = 2 > 1 = uM (c, f)

– (c, f) is not a Nash equilibrium, since

uF (c, f) = 1 < 2 = uF (f, f)

– (f, c) is not a Nash equilibrium, since

uM (f, c) = 0 < 3 = uM (f, f)

– (f, f) is a Nash equilibrium, since

uF (f, f) = 2 > 1 = uF (c, f)

uM (f, f) = 3 > 0 = uM (f, c)

Now, suppose Female is more decisive: she excludes football an option.
Thus, F ’s modified utility function leads to the following (bimatrix) game(

(1, 3) (0, 0)
(2, 1) (3, 2)

)
Then, the only Nash equilibrium is (c, c).
• Prisoner’s dilemma: Bonnie and Clyde have been captivated and charged

with bank robbery. However, the prosecutor is only able to prove illegal
possession of firearms to them; without confessions, the sentence will then
be 3 years in prison. If one of them makes a confession then the confessor
will be sentenced to one year and the non-confessor will be sentenced to
9 years in prison. If both confess then they will be sentenced to 7 years
in prison, respectively.
A game-based formulation of this decision scenario is given by the follow-
ing game with utilities:

s21 s22

s11

s12

(
(2, 3) (0, 0)
(1, 1) (3, 2)

)
where si1 stands for strategy “confession” and si2 stands for “no confes-
sion.”
Which strategy profiles are Nash equilibria?

– (s11, s21) is a Nash equilibrium, since

u1(s11, s21) = −7 > −9 = u1(s12, s21)

u2(s11, s21) = −7 > −9 = u2(s11, s22)

version v3.25 as of February 18, 2014

42 Chapter 4. Models

– (s11, s22) is not a Nash equilibrium, since

u2(s11, s22) = −9 < −7 = u2(s11, s21)

– (s12, s21) is not a Nash equilibrium, since

u1(s12, s21) = −9 < −7 = u1(s11, s21)

– (s12, s22) is not a Nash equilibrium, since

u1(s12, s22) = −3 < −1 = u1(s11, s22)

Why is this game a dilemma? Because (s12, s21) would be a better strat-
egy profile for both. But it is no equilibrium; each agent could be better
off when changing the strategy. The reason for that is the lack of com-
munication and coordination.

• Rock-paper-scissor: The scenario consists of two players each of them
chooses one of the three gestures“rock”, “paper”, or“scissor”as a strategy.
The rules of winning the game are as follows:

– rock defeats scissor
– scissor defeats paper
– paper defeats rock

The loser of a game pays a unit to the winner. We can express this a
game with utilities by the following bimatrix game:

rock paper scissor

rock
paper

scissor

 (0, 0) (−1, 1) (1,−1)
(1,−1) (0, 0) (−1, 1)
(−1, 1) (1,−1) (0, 0)

Obviously, there is no Nash equilibrium for this game in pure strategies.

An alternative characterization of Nash equilibria can be given by best-response dynamics.

Definition 4.3 Let Γ = (A,S, u) be a game with utilities.

1. The best response (map) βi : S−i → P(Si) for agent i ∈ A is defined by

βi(s−i) =def

{
si ∈ Si

∣∣∣∣ ui(si, s−i) = max
s′i∈Si

ui(s′i, s−i)
}

2. The best response β : S →
m

×
i=1

P(Si) is defined by

β(s) =def (β1(s−1), . . . , βn(s−n)).

Network Dynamics – Lecture Notes

4.1. Potentials 43

Theorem 4.4 Let Γ = (A,S, u) be a game with utilities. For all s∗ ∈ S, it holds

s∗ is a Nash equilibrium ⇐⇒ s∗ ∈ β(s∗).

Proof: Let s∗ ∈ S be a strategy profile. Then, the following chain of equivalences holds:

s∗ is a Nash equilibrium

⇐⇒ ui(s∗i , s
∗
−i) ≥ ui(si, s∗−i) for all i ∈ A, si ∈ Si (by Definition 4.2)

⇐⇒ ui(s∗i , s
∗
−i) = max

si∈Si

ui(si, s∗−i) for all i ∈ A, si ∈ Si

⇐⇒ s∗i ∈ βi(s∗−i) for all i ∈ A (by Definition 4.3.1)

⇐⇒ s∗ ∈ β(s∗) (by Definition 4.3.2)

This proves the theorem.

Example: Consider the following payoff matrix for a two-person game with
identical utility function

s21 s22

s11

s12

(
1 3
1 2

)

The best responses for the agents are

β1(s21) = {s11, s12}, β1(s22) = {s11}
β2(s11) = {s22}, β2(s12) = {s22}

So, the best response is:

β(s11, s21) = ({s11, s12}, {s22})
β(s11, s22) = ({s11}, {s22})
β(s12, s21) = ({s11, s12}, {s22})
β(s12, s22) = ({s11}, {s22})

By Theorem 4.4, (s11, s22) is a unique Nash equilibrium.

version v3.25 as of February 18, 2014

44 Chapter 4. Models

4.1.2 Potential games

An important class of games with equilibrium guarantee is the class of potential games.

Definition 4.5 Let Γ = (A,S, u) be a game with utilities, and let P : S → R be any
function.

1. P is said to be an ordinal potential function for Γ if and only if for all i ∈ A,
s−i ∈ S−i, si, s̄i ∈ Si,

ui(si, s−i)− ui(s̄i, s−i) > 0 ⇐⇒ P (si, s−i)− P (s̄i, s−i) > 0.

Γ is said to be an ordinal potential game if and only if there is an ordinal potential
function for Γ.

2. P is said to be a potential function for Γ if and only if for all i ∈ A, s−i ∈ S−i,
si, s̄i ∈ Si,

ui(si, s−i)− ui(s̄i, s−i) = P (si, s−i)− P (s̄i, s−i).

Γ is said to be a potential game if and only if there is a potential function for Γ.

Example: We discuss the notions for two games.

• Consider the following bimatrix game:

Γ =

(
(0, 3) (1, 2)
(3, 1) (2, 0)

)
According to Definition 4.5, it suffices to consider the following differences:

u1(s11, s21)− u1(s12, s21) = −3

u1(s11, s22)− u1(s12, s22) = −1

u2(s11, s21)− u2(s11, s21) = 1

u2(s12, s21)− u2(s12, s22) = 1

Then, Γ is an ordinal potential game. An ordinal potential function P is
represented by the matrix

Γ =

(
1 0
2 1

)
,

since

P (s11, s21)− P (s12, s21) = −1 < 0

P (s11, s22)− P (s12, s22) = −1 < 0

P (s11, s21)− P (s11, s21) = 1 > 0

P (s12, s21)− P (s12, s22) = 1 > 0

However, Γ is not a potential game. (An explanation will be given later.)

Network Dynamics – Lecture Notes

4.1. Potentials 45

• Recall that the prisoner’s dilemma can be represent by the following bima-
trix game:

Γ =

(
(−7,−7) (−1,−9)
(−9,−1) (−3,−3)

)
Γ is a potential game, where the potential function P is given by

Γ =

(
4 2
2 0

)
.

Proposition 4.6 Let Γ = (A,S, u) be a game with utilities and an ordinal potential func-
tion P , and let s∗ ∈ S. Then, s∗ is a Nash equilibrium if and only if for all i ∈ A and
si ∈ Si, it holds that

P (s∗) ≥ P (si, s∗−i).

Proof: Immediate from Definition 4.5.

Corollary 4.7 Each finite ordinal potential game has a Nash equilibrium.

Proof: For a finite ordinal potential game Γ, it’s ordinal potential funciton P has a
maximum. Let s∗ ∈ S be such that P (s∗) is maximum. Then, s∗ is a Nash equilibrium
by Proposition 4.6.

4.1.3 A structural characterization of potential games

How can we decide whether a given game with utilites is, in fact, a potential game? To
answe this question, we give a characterization based on the structure of utility functions.
It is helpful to introduce some additional notions.

Let Γ = (A,S, u) be a game with utilites.

A sequence p = (s0, s1, . . . , sN) is a path in Γ if and only if for all k ≥ 1, there is an i ∈ A
such that sk = (si, sk−1

−i) for some si ∈ Si with si 6= sk−1
i . The agent i ∈ A is then called

the deviator for k. A path p = (s0, s1, . . . , sN) is said to be closed iff s0 = sN . A path
p = (s0, s1, . . . , sN) is said to be simple iff sj 6= sk for all 0 ≤ j < k ≤ N − 1.

Furthermore, for a finite path p = (s0, s, . . . , sN) in Γ, define

I(Γ, p) =def

N∑
k=1

(
uik(sk)− uik(sk−1)

)
,

version v3.25 as of February 18, 2014

46 Chapter 4. Models

where ik is the deviator for k.

Theorem 4.8 Let Γ = (A,S, u) be a game with utilities. The following statements are
equivalent:

1. Γ is a potential game.

2. I(Γ, p) = 0 for each finite, closed path p in Γ.

3. I(Γ, p) = 0 for each finite, simple, closed path p in Γ.

4. I(Γ, p) = 0 for each finite, simple, closed path p in Γ of length 4.

Proof: We show the following implications:

• (1) ⇒ (2): Let P be a potential function for Γ = (A,S, u). Let p = (s0, s1, . . . , sN)
be a closed path. Then, we conclude

I(Γ, p) =
N∑
k=1

(
uik(sk)− uik(sk−1)

)

=
N∑
k=1

(
P (sk)− P (sk−1)

)
(since P is a potential function for Γ)

= P (sN)− P (s0)

= 0 (since sN = s0)

• (2)⇒ (1): Fix an arbitrary strategy profile z ∈ S. For s ∈ S, let p(s) = (s0, . . . , sN)
denote an arbitrary path from s0 = z to sN = s. We define

P (s) =def I(Γ, p(s)).

Note that there is always a path from z to a strategy profile s. We have to show
that the following two statements are true:

1. P is well-defined, i.e., the definition of P is independent of the choice of the
path p(s).

2. P is a potential function for Γ

This can be seen as follows:

1. Let q(s) = (s0, . . . tM) be another path such that t0 = z and tM = s. Then, the
concatenated path γ = (s0, . . . , sN , tM−1, . . . , t0) is a closed path in Γ. By our
assumption, it holds that I(Γ, γ) = 0. We conclude

I(Γ, p(s)) = −I
(
Γ, (sN , tM−1, . . . , t0)

)
= I

(
Γ, (t0, . . . , tM−1, sN)

)
= I(Γ, q(s))

Network Dynamics – Lecture Notes

4.1. Potentials 47

2. For i ∈ A, let si, s′i ∈ Si be two strategies, let s−i ∈ S−i. Again by our
assumption, we obtain

0 = I
(
Γ,
(
(si, s−i), . . . , z, . . . , (s′i, s−i), (si, s−i)

))
= I (Γ, ((si, s−i), . . . , z)) + I

(
Γ,
(
z, . . . , (s′i, s−i), (si, s−i)

))
= −I (Γ, (z, . . . , (si, s−i))) + I

(
Γ,
(
z, . . . , (s′i, s−i)

))
+

+ ui(si, s−i)− ui(s′i, s−i)

Consequently,

ui(si, s−i)− ui(s′i, s−i) = I(Γ, (z, . . . , (si, s−i)))− I(Γ, (z, . . . , (s′i, s−i)))

= P (si, s−i)− P (s′i, s−i)

Hence, P is a potential function.

• (2)⇒ (3): Trivial.

• (3)⇒ (4): Trivial.

• (4) ⇒ (2): Suppose I(Γ, p) = 0 for all simple, closed paths p of length 4 in
Γ = (A,S, u). We show that I(Γ, p) = 0 for all closed paths p of length N in Γ
by induction on N :

– base of induction N ≤ 4: Cases N ∈ {1, 2, 3} are trivial (in particular, there
are no closed paths of odd lengths); for N = 4, the statement holds by the
assumption.

– inductive step N > 4: Let p = (s0, s1, . . . , sN) be a closed path with N ≥ 5. Let
(i1, . . . , iN) be the sequence of deviators for each step, i.e., sj = (sij , s

j−1
−ij) such

that sij 6= sj−1
ij

. Without loss of generality, assume i1 = 1. Since sN = s0, there

is 2 ≤ j ≤ N such that ij = 1 and sjij = s01. Choose j to be minimal subject to
this condition, i.e., there is no 2 ≤ k < j satisfying ik = 1 and skik = s01.

First, suppose j = 2. That is, s2 = s0. Consider the path q =def (s2, . . . , sN)
of length N − 1. Then,

I(Γ, p) = I(Γ, q) + u1(s2)− u1(s1) + u1(s1)− u1(s0)

= u1(s2)− u1(s0) (by inductive assumption)

= 0 (since s2 = s0)

version v3.25 as of February 18, 2014

48 Chapter 4. Models

Now, suppose j ≥ 3, i.e, j ∈ {3, . . . , N}. Then, we have two subcases:

1. Subcase ij−1 = ij . Consider path q =def (s0, . . . , sj−2, sj , . . . , sN). It holds

I(Γ, q)

= I
(
Γ, (s0, . . . , sj−2)

)
+ uij (sj)− uij (sj−2) + I

(
Γ, (sj , . . . , sN)

)
= I

(
Γ, (s0, . . . , sj−2)

)
+ uij (sj)− uij (sj−1) +

+ uij (sj−1)− uij (sj−2) + I
(
Γ, (sj , . . . , sN)

)
= I

(
Γ, (s0, . . . , sj−2)

)
+ uij (sj)− uij (sj−1) +

+ uij−1(sj−1)− uij−1(sj−2) + I
(
Γ, (sj , . . . , sN)

)
(since ij−1 = ij)

= I
(
Γ, (s0, . . . , sj−2, sj−1, sj , . . . , sN)

)
= I(Γ, p)

Thus, by the inductive assumption, I(Γ, p) = I(Γ, q) = 0.
2. Subcase ij−1 6= ij . That is, we have the following scenario: ... Define a path
qj = def(s0, . . . , sj−2, tj−1, sj , . . . , sN) where tj−1 = (sij , s

j−2
−ij), i.e., the

deviator in (j − 1)-st step is 1. Now, path r =def (sj−2, tj−1, sj , sj−1, sj−2)
is simple (since ij 6= ij−1), closed, and has length 4. Hence, I(Γ, r) = 0.
That is,

I
(
Γ, (sj−2, sj−1, sj)

)
= I

(
Γ, (sj−2, tj−1, sj)

)
.

Therefore, I(Γ, p) = I(Γ, qj).
Recursively repeated, we obtain a sequence of paths qj , qj−1, . . . , q3 such
that I(Γ, p) = I(Γ, qk) for all k ∈ {3, . . . , j} and the deviator in qk’s step
k − 1 is 1. The path q3 corresponds to the case j = 2 above. Thus,

I(Γ, p) = I(Γ, q3) = 0.

This proves the theorem.

4.1.4 A dynamical characterization of potential games

We want to characterize potential games from a dynamical perspective.

Let Γ = (A,S, u) be a game with utilities. Let (st)t∈I be any finite or infinite sequence
of strategy profiles, i.e., I = N or I = {0, 1, . . . , n} for some n ∈ N. Then, the sequence
(st)t∈I is called an improvement path if and only if for all t ∈ I, t > 0, there is an i ∈ A
such that st 6= st−1, (st)−i = (st−1)−i, and ui(st) > ui(st−1). The intuition behind this
definition is that each deviator choose a better alternative. Γ is said to have the Finite
Improvement Property (FIP) if and only if every improvement path is finite.

Network Dynamics – Lecture Notes

4.1. Potentials 49

To establish our characterization, some technical limitations on games are required: A
game Γ = (A,S, u) is called degenerate iff there exist i ∈ A, si, s′i ∈ Si, si 6= s′i, and
s−i ∈ S−i such that ui(si, s−i) = ui(s′i, s−i); otherwise, Γ is called nondegenerate.

Theorem 4.9 Let Γ be a finite, nondegenerate game with utilities. Then, Γ has the FIP
if and only Γ is an ordinal potential game.

Proof:

(⇐): Let Γ = (A,S, u) be a finite game with ordinal potential function P , i.e., for all
i ∈ A, si, s′i ∈ Si, s−i ∈ S−i,

ui(s′i, s−i) ≥ ui(si, s−i)⇐⇒ P (si, s−i) ≥ P (s′i, s−i).

Let γ = (s0, s1, s2, . . .) be an improvement path, and let (i1, i2, . . .) be the sequence
of γ’s deviators. Then, for all t ∈ I, t > 0, it holds that uit(st) > uit(st−1). Hence,
P (s0) < P (s1) < P (s2) < As S is a finite set, γ = (s0, s1, s2, . . .) is a finite
sequence, i.e., ‖I‖ <∞.

(⇒): Let Γ = (A,S, u) have the FIP. Define a binary relation > on S:

s > s′ ⇐⇒def s 6= s′ and there is an improvement path from s to s′

Since Γ has the FIP, > is a strict order relation on S, i.e., > is irreflexive and
transitive. Any finite strict order can be represented by a function: A set Z ⊆ S
is represented iff there is a mapping Q : Z → R such that for all s, s′ ∈ Z, s > s′

implies Q(s) > Q(S′). Let Z∗ be a maximal, represented subset of S.

We show Z∗ = S. To the contrary, assume there is an x ∈ S, x /∈ Z∗. Then, there
are three (possibly overlapping) cases:

1. There is no z ∈ Z∗ such that z > x. Define an extension Q′ : Z∗ ∪{x} → R by:

Q′(z) =
{
Q(z) if z ∈ Z∗
max{ Q(z) | z ∈ Z∗ }+ 1 if z = x

Q′ represents Z∗ ∪ {x} and, thus, contradicts to the maximality of Z∗.

2. There is no z ∈ Z∗ such that z < x. Dually to the first case, define an extension
Q′ : Z∗ ∪ {x} → R by:

Q′(z) =
{
Q(z) if z ∈ Z∗
min{ Q(z) | z ∈ Z∗ } − 1 if z = x

Q′ represents Z∗ ∪ {x} and, thus, contradicts to the maximality of Z∗.

version v3.25 as of February 18, 2014

50 Chapter 4. Models

3. For some z, z′ ∈ Z∗, it holds that z > x > z′. In this case, define an extension
Q′ : Z∗ ∪ {x} → R by:

Q′(z) =
{
Q(z) if z ∈ Z∗
1
2 (max{ Q(z) | z < x }+ min{ Q(z) | z > x }) if z = x

Q′ represents Z∗ ∪ {x} and, thus, contradicts to the maximality of Z∗.

Therefore, Z∗ = S.

Let Q represent S. Then, Q is an ordinal potential function: Suppose si, s′i ∈ Si,
s−i ∈ S−i. Then, ui(si, s−i) 6= ui(s′i, s−i) since Γ is nondegenerate. So, without loss
of generality, ui(si, s−i) > ui(s′i, s−i). Thus, (si, s−i) > (s′i, s−i). (Note there is an
improvement path of length one.) Hence, Q(si, s−i) > Q(s′i, s−i).

This proves the theorem.

4.1.5 Congestion games

Congestion games have been introduced in economics by Robert W. Rosenthal in 1973.
A scenario related to computer science is as follows. Suppose we are given the following
interaction domain I ⊆ A×A, A = {A, B, C, D}:

...

Here, A, B, C, and D are routers. Router A wishes to select to route to C, and router B wishes
to select a route to D. If both routers use the same link then the congestion, or latency,
increases according to cost function ci. The routers aim at minimizing their costs.

We can analyze this scenario as a game with utilities

Γ =def ({A, B}, {{1, 2}, {3, 4}} × {{1, 3}, {2, 4}}, u)

where the utility function u = (u1, u2) is given by the following bimatrix:

{1, 3} {2, 4}

{1, 2}
{3, 4}

(
(c1(2) + c2(1), c1(2) + c3(1)) (c1(1) + c2(2), c2(2) + c4(1))
(c3(2) + c4(1), c1(1) + c3(2)) (c3(1) + c4(2), c2(1) + c4(2))

)

There are two simple, closed paths of length 4 in the game Γ. So, let p be the one in
counter-clockwise direction starting with the upper left strategy profile corner, and let q
be the one in clockwise direction also starting with the upper left strategy profile corner.

Network Dynamics – Lecture Notes

4.1. Potentials 51

It holds that

I(Γ, p) = c3(2) + c4(1)− c1(2)− c2(1)︸ ︷︷ ︸
A deviates

+

B deviates︷ ︸︸ ︷
c2(1) + c4(2)− c1(1)− c3(2) +

+ c1(1) + c2(2)− c3(1)− c4(2)︸ ︷︷ ︸
A deviates

+

B deviates︷ ︸︸ ︷
c1(2) + c3(1)− c2(2)− c4(1)

= 0

Since I(Γ, q) = −I(Γ, p) = 0, we obtain from Theorem 4.8 that Γ is a potential game.

Definition 4.10 A congestion model is a tuple (A,F, (Si)i∈A, (wf)f∈F) such that

1. A = {1, . . . , n} is a non-empty, finite set of agents (routers),

2. F is a non-empty, finite set of facilities (links),

3. Si ⊆ P(F) is a non-empty set of strategies (routes) for each agent i ∈ A, and

4. wf : {1, . . . , n} → R is a cost (wealth, latency) function for each facility f ∈ F ; if k
agents choose f then the cost for each agent is wf (k).

Definition 4.11 Let (A,F, (Si)i∈A, (wf)f∈F) be a congestion model. Then,
Γ = (A, (Si)i∈A, u) is called congestion game if and only if for all i ∈ A, s = (si, s−i) ∈ S,

ui(s) =
∑
f∈Si

wf (σf (s)),

where σf (s) = ‖{i ∈ A|f ∈ si}‖.

Without proof we state the following theorem which shows that potential games and
congestion games are essentially the same class of finite games.

Theorem 4.12 1. Each congestion game is a potential game.

2. Each potential game is isomorphic to a congestion game.

The proof of the first statement relies on the Rosenthal potential:

P (s) =def

∑
f∈

S
i∈A si

σf (s)∑
k=1

wf (k)

version v3.25 as of February 18, 2014

52 Chapter 4. Models

4.2 Thresholds

Threshold models are a widely used class of models for behavioral attributes, that is,
attributes on items. For instance, they have been used to model diffusion processes
(contagion) of innovation, riots, rumors and diseases, strikes, voting (see, e.g, [?]), and
furthermore in the context of neural networks (e.g., Hopfield networks).

Example: The following scenario was discussed by Granovetter in [?] to advo-
cate the usage of thrshold models in social sciences: Imagine there are 100
people milling around in a square–a potential riot situation. Now, assume that
there are two slightly different threshold distribution among individuals:

1. There is one individual with threshold 0 (the instigator), one individual
with threshold 1, and so on, and one individual with threshold 99. In a
“domino” effect, the instigator breaks a window; this activates the person
with threshold 1, and so on; finally, all 100 people have joined.

2. There is one individual with threshold 0, no individual with threshold 1,
two individuals with threshold 2, one individual with threshold 3, and so
on. That is, the crowds are essentially identical. Of course, the riots end
with one rioter.

However, newspapers will likely react very differently:

1. “A crowd of radicals engaged in riotous behavior.”

2. “A demented troublemaker broke a window while a group of solid citiziens
looked on.”

It is hazardous to infer individual dispositions from aggregate outcomes.

An n-ary function f : {0, 1}n → {0, 1} is a threshold function if and only if there are
weights w1, . . . , wn ∈ R≥0 and a threshold ϑ ∈ R≥0 such that for all z1, . . . , zn ∈ {0, 1},

f(z1, . . . , zn) = 1 ⇐⇒
n∑
i=1

wi · zi ≥ ϑi

Example: We discuss several functions.

• The standard case of a threshold function is the n-ary majority function
which is specified via weights w1 = · · · = wn = 1 and threshold ϑ = dn−1

2 e.
• Which binary functions are threshold functions?

– AND is a threshold function: w1 = w2 = 1, ϑ = 2:

Network Dynamics – Lecture Notes

4.2. Thresholds 53

x1 x2 x1 ∧ x2

0 0 0
0 1 0
1 0 0
1 1 1

– OR is a threshold function: w1 = w2 = 1, ϑ = 1:

x1 x2 x1 ∨ x2

0 0 0
0 1 1
1 0 1
1 1 1

– XOR is not a threshold function:

x1 x2 x1 ⊕ x2

0 0 0
0 1 1
1 0 1
1 1 0

• The ternary function f : {0, 1}3 → {0, 1} : (x1, x2, x3) 7→ (x1 ∧ x2) ∨ x3 is
a threshold function, e.g., via w1 = 2, w2 = 2, w3 = 5, and ϑ = 4:
x1 x2 x3 f(x1, x2, x3)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Observe that f is the disjunction of two threshold functions.
• In light of the preceding example, is (x1 ∧x2)∨ (x3 ∧x4) then a threshold

function as well? No, it is not. Assume it is. Then, there are weights
w1, w2, w3, w4 such that

(x1 ∧ x2) ∨ (x3 ∧ x4) ≡ 1 ⇐⇒ w1 · x1 + w2 · x2 + w3 · x3 + w4 · x4 ≥ 1.

So, the following inequalities are true:

w1 + w2 ≥ 1 since (1, 1, 0, 0) is a satisfying assignment

w3 + w4 ≥ 1 since (0, 0, 1, 1) is a satisfying assignment

w2 + w3 ≥ 1 since (0, 1, 1, 0) is not a satisfying assignment

w1 + w4 ≥ 1 since (1, 0, 0, 1) is not a satisfying assignment

Consequently, 2 ≤ w1 + w2 + w3 + w4 < 2. A contradiction.

version v3.25 as of February 18, 2014

54 Chapter 4. Models

We want to find fixed points in networks over threshold functions. In fact, we prove that
fixed points always exist in networks where local transitions belong to a larger class of
functions.

A function f : {0, 1}n → {0, 1}k is said to be monotone if and only if for all x, y ∈ {0, 1}n,
x ≤ y implies f(x) ≤ f(y). The less-than-or-equal relation is defined to be the vector-
ordering.

Proposition 4.13 Each threshold function is monotone.

Proof: Suppose x = (x1, . . . , xn) ≤ (y1, . . . , yn) = y, i.e., xi ≤ yi for all i ∈ {1, . . . , n},
and f(x) = 1. Since the weights w1, . . . , wn are non-negative, we obtain

ϑ ≤
n∑
i=1

wi · xi ≤
n∑
i=1

wi · yi.

Thus, f(y) = 1. Therefore, f is a monotone function. This proves the proposition.

Note that in the examples above, the last function is monotone, though not a threshold
function.

Proposition 4.14 Let M = {f1, . . . , fm} be a set of local transitions on an item set A
such that all fi are threshold functions. Then, FM [A] is monotone (with respect to the
vector-ordering).

Proof: Each component of FM [A] is a threshold function. That is, each component of
FM [A] is monotone. Hence, FM [A] is monotone with respect to the vector-ordering. This
shows the proposition.

Theorem 4.15 Let M = {f1, . . . , fn} be a set of local transition functions on an item set
A. Let α be any schedule on A. Then, the global network map (M,α) has a fixed point.

Proof: We give an algorithm for finding a fixed point of (M,α) that, essentially, simulates
the global network map along a specific orbit:

[1] x := (0, 0, . . . , 0)
[2] repeat
[3] y := x
[4] x := F(M,α)(y)
[5] until x = y

Network Dynamics – Lecture Notes

4.3. Opinion Dynamics 55

If the procedure terminates then a fixed point is found. To show the termination property,
observe that we construct an ascending chain

x(0) ≤ x(1) ≤ x(2) ≤ x(3) ≤ · · · ≤ x(k) ≤ . . . ,

where x(0) =def (0, 0, . . . , 0) and x(k) is the configuration assigned to x in the fourth line
of the algorithm above. Indeed, this is easily seen by induction:

• base of induction n = 1: It holds that

x(0) ≤ F(M,α)(x
(0)) = x(1)

since x(0) is a bottom element in the poset ({0, 1}n,≤) and since F(M,α) is monotone
by Proposition 4.14.

• inductive step n > 1: Using the monotonicity of F(M,α), we obtain

x(n) = F(M,α)(x
(n−1)) (line (4) of the algorithm)

≤ F(M,α)(x
(n)) (by inductive assumption and Proposition 4.14)

= x(n+1) (line (4) of the algorithm)

Since {0, 1}n is a finite set, the chain si finite. Thus, the procedure terminates. Therefore,
there a fixed point for (M,α). This proves the theorem.

Note that, in the proof above, there is a dual procedure starting at (1, 1, . . . , 1).

4.3 Opinion Dynamics

In order to give an impression on what opinion dynamics is about, we present a case study
based on an article that received some echo in several scientific disciplines:

Guillaume Deffuant, Frédéric Amblard, Gérard Weisbuch, Thierry Faure: How
can extremism prevail? A study on the relative agreement interaction model.
Journal of Artificial Societies and Social Simulation, 5(4), 2002.

The article addresses the question whether it is possible to identify certain parameters and
parameter values that endogeneously govern the distribution of opinions within a human
population. A particular goal is to look for values that allow extreme opinions to dominate
eventually.

The study is representative for a physics-oriented approach to complex networks:

• Methodologically, it employs agent-based modelling. Agent-based modelling uses sim-
plified interaction models and simulations to explore a nonlinear dynamical behavior

version v3.25 as of February 18, 2014

56 Chapter 4. Models

of complex systems. Agent-based modelling is applied when kinetic models involv-
ing differential equation systems are inappropriate, e.g., due to the number and the
heterogeneity of variables.

• It explains a complex phenomenon in a stylized, metaphorical fashion.

Apart from the methodological perspective, the concrete, original research motivation for
the study presented lies in the influence “green” farmers have attained in the farming
population.

We consider the following formal scenario: A population of n agents is given. An agent i
is characterized by two variables:

• opinion xi ∈ [−1, 1]

• uncertainty ui ∈ [0, 1]

Thus, the actual opinion of the agents ranges in her opinion segment

Si =def [xi − ui, xi + ui],

the size of which is (xi + ui)− (xi − ui) = 2ui.

We suppose a directed model of influence where any two agents use a communication chan-
nel. Agent i locally communicates to agent j over her communication channel, possibly
causing changes in opinion and uncertainty of agent j. In this situation, agent i is the
influencer of agent j and agent j is the influenced of agent i.

The effect of a communicative influence is given by an update rule which is assumed to
be the same for all interaction pairs of agents. Figure 4.1 describes a situation of an
interaction pair (i, j).

opinion segment of j

opinion segment of i

overlap hij

non-overlap 2ui − hij

xjxj − uj xj + uj

xi xi + uixi − ui

−1 1

1−1

Figure 4.1: The Relative Agreement model

The update rule is based on the agreement along the opinion segments of agents i and j,
i.e.,

hij − (2ui − hij) = 2(hij − ui),

Network Dynamics – Lecture Notes

4.3. Opinion Dynamics 57

in relation to the uncertainty of the influencer

2(hij − ui)
2ui

=
hij
ui
− 1.

The formal specification of the update rule is given by defining local transitions:

xj ← xj +

{
µ
(
hij

ui
− 1
)

(xi − xj) if hij ≥ ui
0 otherwise

uj ← uj +

{
µ
(
hij

ui
− 1
)

(ui − uj) if hij ≥ ui
0 otherwise

Here, µ is some decay constant, 0 < µ < 1.

Proposition 4.16 Let an interaction pair (i, j) be given. Let hij denote the overlap of
the opinion segments of the actors i and j before interaction, and let h′ij denote the overlap
of the opinion segments of the actors i and j after interaction. Then, hij ≤ h′ij.

Proof: Let (xi, ui) be the opinion/uncertainty pair of actor i, let (xj , uj) be the opin-
ion/uncertainty pair of actor j. According to our update rule, if hij ≤ ui then there are no
changes, neither in the opinions nor in the uncertainties of both actors. That is, h′ij = hij .
So, let hij > ui. Let x′j denote actor j’s opinion after interaction, and let u′j denote actor
j’s uncertainty after interction. More specifically, we have

x′j =
(

1− µ
(
hij
ui
− 1
))

xj + µ

(
hij
ui
− 1
)
xi,

u′j =
(

1− µ
(
hij
ui
− 1
))

uj + µ

(
hij
ui
− 1
)
ui.

The overlap h′ij is given by

h′ij = min(xi + ui, x
′
j + u′j)−max(xi − ui, x′j − u′j).

Note that hij ≤ 2ui. Thus, the update rules define convex combinations. By linearity, we
easily examine the following cases:

1. Suppose xi + ui ≤ xj + uj and xi − ui ≥ xj − uj . Therefore,

xi + ui ≤ x′j + u′j ≤ xj + uj ,

xj − uj ≤ x′j − u′j ≤ xi − ui.

We obtain

hij = xi + ui − (xi − ui),
h′ij = (xi + ui)− (xi − ui) = hij

version v3.25 as of February 18, 2014

58 Chapter 4. Models

2. Suppose xi + ui ≤ xj + uj and xi − ui ≤ xj − uj . Therefore,

xi + ui ≤ x′j + u′j ≤ xj + uj ,

xi − ui ≤ x′j − u′j ≤ xj − uj .

We obtain

hij = xi + ui − (xj − uj),
h′ij = (xi + ui)− (x′j − u′j) ≥ (xi + ui)− (xj − uj) = hij

3. Suppose xi + ui ≥ xj + uj and xi − ui ≤ xj − uj . Therefore,

xj + uj ≤ x′j + u′j ≤ xi + ui,

xi − ui ≤ x′j − u′j ≤ xj − uj .

We obtain

hij = xj + uj − (xj − uj),
h′ij = (x′j + u′j)− (x′j − u′j) ≥ (xi + ui)− (xj − uj) = hij

4. Suppose xi + ui ≥ xj + uj and xi − ui ≥ xj − uj . Therefore,

xj + uj ≤ x′j + u′j ≤ xi + ui,

xj − uj ≤ x′j − u′j ≤ xi − ui.

We obtain

hij = xj + uj − (xi − ui),
h′ij = (x′j + u′j)− (xi − ui) ≥ (xj + uj)− (xi − ui) = hij

This proves the proposition.

Proposition 4.17 Let the interaction pair (i, j) be given. For k ∈ N, let x(k)
j be actor

j’s opinion after the k-th round of the directed interaction (i, j), and let u(k)
j be actor j’s

uncertainty after the k-th round of the directed interaction (i, j). Then,

lim
k→∞

x
(k)
j = xi, lim

k→∞
u

(k)
j = ui.

Proof: We only prove the convergence in opinions. Since hij ≤ 2ui, we obtain as an
upper bound on the opinion x

(k)
j for k ∈ N+

x
(k)
j ≤ (1− µ)x(k−1)

j + µxi,

Network Dynamics – Lecture Notes

4.3. Opinion Dynamics 59

and furthermore, by induction,

x
(k)
j ≤ (1− µ)kxj +

(
1− (1− µ)k

)
xi.

Hence, limk→∞ x
(k)
j ≤ xi. For the lower bound, we write

x
(k)
j = (1− µAk−1)x(k−1)

j + µAk−1xi,

where Ak =
h
(k)
ij

ui
− 1 is the relative agreement after the k-th interaction. By Proposition

4.16, it holds that Ak ≤ Ak+1 for all k ∈ N. Thus, we can estimate

x
(k)
j ≥ (1− µA0)x(k−1)

j + µA0xi,

and, again by induction,

x
(k)
j ≥ (1− µA0)kxj +

(
1− (1− µA0)k

)
xi,

Hence, limk→∞ x
(k)
j ≥ xi. This proves the proposition.

In general populations of actors, it is not clear at all whether there is any convergence to a
“stable” opinion/uncertainty pattern over several time steps. If unambiguous convergence
is reachable, there are three important cases: convergence to the opinion poles, either
positive or negative, or convergence to the middle. We are interest in studying convergence
to extreme opinions.

Extremists are people with extreme opinions, i.e., opinions close to the boundaries mea-
sured by −1 and 1. Furthermore, the model of extremists within a population is based on
two observations which are claimed to possess a certain anectodal evidence [?]:

1. “. . . people who have extreme opinions tend to be more convinced,”

2. “. . . people who have moderate initial opinions, often express a lack of knowledge
(and uncertainty).”

A simplification of these observations can be incorporated into the Relative Agreement
model as follows. Let ue be the uncertainties of the extremists, supposed to be small
and the same for all extremists. Let u be the (identical) uncertainty of the moderate.
According to our observations, it holds that u > ue. Then, the population can be initially
decomposed into three classes corresponding to their opinion/uncertainty pairs:

1. positive extremists: xi ≈ 1, ui = ue

2. negative extremists: xi ≈ −1, ui = ue

3. moderates: xi ≈ 0, ui = u

version v3.25 as of February 18, 2014

60 Chapter 4. Models

Let pe denote the fraction of extremists, either positive or negative, in the population.
Depending on the fraction of actors belonging to these classes, an extremism bias can
be defined. Let p+ be the fraction of positive extremists, and let p− be the fraction of
negative extremists. Then, the extremism bias δ is given as

δ =
p+ − p−
p+ + p−

The simulation works in two phases:

1. For initalization, (a) choose n opinions uniformly at random from [−1, 1] and set all
n uncertainties to u, (b) for the p+ ·n most positive opinions and p− ·n most negative
opinons, the uncertainties are set to ue.

2. Iteratively choose a pair (i, j) of agents and let agent i exert influence on agent j
according to the specified update rule.

The stylized simulation results can be divided into three stable scenarios: central clus-
tering, bipolarization, single polarization. The following figures show diagram schemes
for each of the three scenarios together with parameter settings such that the described
behavior can be observed. The x-axis codes for time, i.e., number of iterations per actor,
and the y-axis codes for opinions. A trajectory of an actor’s opinion over the course of
time runs inside the region bounded by the drawn curves. Common parameters for all
figures (and the simulations) are n = 200, µ = 0.5, δ = 0, and ue = 0.1. The initial
uncertainty parameter u is increased from figure to figure.

In Figure 4.2, the initial uncertainty of the moderates is u = 0.4. It is an example
of central convergence. The majority of the moderate actors are not attracted by the
extreme opinions.

positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 0.4)

−1

1

0

iterations per actor

opinion x

Figure 4.2: Scheme of central convergence.

In Figure 4.3, the initial uncertainty of the moderates is u = 1.2. It is an example of
convergence to both extremes. The initially moderate actors split and become extremists.

Network Dynamics – Lecture Notes

4.3. Opinion Dynamics 61

positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 1.2)

−1

1

0

iterations per actor

opinion x

Figure 4.3: Scheme of bipolarization.

In Figure 4.4, the initial uncertainty of the moderates is u = 1.4. It is an example
of convergence to one single extreme. In this case, the majority of the population is
attracted by one of the extremes. This behavior can take place even when the number of
initial extremissts is the same at both extremes, which is claimed to have been a priori
unexpected.

positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 1.4)

−1

1

0

iterations per actor

opinion x

Figure 4.4: Scheme of single polarization.

version v3.25 as of February 18, 2014

62 Chapter 4. Models

Network Dynamics – Lecture Notes

Mathematical tools A

In this chapter we discuss relevant terminology and notation for sets, relations, and graphs,
some fundamental algorithms, and a few other mathematical preliminaries.

A.1 Sets and relations

We denote the set of integers by Z, the set of non-negative integers by N, and the set of
positive integers by N+. Z2 denotes the Galois field GF[2].

Sets

The empty set is denoted by ∅. For an arbitrary set A, P(A) denotes the power set of A,
i.e., the family of all subsets of A, and P+(A) denotes the set P(A)\{∅}. For an arbitrary
finite set A, its cardinality is denoted by ‖A‖. Let A and B be any sets. Then A \ B
denotes the difference of A with B, i.e., the set of all elements that are in A but not in B.
A×B denotes the cartesian product, i.e, the set of all pairs (a, b) with a ∈ A and b ∈ B.
For m ∈ N+, define Am =def A× · · · ×A︸ ︷︷ ︸

m times

. Let M be any fixed basic set. For a set

A ⊆M , its complement in the basic set M is denoted by A, i.e., A = M \A. A multiset A
is allowed to contain elements many times. The multiplicity of an element x in a multiset
A is the number of occurrences of x in A. The cardinality of a multiset A is also denoted
by ‖A‖.

Functions

Let M and M ′ be any sets, and let f : M → M ′ by any function. The domain of f
which we denote by Df is the set of all x ∈ M such that f(x) is defined. A function f
is total if the domain of f is M . For a set A ⊆ Df , let f(A) = {f(x) | x ∈ A} denote
the image of A under f . In particular, the range of f which is denoted by Rf is the set
f(Df). For a set A ⊆ M , the restriction of a total function f to A is denoted by f [A].
The inverse of f is denoted by f−1, i.e, f−1 : M ′ → P(M) such that for all y ∈ M ′,
f−1(y) = {x ∈ M | f(x) = y}. If f−1(y) is at most a singleton then we omit the braces.
The pre-image of A under f is the set f−1(A) = {x ∈M | f(x) ∈ A}.

We use two notations for composition of functions. If f and f ′ are functions with
f : M → M ′ and f ′ : M ′ → M ′′, then (f ′ ◦ f) is the function mapping from M to

version v3.25 as of February 18, 2014

64 Appendix A. Mathematical tools

M ′′ which is defined for all x ∈M as (f ′ ◦ f)(x) =def f ′(f(x)). In contrast, we use f · f ′
to denote f ′ ◦ f .

A function f : M → M ′ is bijective if f is surjective, i.e., Rf = M ′ and injective, i.e., for
all y ∈ Rf , f−1(y) is a singleton. Suppose M ′ = M and M is finite. In this case a bijective
function f is a permutation. Suppose M = {1, 2, . . . , n}. A cycle (i1 i2 . . . ik) of length
k of the permutation π : M → M is a sequence (i1, i2, . . . , ik) such that π(ij) = ij+1 for
1 ≤ j < k and π(ik) = i1. Each permutation allows a decomposition into cycles.

Orders

In more detail the following can be found in any textbook (e.g., [14, 6]) about theory of
orders and lattices.

Let P be any set. A partial order on P (or order, for short) is a binary relation ≤ on P
that is reflexive, antisymmetric, and transitive. The set P equipped with a partial order
≤ is said to be a partially ordered set (for short, poset). Usually, we talk about the poset
P . Where it is necessary we write (P,≤) to specify the order. A poset P is a chain if
for all x, y ∈ P it holds that x ≤ y or y ≤ x (i.e., any two elements are comparable with
respect to ≤). Such an order is also called a total order. A poset P is an antichain if for
all x, y ∈ P it holds that x ≤ y implies that x = y (i.e., no two elements are comparable
with respect to ≤).

We consider N to be ordered by standard total order on the natural numbers. If a set A
is partially ordered by ≤ then Am can be considered to be ordered by the vector-ordering,
i.e., (x1, . . . , xm) ≤ (y1, . . . , ym) if and only if for all i ∈ {1, . . . ,m}, xi ≤ yi.

An important tool for representing posets is the covering relation ≺. Let P be a poset
and let x, y ∈ P . We say that x is covered by y (or y covers x), and write x ≺ y, if x < y
and x ≤ z < y implies that x = z. The latter condition is demanding that there be no
element z of P with x < z < y. A finite poset P can be drawn in a diagram consisting of
points (representing the elements of P) and interconnecting lines (indicating the covering
relation) as follows: To each element x in P associate a point P (x) in the picture which is
above all points P (y) associated to elements y less than x, and connect points P (x) and
P (y) by a line if and only if x ≺ y. A poset can have different representation by diagrams.

Let P and P ′ be posets. A map ϕ : P → P ′ is said to be monotone (or order-preserving)
if x ≤ y in P implies ϕ(x) ≤ ϕ(y) in P ′. We say that ϕ is an (order-)isomorphism if ϕ
is monotone, injective, and surjective. Two posets P and P ′ are isomorphic, in symbols
P ∼= P ′, if there exists an isomorphism ϕ : P → P ′. Isomorphic poset shall be considered
to be not essentially different: Two finite posets are isomorphic if and only if they can be
drawn with identical diagrams.

Words

Network Dynamics – Lecture Notes

A.2. Graph theory 65

Sometimes we make no difference between m-tuples (x1, . . . , xm) over a finite set M and
words x1 . . . xm of length m over M . Such finite sets are called alphabets. Let Σ be a
finite alphabet. Σ∗ is the set of all finite words that can be built with letters from Σ. For
x, y ∈ Σ∗, x · y (or xy for short) denotes the concatenation of x and y. The empty word is
denoted by ε. For a word x ∈ Σ∗, |x| denotes the length of x. For n ∈ N, Σn is the set of
all words x ∈ Σ∗ such that with |x| = n. For a word x = x1 . . . xn ∈ Σ∗ any word x1 . . . xk
such that k ≤ n is called a prefix of x. We use regular expressions to describe subsets of
Σ∗ (see, e.g., [20]).

A.2 Graph theory

A graph G = (V,E) consists of a set V of vertices and a set E of edges joining pairs
of vertices. The vertex set and edge set of a graph G are denoted by V (G) and E(G),
respectively. The cardinality of V is usually denoted by n, the cardinality of E by m. If
two vertices are joined by an edge, they are adjacent and we call them neighbors. Graphs
can be undirected und directed. In undirected graphs, the order in which vertices are
joined is irrelevant. An undirected edge joining vertices u, v ∈ V is denoted by {u, v}. In
directed graphs, each directed edge has an origin and a destination. An edge with origin
u ∈ V and destination v ∈ V is represented by an ordered pair (u, v). For a directed graph
G = (V,E), the underlying undirected graph is the undirected graph with vertex set V
that has an undirected edge between two vertices u, v ∈ V if (u, v) or (v, u) is in E.

Multigraphs

In both undirected and directed graphs, we may allow the edge set E to contain the same
edge several times, i.e., E can be a multiset. If an edge occurs several times in E, the
copies of that edge are called parallel edges. Graphs with parallel edges are also called
multigraphs. A graph is called simple, if each of its edges in contained in E only once, i.e.,
if the graph does not have parallel edges. An edge joining a vertex to itself, is called a
loop. A graph is called loopless if it has no loops. In general, we assume all graphs to be
loopless unless specified otherwise.

Degrees

The degree of a vertex v in an undirected graph G = (V,E), denoted by dv, is the number
of edges in E joining v. If G is a multigraph, parallel edges are counted according to their
multiplicity in E. The set of neighbors of v is denoted by N(v). N0(v) denotes the vertex
set N(v) ∪ {v}. If the graph under consideration is not clear from the context, these
notations can be augmented by specifying the graph as an index. For example, NG(v)
denotes the neighborhood of v in G.

version v3.25 as of February 18, 2014

66 Appendix A. Mathematical tools

Subgraphs

A graph G′ = (V ′, E′) is a subgraph of the graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
Sometimes we denote this by G′ ⊆ G. It is a (vertex-)induced subgraph if E′ contains all
edges e ∈ E that join vertices in V ′. The induced subgraph of G = (V,E) with vertex set
V ′ ⊆ V is denoted by G[V ′]. The (edge-)induced subgraph with edge set E′ ⊆ E, denoted
by G[E′], is the subgraph G′ = (V ′, E′) of G, where V ′ is the set of all vertices in V that
are joined by at least one edge in E′.

Walks, paths, and cycles

A walk from x0 to xk in a graph G = (V,E) is a sequence x0, e1, x1, e2, x2, . . . , xk−1, ek, xk
alternating between vertices and edges of G, where ei = {xi−1, xi} in the undirected case
and ei = (xi−1, xi) in the directed case. The length of a walk is the number of edges on
the walk. As shorthands we use (x0, x1, . . . , xk) and (e1, e2, . . . , ek) to denote a walk. The
walk is called a path if xi 6= xj for i 6= j. A walk with x0 = xk is called a cycle if ei 6= ej
for i 6= j. A cycle is a simple cycle if xi 6= xk for 0 ≤ i < j ≤ k − 1.

Special graphs

A tree is a connected (for a definition see below) undirected graph not containing a cycle.
An undirected graph G = (V,E) is called complete if it contains all possible pairs of
vertices as edges. A complete graph with n vertices is denoted by Kn. A Kn is called a
clique. A K2 is a graph of two vertices with one edge joining them. A K3 is also called
a triangle or triad. A graph without edges is called empty. An independent set within a
graph G = (V,E) is a vertex set U ⊆ V such that G[U] is empty. A graph G = (V,E)
is called bipartite if there are independent vertex sets V1, V2 ⊆ V such that V1 and V2 are
disjoint and V1∪V2 = V . We denote by E(V1, V2) the set of edges joining vertices from V1

with vertices from V2. If E(V1, V2) = V1 × V2 then G is called a complete bipartite graph.
Such a graph is denoted by Kn1,n2 if V1 consists of n1 vertices and V2 of n2 vertices. A
K1,n is also called a star. For two graphs G = (V,E) and G′ = (V ′, E′) we denote by
G⊕G′ the graph consisting of the disjoint union of the graphs G and G′.

Graph classes

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic, denoted by G ' G′, if there is a
bijective mapping ϕ : V → V ′ such that for all vertices u, v ∈ V the following is true: in the
case that G and G′ are directed graphs it holds that (u, v) ∈ E ⇔ (ϕ(u), ϕ(v)) ∈ E′, and in
the case that G and G′ are undirected graphs it holds that {u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ E′.
A set of graphs is called a graph class if for each graph G in the class all graphs isomorphic
to G belong to the class as well.

Network Dynamics – Lecture Notes

A.3. Algorithmics 67

A.3 Algorithmics

Most results of this work relate to algorithms. In the following we mention essential
problems and concepts which are needed more than once.

For two functions f : N→ N and g : N→ N we say that f is in O(g) if there are constant
n0, c ∈ N+ such that for all n ≥ n0, f(n) ≤ c · g(n). We say that f is in Ω(g) if g is in
O(f). We say that f is in Θ(g) if f is in O(g) ∩ Ω(g).

Connected components

An undirected graph G = (V,E) is connected if every vertex can be reached from every
other vertex, i.e., if there is a path from every vertex to every other vertex. A graph
consisting of a single vertex is also taken to be connected. Graphs that are not connected
are called disconnected. For a given undirected graph G = (V,E), a connected component
of G is an induced subgraphs G′ = (V ′, E′) that is connected and maximal, i.e., there is
no connected subgraph G′′ = (V ′′, E′′) such that V ′′ ⊃ V ′. Checking whether a graph is
connected and finding all its connected components can be done in time O(n+m) using
depth-first search or breadth-first search.

A directed graph G = (V,E) is strongly connected if there is a directed path from every
vertex to every other vertex. A strongly connected component of a directed graph G is
an induced subgraph that is strongly connected and maximal. The strongly connected
components of a directed graph can be computed in time O(n + m) using a depth-first
search.

NP-completeness

It is important to consider the running-time of an algorithm for a given problem. Usually,
one wants to give an upper bound on the running time of the algorithm for inputs of a
certain size. If the running-time of an algorithm is O(nk) for some k ∈ N and for inputs
of size n, we say that the algorithm runs in polynomial time. For graph problems, the
running-time is usually specified as a function of n and m, the number of vertices and edges
of the graph, respectively. For many problems, however, no polynomial-time algorithm
has been discovered. Although one cannot rule out the possible existence of polynomial-
time algorithms for such problems, the theory of NP-completeness provides means to give
evidence for the computational intractability of a problem.

A decision problem is in the complexity class NP if there is a nondeterministic Turing
machine that solves the problem in polynomial time. That is to say that the answer to
a problem instance is “yes” if there exists a solution in the set of all possible solutions to
the instance which is of polynomial size. Moreover, the test whether a potential solution
is an actual solution must be performed in polynomial time. Note that a decision problem

version v3.25 as of February 18, 2014

68 Appendix A. Mathematical tools

is usually considered to consist of the set of the “yes”-instances. A decision problem is
NP-hard if every problem in NP can be reduced to it via a polynomial-time many-one
reduction. (A polynomial-time many-one reduction from a set A to a set B is a function
computable in polynomial time such that for all instances x, x ∈ A⇔ f(x) ∈ B.) Problems
that are NP-hard and belong to NP are called NP-complete. A polynomial-time algorithm
for an NP-hard problem would imply polynomial-time algorithms for all problems NP—
something that is considered very unlikely. Therefore, the NP-hardness of a problem is
considered substantial evidence for the computational difficulty of the problem.

A standard example of an NP-complete problem is 3SAT, i.e., checking whether a given
propositional formula given as a 3CNF has a satisfying assignment. To be more precise, a
kCNF is a formula H = C1 ∧ · · · ∧Cm consisting of clauses Ci each of which has the form
Ci = li1 ∨ li2 ∨ · · · ∨ lik where lij is either a positive or a negative literal. A positive literal
is some variable, say xk, and a negative literal is the negation of some variable, say xk.

The class of complements of NP sets is denoted by coNP, i.e., coNP = {A|A ∈ NP}.

For optimization problems (where the goal is to compute a feasible solution that maxi-
mizes or minimizes some objective function), we say that the problem is NP-hard if the
corresponding decision problem (checking whether a solution with objective value better
than a given value k exists) is NP-hard.

#P-completeness

A complexity class closely related to NP is the class #P which has been introduced in
[39, 38] to provide evidence for the computational intractability of counting problems.
The class #P consists of all problems of the form “compute f(x)” where f(x) is the
number of accepting paths of a nondeterministic Turing machine running in polynomial
time. Equivalently, a #P-functions counts the number of solutions to instances of an
NP-problem. We say that a function f is #P-complete if it belongs to #P and every
function g ∈ #P is polynomial-time Turing reducible to f , i.e., g can be computed by a
deterministic polynomial-time Turing machines which is allowed to make queries to f and
answering these queries is done within one step (see, e.g., [20, 19]). The canonical example
of a #P-complete problem is #3SAT, i.e., counting the number of satisfying assignments
of a propositional formula given as a 3CNF. One of the most prominent #P-complete
problem is counting the number of perfect matchings in a bipartite graph [38]. As in
the case of NP, if there is a polynomial-time algorithm for computing some #P-complete
function from #P then there are polynomial-time algorithms for all #P-functions—which
is equally considered unlikely. In particular, such a polynomial-time algorithm would
imply that P = NP.

Network Dynamics – Lecture Notes

The Border Gateway Protocol B

This chapter is taken from [23].

B.1 Background

The Internet is the ultimate communication network at present. Recent estimations from
March 2007 [28] show that a total of 1,114,274,426 Internet users worldwide are connected
which corresponds to an Internet penetration rate of 16,9 % of the world population.
The basic functionality of the Internet is sending data from source entities to destination
entities over the data links of the network. The technical characteristics of the data links
impose at least two kinds of restrictions on the network:

• only a limited number of entities can share the same data link and

• only a limited amount of data can be sent over the data link in a certain time.

In view of the large variety of Internet infrastructure these restrictions are significant.
Consequently, to maintain the functionality the Internet operation mode has been based
on the next-hop principle and data fragmentation.

The next-hop principle is involved in the Internet routing problem. The routing problem
in the Internet can be characterized by the following terms:

• A path is a sequence of entities which pairwise share a direct data link.

• Sending data from an entity to an entity—the next hop—over a direct data link is
called forwarding.

• A transmission is the process of successively forwarding data from a source to a
destination over a path with the source as its first and the destination as its last
element.

• The selection of a path for a transmission is called routing.

To act as intermediaries the entities need routing information. A datagram is a self-
contained packet consisting of data and routing information. In communication networks
of interest all data are transmitted as datagrams. The next-hop principle provides a
successful solution to the first restriction above.

A solution to the second restriction is fragmenting and reassembling datagrams when
necessary for a transmission through small-capacity networks.

version v3.25 as of February 18, 2014

70 Appendix B. The Border Gateway Protocol

Functionalities of communication networks are specified by protocols, i.e., sets of allowed
messages (datagrams) and descriptions of the orders in which these messages have to be
communicated. As the Internet aggregates an increasing number of functionalities, many
different protocols interact in a non-trivial way. The current Internet is characterized by
the TCP/IP protocol suite, a family of about 500 protocols named after the two most
important protocols in it: the Transmission Control Protocol (TCP) [33] and the Internet
Protocol (IP) [32]. The protocols in the TCP/IP protocol suite can be divided into five
layers1: the physical layer, the datalink layer, the network layer, the transport layer, and
the application layer. These layers are hierarchically ordered with the physical layer at the
bottom and the application layer at the top. Typically, the functionality of a protocol in
a layer above the physical one relies on the functionality of the protocols in the subjacent
layers.

The protocols in the network layer are responsible for routing. They handle three major
tasks: addressing physical objects, providing fragmentation support of datagram forward-
ing from a source address towards the destination address, and disseminating and selecting
routes from source addresses to destination addresses. The first two tasks are managed
by the IP protocol. The third task is under control of routing protocols. The Border
Gateway Protocol (BGP or BGP-4) [34] is the de facto standard routing protocol for
interdomain routing, i.e., it rules how different networks learn which routes they can use
to communicate.

This chapter gives a systematic survey on BGP and its functionality. The exposition is
based on [40, 24].

B.2 Terminology

In this section we gather the relevant terminology of the IP protocol necessary to see
how BGP is involved in Internet routing. In the forthcoming we identify IP with IP
version 4 (IPv4). Though newer versions of IP, known as IPng or IPv6 [7], are designed
and implemented to overcome some shortcomings of IPv4, mainly the limited number of
addresses, IPv4 is still the most used version of IP. Also, the fundamental principles do
not differ.

Basically, the Internet Protocol (IP) implements two functions [32]: addressing and frag-
mentation. Fragmentation is less relevant for routing. So we give a short introduction to
addressing and the related forwarding method.

B.2.1 Physical networks

The elementary physical entities in the Internet are computing devices running an imple-
mentation of IP and the physical datalink connections between them. We should note

1Note that the TCP/IP layer structure is different to those of the OSI model (Open System Intercon-
nection Basic Reference Model) which provides an abstract seven-layer model for networking (see, e.g.,
[36]).

Network Dynamics – Lecture Notes

B.2. Terminology 71

that data links typically connect many devices. In this respect they should be graph-
theoretically modeled by hyperedges rather than by edges. Technically, connecting many
devices via a data link is realized by gadgets such as switches, bridges, and hubs. As long
as these gadgets do not follow the IP protocol, they are not considered a visible part of
the Internet.

A physical subnet is a set of devices connected by a single data link. Physical networks are
inductively defined as follows:

• Each physical subnet is a physical network.

• The (finite) union of physical networks is a physical network.

• Nothing else is a physical network.

Thus, a physical network can be decomposed in a finite number of physical subnets. If
two physical subnets have at least one device in common, they are connected. A physical
network is connected if and only if for each pair (N,N ′) of physical subnets there are
physical subnets I0, I1, . . . , Ir such that N = I0, N ′ = Ir, and for all j ∈ {1, . . . , r}, Ij−1

and Ij are connected. The Internet in a physical sense is the physical network maximal
subject to set inclusion. Note that the physical size of the Internet is time-depending.

The devices of a physical network are divided into hosts and routers: a host is a computing
device having only one datalink connection to the physical network. A router has at least
two datalink connections to the physical network. The boundary of a computing device
and a data link is called an interface.

B.2.2 Logical networks

The elementary logical entities in the Internet are binary words. Addressing refers to
mapping physical entities to logical entities. However, addressing is more than that: an
address should indicate where to find the physical entity.

An IP address (or simply, address) is a word over {0, 1} of length 32 (or of length 128 in
IPv6). Each interface of a physical network has a unique address.

For a word p ∈ {0, 1}∗ such that |p| < 32, the set p·{0, 1}32−|p| is called a logical network (or
simply, network). The word p is called an IP prefix (or simply, prefix). Typically, physical
networks are embedded into logical networks, i.e., the set of addresses of the interfaces of a
physical network is a subset of a logical network. The other way round, a logical network
with prefix p can contain an embedded physical network having at most 232−|p| interfaces.
Networks are partially ordered according to the dual prefix relation, i.e., if a word p is a
prefix of a word p′, then the network with prefix p is a supernetwork of the network with
prefix p′ and the network with prefix p′ is a subnetwork of the network with prefix p.

It is common to denote IP addresses in dot-decimal notation, i.e., the address is separated
by dots into four blocks of eight bits and each block is written in decimal.

version v3.25 as of February 18, 2014

72 Appendix B. The Border Gateway Protocol

132.98.129.4

Router C

132.98.129.0 − 132.98.129.255 Subnet

132.98.64.0 − 132.98.127.255 Subnet

Host B Router D

132.98.100.33

132.98.100.11

132.98.129.1 132.98.129.3

Host A

Figure B.1: A small network example

Example: In dot-decimal notation the IP address 10000100011001000110011000100001
corresponds to 132.98.100.33.

IP addresses are considered to consist of two parts: a network part and a host part. A
network part of size b consists of the first b bits of the IP address and is used to identify
the network. It is clear that the network part is just the prefix of the network. The
remaining 32− b bits of the IP address are used to identify a certain host or router within
the network. The first address in the network, i.e., the address with an all-zero host part, is
the network address and cannot be used for addressing a single interface. The last address
in the network, i.e., the address with an all-one host part, is the network broadcast address
and cannot be used either. Network addresses are denoted by usual addresses.

Following the Classless Inter-Domain Routing (CIDR) address architecture [35, 11], there
are two ways to specify uniquely the network part of an address:

• enhanced prefix format: Simply attach the length of the network part to the address.

• netmask format: A netmask consists of a block of 1’s, corresponding to the network
part, followed by a block of 0’s, corresponding to the host part. Netmasks are also
denoted in dot-decimal notation.

In the following we identify prefixes and network addresses. The address 0.0.0.0/0 is the
network address of the Internet.

Example: Suppose the address 132.98.100.33 is assigned to an interface in a network
with an 18-bit identifier. Then, the network address is denoted by 132.98.64.0/18 in

Network Dynamics – Lecture Notes

B.2. Terminology 73

3 40 7 8 15 16 19 20 31

Version IHL Type of Service

Identification

Total Length

Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Figure B.2: The format of the IP header

the enhanced prefix format or is uniquely described by the netmask 255.255.192.0 for IP
address 132.98.100.33 (taking a bit-wise AND). A small network exemplifying the situation
is shown in Figure B.1. The upper subnetwork has the network address 132.98.64.0/18
and the broadcast address 132.98.127.255. The lower subnetwork has the network address
132.98.129.0/24 and the broadcast address 132.98.129.255. All interfaces have addresses
in these ranges.

B.2.3 Datagrams and forwarding

A datagram is a self-contained piece of code consisting of user data and routing address
information. An IP datagram is a datagram starting with a header of 160 bits divided into
12 fields followed by the datagram body containing the user data. The format definition
of the header is given in the Figure B.2. The most interesting fields from the viewpoint of
routing are the following:

• Destination Address containing the essential routing information

• Total Length containing the length of the entire IP datagram, including the header,
in bytes

It follows that an IP datagram has a maximal size of 65536 bytes (a size not exceeded in
IPv6 as well). A detailed description of all fields can be found in [32]. As no datagram
type other than IP datagrams occurs in our setting we usually speak of datagrams when
meanining IP datagrams.

Forwarding refers to transmitting datagrams from device to device over a common datalink
connection in order to bring the data nearer to the destination. Forwarding according to
IP works as follows: on the reception of a datagram (which has not reached its destination
address), a computing device, typically a router, proceeds with three steps:

1. Take the address written in the Destination Address field of the datagram.

version v3.25 as of February 18, 2014

74 Appendix B. The Border Gateway Protocol

Destination Host A Host B Router C Router D

132.98.64.0/18 directly con-
nected

132.98.129.4 directly con-
nected

132.98.129.4

132.98.129.0/24 132.98.100.11 directly con-
nected

directly con-
nected

directly con-
nected

0.0.0.0/0 132.98.100.11 132.98.129.3 132.98.129.3 ...

Table B.1: Forwarding Information Bases for hosts and routers in Figure B.1.

2. Find an associated interface—the next hop—for the address in the Forwarding Infor-
mation Basis.

3. Transmit the datagram over a datalink connection to this interface.

As an additional step the datagram can be fragmented into smaller pieces (which too have
the IP datagram format) if the original datagram is too large to traverse a data link. In
IPv4 each router on a transmission path is allowed to do this. In IPv6 this is reserved for
hosts.

The Forwarding Information Basis (FIB) of a computing device simply consists of a list
of network addresses and associated IP addresses (interfaces) in the logical (physical)
network. Given an FIB and given a destination address the correct interface is found by
solving the longest prefix matching problem, i.e., find the network address in the FIB which
is the longest IP prefix of the destination address. Several algorithms and data structures
have been designed to solve this problem efficiently (see, e.g., [41, 21]).

Example: Table B.1 shows the content of the Forwarding Information Bases of all devices
of our example network in Figure B.1. Suppose we want to send data from host B to the
address 132.98.100.33. That is, the longest prefix that matches is 132.98.64.0/18 and the
associated interface has address 132.98.129.4 which belongs to Router C. Note that the
prefix 0.0.0.0/0 always matches. This is the default prefix which has to be contained in
each forwarding table. For instance, if we want to send data from host B to the address
212.126.34.12, then the default prefix is the only prefix that matches the address. In this
case the address 212.126.34.12 lies outside the network under consideration and we do not
know where to find a specific network containing the address. We thus send packets to
somewhere in the Internet where routers have more information on the address.

B.3 Autonomous Systems

The introduction of Autonomous Systems reduces the complexity of routing, simply by
reducing the number of possible paths through the Internet. In this section we define
Autonomous Systems and discuss related concepts.

Network Dynamics – Lecture Notes

B.3. Autonomous Systems 75

B.3.1 Definition

According to [17], an Autonomous System (AS) is a connected group of one or more IP
prefixes run by one or more network operators which has a single and clearly defined
routing policy. Each AS has a unique natural number for identification. The current
version of BGP limits the size of these numbers to 16 bits. More precisely, the set of
possible AS numbers is {1, 2, . . . , 65535}. In practice, however, the AS numbers in the
range 64512–65535 are reserved for private use without global visibility [17].

Recall that an IP prefix is a range of IP addresses a physical network is embedded into.
In a connected group of IP prefixes the underlying physical networks are connected. An
interface belongs to an AS if its IP address belongs to the AS. A computing device belongs
to an AS if one of its interfaces belongs to the AS. A router belonging to some AS is called
visible if it shares a data link with a computing device belonging to another AS. The other
routers are called invisible or internal. A visible router is also called a gateway router.

The connectivity graph (at the AS level) or simply AS graph is an undirected graph having
the set of assigned AS numbers as its vertex set. The edge set is defined as follows: there
is an edge between ASes u and v if and only if a router belonging to AS u and a router
belonging to AS v share a common datalink connection. The AS graph is an abstract view
on the underlying physical Internet level. Actually, it can be considered as a minor of the
graph based on the router level.

Example: Figure B.3 shows a small Internet example at the AS level. There is an edge
drawn between two ASes if there is a data link connecting routers from both ASes. For
instance, AS 2 is connected to AS 1, AS 3, AS 4, and AS 5. As indicated by the detailed
view into AS 2, there are two routers (A and B) connected with AS 1, router D shares one
data link with AS 4 and another with AS 5, and router E is connected with AS 3. The
routers A, B, D, and E are visible. The router E is an internal router. Note that AS 2
embeds a connected physical network.

B.3.2 Interrelationships

An AS is associated with an organization or an administrative domain. Within this orga-
nization a network operator is an institution responsible for managing the network at
both the physical and the logical level (see, e.g., [40, Chapter 8] for a list of responsibili-
ties). A typical organization owning an AS is an Internet Service Provider (ISP). An ISP
sells transmission paths (with differentiated quality of service) to its customers. Thus, a
primary operating goal of the network operator within an ISP is maintaining global reach-
ability for its customers, i.e., ideally providing a path in both directions to every reachable
prefix.

An ISP can be a customer of another ISP. A customer ISP uses its provider ISP for transit,
i.e., for transmissions along paths through the network of the provider ISP to destination
prefixes possibly outside any AS owned by the provider ISP. An AS inherits the business

version v3.25 as of February 18, 2014

76 Appendix B. The Border Gateway Protocol

AS 2

AS 1

AS 5 AS 6

AS 3

Router ERouter D

Router C

Router BRouter A

AS 4

Figure B.3: A small Internet example at the AS level

relationships of its owning ISP. There are three fundamental types of interrelationships
between an AS i and an AS j:

• customer-to-provider: the AS i is a customer of the AS j if the ISP owning AS i
buys transmission paths from the ISP owning AS j,

• peer-to-peer: the ASes i and j provide special paths to their customers without the
owning ISPs having a customer-to-provider relationship in either direction,

• sibling-to-sibling: the ASes i and j belong to the same ISP.

More peculiar types of relationships appear in the real world (see, e.g., [12]). We restrict
ourselves to the three mentioned types.

Example: Figure B.4 shows a different view on our Internet example. First, we are only
interested in the relation between the different ASes. An arrow from an AS to another
AS indicate a customer-to-provider relationship. For instance, AS 4 is a customer of both

Network Dynamics – Lecture Notes

B.3. Autonomous Systems 77

AS 6: Single−homed
> default

132.98.0.0
132.99.0.0
132.100.0.0

>
>
>

3 1
3 2 4
3 2 5

AS 2: ISP 2
default>
132.98.0.0>
132.98.0.0
132.99.0.0
132.100.0.0
132.100.0.0

>
>

1
4
1 4
5
3 6
1 3 6

AS 3: ISP 3
default
132.98.0.0

>
>

132.98.0.0
132.99.0.0>
132.99.0.0
132.100.0.0> 6

1 2 5
2 5
1 4
2 4
1

AS 4: Multihomed
default>
default
132.98.0.0>
132.99.0.0>
132.99.0.0
132.100.0.0
132.100.0.0> 1 3 6

2 3 6
1 2 5
2 5

2 1
1

AS 1: Large ISP
default>
132.98.0.0>
132.98.0.0
132.99.0.0
132.100.0.0

2 5
2 4
4

3 6
>
>

AS 5: Single−homed
default>
132.98.0.0
132.99.0.0
132.100.0.0

>
>
>

2 1
2 4

2 3 6

Figure B.4: A small Internet example with local Routing Information Bases

AS 1 and AS 2. AS 1 has no provider. The large ISP behind AS 1 is a so-called tier-1
provider. All other ASes have to pay at least one AS for transit. The ISPs 2 and 3 have
a peer-to-peer relationship.

B.3.3 Routing policies

A routing policy is a fixed and formalized set of rules outlining the distribution of routing
information between an AS and the neighbored ASes. As routing policies are implemented
in gateway routers, a routing policy can be viewed as the union of all implemented sets of
rules of gateway routers of an AS. In case of a policy change the gateway routers need to
synchronize their set of rules to implement a single routing policy of the AS. Reasonably,
the routing policies of an AS are in accordance with existing customer-to-provider and
peer-to-peer relationships.

Example: Inside the boxes of each AS in Figure B.4 it is shown which path is considered
best by the AS to reach a certain IP prefix. As an example let us look at AS 4. The
IP prefix 132.98.0.0/16 is located in AS4 itself and is thus reachable over a local path.
In contrast, to reach the prefix 132.100.0.0/16 which is owned by AS 6 the chosen path
goes through AS 1. Thus, the routers within AS 4 forward datagrams with destination
prefix 132.100.0.0/16 towards some gateway routers sharing a data link with a gateway

version v3.25 as of February 18, 2014

78 Appendix B. The Border Gateway Protocol

router of AS 1. There the datagrams leave AS 4 and enter AS 1. An analysis of the local
Routing Information Base of AS 4 leads to the following (incomplete) rule for all prefixes:
a shorter path is preferred over a longer path and paths through AS 1 are preferred among
equal-length paths. As another example, AS 3 prefers the path through AS 2 over the path
through AS 1 to reach the IP prefix 132.98.0.0/16 in AS 4. This is reasonable as AS 3 and
AS 2 have a peer-to-peer relationship whereas AS 3 is a customer of AS 1. Transmissions
through AS 2 are thus typically cheaper than those through AS 1.

B.3.4 Routing hierarchy

Example B.3.3 demonstrates that two mechanisms are needed to select an address-to-
address path:

• one for deciding which sequence of ASes leads to the destination address

• one for deciding which sequence of routers traverses an AS

The mechanisms are hierarchically ordered: a local path can only be selected after the
decision has been made which pair of gateway routers is to be connected for an AS traversal.
Any routing protocol used within an AS for selecting local paths is called an intra-AS
routing protocol or interior gateway protocol (IGP). There are two classical types of such
protocols (see, e.g., [24]):

• A link-state protocol implements a link-state algorithm. A link-state algorithm con-
sists of two phases: in the first phase, the cost of each connection in the network is
broadcast until all devices know the complete cost matrix. In the second phase, at
each device an appropriate single-source shortest path algorithm is executed on the
same cost matrix. Due to their communication overhead link-state algorithms do not
scale well with an increasing number of devices. Examples of link-state protocols are
the Open Shortest Path First (OSPF) protocol [29, 30] or the Intermediate-System-
to-Intermediate-System (IS-IS) protocol [31, 4].

• A distance-vector protocol implements a distance-vector algorithm. A distance-vector
algorithm works in an iterative, asynchronous, and distributed fashion and converges
always. In essence, each device communicates to its neighbors its currently known
distances to all destination devices in the network. On reception of such a distance
vector a source device computes a new distance to each destination in the network
as the minimum of the cost of a connection to some neighbor plus the neighbor’s
distance to the destination (distance-relaxation rule). If a distance to some destina-
tion has changed, then the new distance vector is communicated. Distance-vector
protocols tend to congest routers having a high betweenness centrality, i.e., those
routers that lie on many shortest paths. They do not respect administrative auton-
omy which makes them only suitable for usage within a single AS. Examples of
such protocols are the Routing Information Protocol (RIP) [18, 25] or the Enhanced
Interior Gateway Routing Protocol (EIGRP) [3].

Network Dynamics – Lecture Notes

B.4. Protocol outline 79

An inter-AS routing protocol or exterior gateway protocol (EGP) is a protocol responsible
for routing at the AS level. BGP is the de facto standard inter-AS routing protocol. Note
that BGP can be also applied as an intra-AS routing protocol. Sometimes BGP used
within an AS is denoted by iBGP and BGP used between ASes is denoted by eBGP.

B.4 Protocol outline

We turn to the specification of BGP as proposed in [34]. What is currently understood
as BGP refers to BGP-4. The precursor versions of the protocol are completely obsolete.
In contrast to the link-state and distance-vector protocols mentioned in Subsection B.3.4,
BGP can be characterized as a path-vector protocol.

A computing device capable of performing BGP communications is called a BGP speaker.
The primary function of a BGP speaker is exchanging routing information with neighbored
BGP speakers. The information consists of network reachability information and a list
of ASes that the information has traversed. BGP uses the TCP protocol for establishing
reliable connections.

In the following we describe only those parts of the BGP protocol that are relevant for
the routing problem, thus omitting details concerning the communication process itself.
In particular, we omit all error handling features. Moreover, we assume that all necessary
BGP communications can be safely processed.

B.4.1 Operating mode

The general operating mode of BGP is the following: Two BGP speakers form a TCP
connection between one another. They exchange messages to open and confirm the con-
nection parameters. A connection between BGP speakers of different ASes is called an
external link. A connection between BGP speakers within the same AS is called internal
link. Initially, the complete routing information is exchanged between the BGP speakers.
Subsequently, incremental updates are sent whenever routing information of one of the
BGP speaker has changed.

A route is defined to be a tuple consisting of an IP prefix and attributes of a path to the AS
containing the IP prefix. Routes are advertised between a pair of BGP speakers in update
messages. The IP prefix is contained in the Network Layer Reachability Information
(NLRI) field, and the path together with a set of attributes is reported in the same update
message. Routes are stored in Routing Information Bases (RIBs). Conceptually, there are
three types of RIBs:

• An Adj-RIB-In contains information on routes that have been learned from inbound
update messages.

• A Loc-RIBs contains information on routes that have been selected from the Adj-
RIBs-In by applying local policies.

version v3.25 as of February 18, 2014

80 Appendix B. The Border Gateway Protocol

Marker Length Type Message contents

16 bytes 2 bytes 1 byte 0-4077 bytes

Table B.2: BGP message format.

UR Length Withdrawn
Routes

Total PA
Length

Path
Attributes

NLRI

2 bytes Variable 2 bytes Variable Variable

Table B.3: BGP update message format.

• An Adj-RIBs-Out contains information on routes that have been selected for adver-
tisement to BGP speakers in an outbound update message.

A BGP speaker has an Adj-RIB-In and an Adj-RIB-Out for each possible connection but
only one Loc-RIB. Note that RIBs need not be implemented separately.

BGP also provides mechanisms to inform another BGP speaker that a previously adver-
tised route is no longer available, e.g., the IP prefix can be included in the Withdrawn
Routes field of an update message or a replacement route to the same IP prefix can be
advertised.

B.4.2 Message formats

All BGP information is exchanged in form of messages. A BGP message has up to 4096
bytes consisting of a fixed-size header of 19 bytes.

Table B.2 shows the structure of a BGP message. The Marker field usually contains all
one’s and is intended to check whether communication works correctly. Any zero occuring
in the Marker field induces an error handling procedure. The Length field contains the
length of BGP message in bytes. The Type field contains a code for the type of the message.
Originally, there are four types of messages: open, update, keepalive, and notification
messages. For our purposes, only update messages are relevant.

In Table B.3 the structure of an update message is shown. The fields of an update message
are used as follows:

• The Unfeasible Routes (UR) Length field contains the length of the Withdrawn
Routes field in bytes; zero means that the field is not present in this message.

• The Withdrawn Routes field is optional and contains a variable-length list of IP
prefixes encoded by the enhanced prefix format.

Network Dynamics – Lecture Notes

B.4. Protocol outline 81

Attribute Flags Attribute Type
Code

Attribute Length Attribute Value

1 byte 1 byte 1-2 bytes Variable

Table B.4: Path attribute format.

• The Total Path Attribute (PA) Length field contains the length of the Path Attribute
field in bytes; zero means that the Path Attribute field and the NLRI field are not
present in this message.

• The Path Attribute field is optional and contains a variable-length list of path
attributes which are explained in more detail in the next subsection.

• The Network Layer Reachability Information (NLRI) field is optional and contains
a variable-length list of IP prefixes encoded by the enhanced prefix format.

Note that an update message can advertise only one route but can simulteanously withdraw
many routes. An advertised route thus contains information on how to reach each prefix
present in the NLRI field of an update message.

B.4.3 Path attributes

Path attributes are contained in the Path Attribute field of an update message.

The structure of a path attribute is shown in Table B.4. The meaning of the fields is as
follows:

• The Attribute Flags field contains information on how to process the attribute. For
instance, if Bit 0 is set to zero and Bit 1 is set to one, then the attribute is well-known
mandatory, i.e., it must be included in every update message. If Bit 3 is set to zero,
then the Attribute Length field is one byte, otherwise it is two bytes. Though flags
are important in practice, they are not relevant in our setting.

• The Attribute Type Code field contains information on the meaning of the attribute.

• The Attribute Length field contains the length of the Attribute Value field in bytes.

• The Attribute Value field contains data according to the Attribute Type Code field.

Important available types of attributes as described in the Attribute Type Code field are
the following:

• ORIGIN is a well-known mandatory attribute that defines the origin of the path
information.

version v3.25 as of February 18, 2014

82 Appendix B. The Border Gateway Protocol

• AS PATH is a well-known mandatory attribute that is composed of a sequence
of AS path segments. A path segment can be one of the two types AS SET,
i.e., an unordered set of ASes a route in the update message has traversed, and
AS SEQUENCE, i.e., an ordered set of ASes a route in the update message has tra-
versed. The AS SET type of path segment is involved in route aggregation.

• NEXT HOP is a well-known mandatory attribute that defines the IP address of a
gateway router that should be used for datagram forwarding towards the destination
listed in the NLRI field of the update message.

• MULT EXIT DISC is an attribute that can be used to discriminate among multiple
external links of an AS.

• LOCAL PREF is an attribute that is used to inform the BGP speakers with the same
AS of the degree of preference of the originating BGP speaker for an advertised
route.

• COMMUNITIES is an attribute for aiding policy management. A community is a set
of destination prefixes sharing a common property [37].

The attribute type most relevant for route dissemination is the AS PATH type. At an
internal link the AS PATH attribute is processed as follows:

• When a BGP speaker originates a route then the originating speaker includes an
empty AS PATH attribute in all update message sent to BGP speakers in its own
AS.

• When a BGP speaker propagates a route learned from another speaker then the
AS PATH attribute associated with the route is not modified.

At an external link the AS PATH attribute is processed as follows:

• When a BGP speaker originates a route then the originating speaker includes its
own AS number as the only entry in the AS PATH attribute in all update messages
sent over the external link.

• When a BGP speaker propagates a route learned from another speaker then the
AS PATH attribute associated with the route is modified depending on the type of
the path segment:

– If the first path segment of the AS PATH attribute is of type AS SEQUENCE,
the BGP speaker prepends its own AS number to the sequence.

– If the first path segment of the AS PATH attribute is of type AS SET, the BGP
speaker prepends a new path segment of type AS SEQUENCE to the AS PATH
attribute, including its own AS number in that segment.

Network Dynamics – Lecture Notes

B.4. Protocol outline 83

B.4.4 Route propagation

The update message format is designed to support the process of propagating routes among
BGP speakers. When a BGP speaker receives an update message from a neighboring BGP
speaker containing withdrawn routes, it removes all routes from the corresponding Adj-
RIB-In which have an NLRI listed in the Withdrawn Routes field of the message. When a
BGP speaker receives a new route in an update message from a neighboring BGP speaker,
it executes the following procedure:

1. Check the inbound filters defined for the connection. If the route does not pass all
filters, then the procedure stops.

2. Insert the new route in the corresponding Adj-RIB-In.

3. Execute the route-selection algorithm on all routes present in any Adj-RIB-In which
have the same NLRI as the new route. If the new route is not selected as the best
route, then the procedure stops.

4. Include the new best route in the Loc-RIB and include the next-hop address for NLRI
in the Forwarding Information Base. The old best route to NLRI is removed from
Loc-RIB and the old next-hop address is removed from the Forwarding Information
Base.

5. Revoke the old best route in update messages to those BGP speakers that had
received the old best route.

6. Check the outbound filters for each link. If the new best route passes the filter for
the link, then include the route in the corresponding Adj-RIB-Out. Note that for
an internal link there is typically no link.

7. Send update messages advertising the new best route to all neighboring BGP speak-
ers for which the Adj-RIB-Out has changed. Recall how the AS PATH attributes are
processed for each link.

The procedure follows an idealtypical scheme. In practice there is space for implementa-
tion diversity. This does not only concern filters and the route-selection algorithm. For
instance, route flap damping leads to a different route-revocation procedure in the fifth
step (see, e.g., [40, chapter 10]). The technique is a best practice which is not covered
by the BGP protocol [42, 26]. Examples which are covered by the protocol are route
aggregation and handling overlapping routes [34]. Both techniques lead to minor changes
in the propagation process.

B.4.5 Route-selection algorithms and filters

Local routing policies influence the route propagation process

• by inbound filters,

version v3.25 as of February 18, 2014

84 Appendix B. The Border Gateway Protocol

• by the route-selection algorithm, and

• by outbound filters.

The route-selection algorithm is the central tool for implementing a routing policy. It
provides a mechanism for selecting the best route from the set of available routes from
different neighbors. A standard implementation of the route-selection algorithm works as
follows: compute for each route under consideration an integer local preference according
to the local Policy Information Base and choose the route with highest local preference.
If the highest local preference is taken by more than one route, then iteratively apply a
set of tie-breaking rules until a single route is selected. The following set of criteria is
recommended for application in exactly this order [34]:

1. highest local preference

2. lowest number of AS path segments

3. lowest MULT EXIT DISC entry (if all routes have such an entry)

4. lowest cost of a path through the same AS to the next-hop address

5. lowest IP address of a BGP speaker advertising over an external link

6. lowest IP address of a BGP speaker advertising over an internal link

In contrast to the prescribed BGP message format which allows no deviation practical
route-selection algorithms have additional steps throughout the selection process. The
scheme above ignores such vendor-dependent extra steps. Furthermore, there is no require-
ment that all BGP speakers within the same AS agree on how to select the best route.

Filters are algorithms for discarding undesirable routes. Routes not discarded can be
transformed in the process. Inbound filters implement the import policies of an AS. They
are primarily intended to exclude routing loops, i.e., if a BGP speakers detect its own AS
number in the received AS path, then the route is discarded. Furthermore, inbound filters
are used to influence the route-selection algorithm, e.g., by assigning weights to routes or
by prepending the own AS number one or more times to the beginning of the AS paths in
order to make the path longer. Outbound filters implement the export policies of an AS.

The rules for manipulating routes and for setting local preferences are specified by filter
lists or route maps in Policy Information Bases. In general, there is no specific formalization
for expressing these rules. Typically, they are described by if-then-constructions: if the
head of the rule matches a route, then a specified action is executed on this route.

Example: A unifying approach to define import and export policies is the Routing Policy
Specification Language (RPSL)[2, 27] intended to collect routing policies in a Routing
Registry. For instance, the routing policy of AS4 in Figure B.4 could look like the following
in RPSL format:

aut-num: AS4

Network Dynamics – Lecture Notes

B.5. The Selective Export Rule 85

import: from AS1
action pref=2; med=10
accept ANY

import: from AS2
action pref=2; med=20
accept ANY

export: to AS1
announce NOT AS2

export: to AS2
announce NOT AS1

In this fragment, aut-num is the object that describes the AS by its number. The import
clauses specify that the routers in AS 4 import all routes advertised by AS 1 routers and
AS 2 routers. Note that the pref object differs from the local preference value in the
route-selection algorithm: in the RPSL semantics a lower pref value is preferred over a
larger one. In our case routes received from AS 1 and from AS 2 have equal values. The
difference in the med values (which correspond to MULT EXIT DISC field) implies that
shorter AS paths are preferred. The export clauses specify that AS 4 exports no route to
AS 1 received from AS 2 and vice versa.

B.5 The Selective Export Rule

Using various kinds of simple path-vector protocols, in several studies it has been shown
that certain configurations can force the BGP route propagation process to not converge
(see, e.g., [16, 15, 8, 9, 10, 5]). Things are worse: in general the problem of deciding
whether an explictly given configuration is bad in this sense is NP-complete, even for very
extensional representations [15]. However, all these configurations are based on rather
bizarre export-policy patterns, e.g., “always prefer a path of length two over other paths”
[16]. In practice, routing policies are much more reasonable.

In the last section of this chapter we describe a prominent example of a policy pattern—the
Selective Export Rule [1, 22, 12]. It is an extension of the most basic rule for policy routing
“send routes only to paying customers” [40, p. 11] and applies to all business relationships
among ASes.

In the following we consider an AS v in the AS graph. According to the business relation-
ships we divide the set N(v) of neighbors of v into the following sets:

• Cust(v) is the set of all customers of v.

• Prov(v) is the set of all providers of v.

• Peer(v) is the set of all peering partners of v, i.e., if u ∈ Peer(v) then u and v have
a peer-to-peer relationship.

version v3.25 as of February 18, 2014

86 Appendix B. The Border Gateway Protocol

AS v exports to Provider Customer Peer Sibling

Own routes Yes Yes Yes Yes

Customer routes Yes Yes Yes Yes

Provider routes No Yes No Yes

Peer routes No Yes No Yes

Table B.5: The Selective Export Rule.

• Sibl(v) is the set of all siblings of v, i.e., if u ∈ Sibl(v) then u and v have a sibling-
to-sibling relationship. We let Sibl(v) contain v as well.

Some of the sets may be empty.

Let R(v) denote the set of all AS paths contained in the Loc-RIB of the AS v. Assumed
that there are no misconfigurations of BGP, all AS paths in R(v) are loopless and not
including v. Here, we say that an AS path is loopless whenever between two sibling ASes
on the path, no non-sibling AS is passed. Based on the neighborhood classification we
further divide R(v) into four categories. A loopless AS path (u1, . . . , ur) ∈ R(v) is

a customer route of v ⇐⇒def leftmost ui /∈ Sibl(v) lies in Cust(v),
a provider route of v ⇐⇒def leftmost ui /∈ Sibl(v) lies in Prov(v),

a peer route of v ⇐⇒def leftmost ui /∈ Sibl(v) lies in Peer(v),
an own route of v ⇐⇒def for all 1 ≤ i ≤ r, ui ∈ Sibl(v).

The Selective Export Rule summarized in Table B.5 provides a scheme of which route is
allowed to be exported to a certain neighbor depending on the type of the route and the
class of the neighbor.

Example: It is easily seen that all AS paths shown in the Loc-RIBs of our small Internet
example in Figure B.4 result from export policies which respect the Selective Export Rule.
In particular, consider AS 4 together with the RPSL fragment from Example B.4.5. Every
route AS 4 receives from AS 1 is a provider route and should not be exported to the
provider AS 2 according to Table B.5. Analogously each route received from AS 2 should
not be exported to AS 1. The both export clauses of the RPSL fragment do exactly this.

Based on the Selective Export Rule some guidelines can be identified guaranteeing conver-
gence of the BGP route propagation process. The following guideline has been proposed
in [13]:

Suppose an AS v possess two routes r1 and r2 containing the AS paths (u1, . . . , uk)
and (u′1, . . . , u

′
`), respectively. If u1 ∈ Cust(v) and u′1 ∈ Peer(v)∪Prov(v) then

the LOCAL PREF of r1 is higher than LOCAL PREF of r2

Network Dynamics – Lecture Notes

B.5. The Selective Export Rule 87

If all ASes respect the Selective Export Rule for their export policies and this guideline for
the route-selection algorithms then it can be proven that the route propagation process
always stops [13]. This guideline can be relaxed (at the cost of certain structural assump-
tions to the business relations in the AS graph) to equally ensure convergence. However, a
general description of all policy patterns with convergence guarantee is not yet available.

version v3.25 as of February 18, 2014

88 Appendix B. The Border Gateway Protocol

Network Dynamics – Lecture Notes

Bibliography

[1] C. Alaettinoğlu. Scalable router configuration for the Internet. In Proceedings
of the 5th International Conference on Computer Communications and Networks
(ICCCN’96). IEEE Computer Society Press, Washington, D.C., 1996.

[2] C. Alaettinoğlu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Karren-
berg, and M. Terpstra. Routing Policy Specification Language (RPSL). RFC 2622,
The Internet Society, 1999.

[3] R. Albrightson, J. J. Garcia-Luna-Aceves, and J. Boyle. EIGRP - a fast routing
protocol based on distance vectors. In Proceedings of the NetWorld/Interop Engineer
Conference (NetWorld/Interop’94), 1994.

[4] R. W. Callon. Use of OSI IS-IS for routing in TCP/IP and dual environments. RFC
1195, The Internet Society, 1990.

[5] C. Chau, R. Gibbens, and T. G. Griffin. Towards a unified theory of policy-based rout-
ing. In Proceedings of the 25th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’06). IEEE Computer Society Press, Washing-
ton, D.C., 2006.

[6] B. A. Davey and H. A. Priestley. Introduction to Lattices and Orders. Cambridge
University Press, Cambridge, 1990.

[7] S. E. Deering and R. M. Hinden. Internet Protocol, version 6 (IPv6) specification.
RFC 2460, The Internet Society, 1998.

[8] N. Feamster, R. Johari, and H. Balakrishnan. Implications of autonomy for the expres-
siveness of policy routing. In Proceedings of the ACM SIGCOMM 2005 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cation (SIGCOMM’05), pages 25–36. ACM Press, New York, NY, 2005.

[9] J. Feigenbaum, D. R. Karger, V. S. Mirrokni, and R. Sami. Subjective-cost policy
routing. In Proceedings of the 1st International Workshop on Internet and Network
Economics (WINE’05), volume 3828 of Lecture Notes in Computer Science, pages
174–183. Springer-Verlag, Berlin, 2005.

[10] J. Feigenbaum, D. R. Karger, V. S. Mirrokni, and R. Sami. Mechanism design for
policy routing. Distributed Computing, 18(4):293–305, 2006.

[11] V. Fuller, T. Li, J. J. Y. Yu, and K. Varadhan. Classless Inter-Domain Routing
(CIDR): An address assignment and aggregation strategy. RFC 1519, The Internet
Society, 1993.

version v3.25 as of February 18, 2014

90 Bibliography

[12] L. Gao. On inferring autonomous system relationships in the Internet. IEEE/ACM
Transactions on Networking, 9(6):733–745, 2001.

[13] L. Gao and J. Rexford. Stable Internet routing without global coordination.
IEEE/ACM Transactions on Networking, 9(6):681–692, 2001.

[14] G. A. Grätzer. General Lattice Theory. Akademie-Verlag, Berlin, 1978.

[15] T. G. Griffin, F. B. Shepherd, and G. T. Wilfong. The stable paths problem and
interdomain routing. IEEE/ACM Transactions on Networking, 10(2):232–243, 2002.

[16] T. G. Griffin and G. T. Wilfong. An analysis of BGP convergence properties. ACM
SIGCOMM Computer Communication Review, 29(4):277–288, 1999.

[17] J. Hawkinson and T. Bates. Guidelines for creation, selection, and registration of an
autonomous system (AS). RFC 1930, The Internet Society, 1996.

[18] C. Hedrick. Routing Information Protocol. RFC 1058, The Internet Society, 1988.

[19] L. A. Hemaspaandra and M. Ogihara. The Complexity Theory Companion. Texts in
Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2002.

[20] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Publishing Co., Reading, MA, 2nd
edition, 2001.

[21] B. F. Hummel. Automata-based IP packet classification, 2006. Diplomarbeit, Fach-
bereich Informatik, Technische Universität München, München.

[22] G. Huston. Interconnection, peering and settlements—Part II. The Internet Protocol
Journal, 2(2):2–23, 1999.

[23] S. Kosub. Computational analysis of complex systems: Discrete foundations, algo-
rithms, and the internet. Habilitation, Fakultät für Informatik, Technische Universität
München, 2007.

[24] J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down Approach Featur-
ing the Internet. Addison-Wesley Longman, Amsterdam, 3rd edition, 2004.

[25] G. S. Malkin. RIP version 2 - carrying additional information. RFC 1723, The
Internet Society, 1994.

[26] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz. Route flap damping exac-
erbates Internet routing convergence. In Proceedings of the ACM SIGCOMM 2002
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM’02), pages 221–233. ACM Press, New York, NY, 2002.

[27] D. Meyer, J. Schmitz, C. Orange, M. Prior, and C. Alaettinoğlu. Using RPSL in
practice. RFC 2650, The Internet Society, 1999.

Network Dynamics – Lecture Notes

Bibliography 91

[28] Miniwatts Marketing Group. Internet world stats: Usage and population statistics.
http://www.internetworldstats.com.

[29] J. Moy. The OSPF specification. RFC 1131, The Internet Society, 1989.

[30] J. Moy. OSPF version 2. RFC 2178, The Internet Society, 1997.

[31] D. Oran, editor. OSI IS-IS intra-domain routing protocol. RFC 1142, The Internet
Society, 1990.

[32] J. B. Postel, editor. Internet Protocol – DARPA Internet program protocol specifi-
cation. RFC 791, Information Sciences Institute, University of Southern California,
Marina del Rey, CA, 1981.

[33] J. B. Postel, editor. Transmission Control Protocol – DARPA Internet program pro-
tocol specification. RFC 793, Information Sciences Institute, University of Southern
California, Marina del Rey, CA, 1981.

[34] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771, The
Internet Society, 1995.

[35] Y. Rekhter and T. Li, editors. An architecture for IP address allocation with CIDR.
RFC 1518, The Internet Society, 1993.

[36] A. S. Tanenbaum. Computer Networks. Prentice Hall, Upper Saddle River, NJ, 4th
edition, 2002.

[37] P. Traina, R. Chandra, and T. Li. BGP community attribute. RFC 1997, The Internet
Society, 1996.

[38] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979.

[39] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal
on Computing, 8(3):410–421, 1979.

[40] I. van Beijnum. BGP. O’Reilly & Associates, Sebastopol, CA, 2002.

[41] G. Varghese. Network Algorithmics: An Interdisciplinary Approach to Designing Fast
Networked Devices. Morgan Kaufmann Publishers, San Francisco, CA, 2005.

[42] C. Villamizar, R. Chandra, and R. Govindan. BGP route flap damping. RFC 2439,
The Internet Society, 1998.

version v3.25 as of February 18, 2014

92 Bibliography

Network Dynamics – Lecture Notes

	An Internet example
	The routing hierarchy
	Policy routing
	Best-response dynamics
	Fixed-point analysis

	Networks
	Network exploration and analysis
	Network data
	Data
	Dyadic data
	Time-dependent data

	Network representations
	Whole networks
	Two-mode networks
	Ego and personal networks
	Time-dependent networks

	Networks as dynamical systems
	Iterated maps
	The phase space
	Series, levels, and plots
	Local maps

	Simulation
	Agent-based modelling
	The agency problem
	Push or pull?
	Dyads or actors?

	Sequential dynamical systems*
	Permutation schedules
	Functional equivalence
	The update graph
	Acyclic orientations and the chromatic polynomial

	Ensemble approaches

	Models
	Potentials
	Games with utility functions
	Potential games
	A structural characterization of potential games
	A dynamical characterization of potential games
	Congestion games

	Thresholds
	Opinion Dynamics

	Mathematical tools
	Sets and relations
	Graph theory
	Algorithmics

	The Border Gateway Protocol
	Background
	Terminology
	Physical networks
	Logical networks
	Datagrams and forwarding

	Autonomous Systems
	Definition
	Interrelationships
	Routing policies
	Routing hierarchy

	Protocol outline
	Operating mode
	Message formats
	Path attributes
	Route propagation
	Route-selection algorithms and filters

	The Selective Export Rule

	Bibliography

