UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Prof. Dr. Sven Kosub / Michael Aichem Complexity Theory Winter 2016

Assignment 9

Issue date: 21 Dec 2016 Due date: 11 Jan 2017

Exercise 1.

Show that the following statements are true for sets $A, B \subseteq \{0, 1\}^*$ such that $A, B \in NP$:

- (a) $A \cap B \in NP$ (i.e., NP is closed under intersection)
- (b) $A \cup B \in NP$ (i.e., NP is closed under union)
- (c) $A \cdot B \in NP$ (i.e., NP is closed under concatenation)
- (d) $A^* \in NP$ (i.e., NP is closed under iteration)

Exercise 2.

Find lowest possible complexity classes in the polynomial hierarchy for following problems:

- (a) { $H \mid H$ is a propositional formula such that there is no shorter logically equivalent propositional formula H' }
- (b) { $H \mid H$ is a satisfiable propositional formula such that the lexicographically smallest satisfying assignment has an even number of 1's }
- (c) { $G \mid G$ is an undirected graph having an even chromatic number }

Exercise 3.

Which complexity classes coincide with P^E , LIN^P , and $P^{NP\cap coNP}$?

Merry Christmas and a Happy New Year!