Assignment 10

Issue date: 11 Jan 2017 Due date: 18 Jan 2017

Let \mathcal{K} and \mathcal{K}^{\prime} be any classes of sets. We consider the following new classes (representing a kind of polynomial logic over complexity classes):

$$
\begin{aligned}
\exists \mathcal{K} & =_{\text {def }} \quad\left\{A \mid x \in A \leftrightarrow\left(\exists^{p} z\right)[(x, z) \in B] \text { for all } x, \text { appropriate } B \in \mathcal{K}, \text { polynomial } p\right\} \\
\forall \mathcal{K} & =_{\text {def }} \quad\left\{A \mid x \in A \leftrightarrow\left(\forall^{p} z\right)[(x, z) \in B] \text { for all } x, \text { appropriate } B \in \mathcal{K}, \text { polynomial } p\right\} \\
\operatorname{co\mathcal {K}} & ==_{\text {def }} \quad\{\bar{A} \mid A \in \mathcal{K}\} \\
\mathcal{K} \wedge \mathcal{K}^{\prime} & ==_{\text {def }} \quad\left\{A \cap B \mid A \in \mathcal{K}, B \in \mathcal{K}^{\prime}\right\} \\
\mathcal{K} \vee \mathcal{K}^{\prime} & =\text { def } \quad\left\{A \cup B \mid A \in \mathcal{K}, B \in \mathcal{K}^{\prime}\right\}
\end{aligned}
$$

Exercise 1.

Prove the following equalities:
(a) $\exists \mathrm{NP}=\mathrm{NP}$
(b) $\forall \mathrm{coNP}=\mathrm{coNP}$

Exercise 2.

Which pairwise inclusion-relationships hold for the following five classes?

$$
N P \cup \text { coNP, } \quad N P \vee \text { coNP, } \quad N P \wedge(N P \cap \text { coNP }), \quad N P, \quad N P \wedge(N P \cup \text { coNP })
$$

Exercise 3.

Which complexity classes in the polynomial hierarchy are captured by the following classes?
(a) $\exists(\mathrm{NP} \wedge \mathrm{coNP})$
(b) $\forall(\mathrm{NP} \wedge \mathrm{coNP})$
(c) $\exists(\mathrm{NP} \vee \mathrm{coNP})$
(d) $\forall(N P \vee c o N P)$
(e) $\forall(N P \vee \exists(\operatorname{coNP} \wedge \forall N P))$

