Assignment 7

Issue date: 07 Dec 2016 Due date: 14 Dec 2016

Exercise 1.

Prove that $(3,4)$-SAT is $\leq{ }_{m}^{\log }$-complete for NP.

Exercise 2.

The set of integer expressions is inductively defined as follows: For each $n \in \mathbb{N}$ is dya (n) an integer expression; if H^{\prime} and H^{\prime} are integer expression then $\left(H+H^{\prime}\right)$ and $\left(H \cup H^{\prime}\right)$ are integer expressions.

The finite set $L(H) \subseteq \mathbb{N}$ given by an integer expression H is accordingly defined as follows:

$$
\begin{aligned}
L(\operatorname{dya}(n)) & =_{\operatorname{def}} \quad\{n\} \\
L\left(H+H^{\prime}\right) & =_{\operatorname{def}} \quad\left\{n+m \mid n \in L(H), m \in L\left(H^{\prime}\right)\right\} \\
L\left(H \cup H^{\prime}\right) & =_{\operatorname{def}} \quad L(H) \cup L\left(H^{\prime}\right)
\end{aligned}
$$

Determine the sets $L(H)$ for the following integer expressions:
(a) $((12 \cup 21)+111)$
(b) $((12+21) \cup 111)$
(c) $(((1 \cup 2)+11) \cup 12)$
(d) $(((((2+2)+2)+2)+2)+2)$

Exercise 3.

Prove that the set
IE-MEMBER $=_{\operatorname{def}}\{(H, n) \mid H$ is an integer expression, $n \in \mathbb{N}$ and $n \in L(H)\}$ is $\leq_{m}^{\log }$-complete for NP.

Hint: Show that Subset $\operatorname{Sum} \leq_{m}^{\log }$ IE-MEmber.

