UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Prof. Dr. Sven Kosub / Michael Aichem Complexity Theory Winter 2016

(Last) Assignment 13

Issue date: 01 Feb 2017 Due date: 08 Feb 2017

Exercise 1.

Prove the following closure properties for the class GapP:

- (a) If $f, g \in \text{GapP}$ then $f + g \in \text{GapP}$.
- (b) If $f, g \in \text{GapP}$ then $f \cdot g \in \text{GapP}$.
- (c) If $f, g \in \text{GapP}$ then $f g \in \text{GapP}$.
- (d) If $f \in \text{GapP}, g \in \text{FP}$ then $\sum(f,g) \in \text{GapP}$.
- (e) If $f \in \text{GapP}$, $g \in \text{FP}$ such that $g(x) \leq p(|x|)$ for some polynomial p then $\Pi(f, g) \in \text{GapP}$.

Exercise 2.

For functions $f, g: \Sigma^* \to \mathbb{N}$, the *modified subtraction* \ominus is defined as

$$f \ominus g : x \mapsto \max\{0, f(x) - g(x)\}.$$

Prove that if $f \ominus g \in \#P$ for all functions $f \in \#P$, $g \in FP$ then NP = coNP.

Exercise 3.

Prove the following equivalence:

$$PP = P \iff \#P = FP$$