UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Prof. Dr. Sven Kosub / Michael Aichem Complexity Theory Winter 2016

Assignment 1

Issue date: 26 Oct 2016 Due date: 02 Nov 2016

Exercise 1.

Show that $\log^k n \leq_{\text{a.e.}} \varepsilon \cdot n$ holds for all $k \in \mathbb{N}_+$, $n \in \mathbb{N}$, and $\varepsilon > 0$.

Hint: Use induction on k and use, in the inductive step, induction on n.

Exercise 2.

Define $S =_{def} \{ ww^R \mid w \in \{0,1\}^* \}$. Show that the following holds for all $\varepsilon > 0$:

- (a) $S \in 2\text{-T-DTIME}((1, 5 + \varepsilon) \cdot n)$
- (b) $S \in 2\text{-T-DSPACE}(\varepsilon \cdot \log n)$

Exercise 3.

Define $C =_{\text{def}} \{ 0^n 1^n \mid n \in \mathbb{N} \}$. Show that the following holds for all $\varepsilon > 0$:

- (a) $C \in \text{T-DTIME}(\varepsilon \cdot n \log n)$
- (b) $C \in 1\text{-}\text{T-DSPACE}(\varepsilon \cdot \log n)$