UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Prof. Dr. Sven Kosub / Michael Aichem Complexity Theory Winter 2016

Assignment 12

Issue date: 25 Jan 2017 Due date: 01 Feb 2017

Exercise 1.

Suppose you are given an alternating Turing machine M. A pair (K_i^x, K_j^x) of configurations of M is called *alternation* if and only if K_i^x is existential and K_j^x is universal or K_i^x is universal and K_j^x is existential.

An alternating Turing machine M is said to be a Σ_k -machine if and only if the initial configuration is an existential one and each computation path of $\beta_M(x)$ contains at most k alternations.

Prove that for any language L and any $k \in \mathbb{N}_+$, the following holds:

 $L \in \Sigma_k^p \iff$ there is a Σ_{k-1} -machine *M* accepting *L* in polynomial time

Exercise 2.

Design a probabilistic polynomial-time Turing machine M satisfying

$$\operatorname{prob}_M(a_1a_2\ldots a_n) = \sum_{i=1}^n a_i \cdot 2^{-i}$$

for $n \in \mathbb{N}_+, a_1, a_2, \dots, a_n \in \{0, 1\}.$

Exercise 3.

For $0 \leq \alpha < 1$, define PP_{α} to be the class of all sets L such that there exists a probabilistic polynomial-time Turing machine M such that

$$x \in L \iff \operatorname{prob}_M(x) > \alpha$$

for all $x \in \Sigma^*$.

- (a) Which known class coincides with PP_{α} ?
- (b) Define for the probabilistic polynomial-time Turing machine M designed in Problem 2 and $0 \le \alpha < 1$ the set $A_{\alpha} =_{def} \{ x \mid \operatorname{prob}_{M}(x) > \alpha \}$ which clearly belongs to $\operatorname{PP}_{\alpha}$. Prove that if $\alpha < \beta$ then $A_{\beta} \subset A_{\alpha}$.
- (c) Prove, using (b), that there is an α such that PP_{α} cointains non-decidable sets.