Assignment 9

Issue date: 21 Dec 2016 Due date: 11 Jan 2017

Exercise 1.

Show that the following statements are true for sets $A, B \subseteq\{0,1\}^{*}$ such that $A, B \in$ NP:
(a) $A \cap B \in \mathrm{NP}$ (i.e., NP is closed under intersection)
(b) $A \cup B \in$ NP (i.e., NP is closed under union)
(c) $A \cdot B \in \mathrm{NP}$ (i.e., NP is closed under concatenation)
(d) $A^{*} \in \mathrm{NP}$ (i.e., NP is closed under iteration)

Exercise 2.

Find lowest possible complexity classes in the polynomial hierarchy for following problems:
(a) $\{H \mid H$ is a propositional formula such that there is no shorter logically equivalent propositional formula $\left.H^{\prime}\right\}$
(b) $\{H \mid H$ is a satisfiable propositional formula such that the lexicographically smallest satisfying assignment has an even number of 1's \}
(c) $\{G \mid G$ is an undirected graph having an even chromatic number $\}$

Exercise 3.

Which complexity classes coincide with $\mathrm{P}^{\mathrm{E}}, \operatorname{LIN}^{\mathrm{P}}$, and $\mathrm{P}^{\mathrm{NP} \cap c o N P}$?

Merry Christmas and a Happy New Year!

