
Lecture Notes

Complexity Theory

taught in Winter term 2016

by

Sven Kosub

February 15, 2017
Version v2.11

Contents

1 Complexity measures and classes 1

1.1 Deterministic measures . 1

1.2 Nondeterministic measures . 8

1.3 Type-independent measures . 12

2 Complexity hierarchies 15

2.1 Deterministic space . 15

2.2 Nondeterministic space . 17

2.3 Deterministic time . 18

2.4 Nondeterministic time . 18

3 Relations between space and time complexity 19

3.1 Space versus time . 19

3.2 Nondeterministic space versus deterministic space 20

3.3 Complementing nondeterministic space . 20

3.4 Open problems in complexity theory . 21

4 Lower bounds 23

4.1 The completeness method . 23

4.2 The counting method . 29

5 P versus NP 31

5.1 Oracle Turing machines . 31

5.2 P=NP relative to some oracle . 32

5.3 P 6=NP relative to some oracle . 32

version v2.11 as of February 15, 2017

vi Contents

6 The polynomial hierarchy 33

6.1 Turing reductions . 33

6.2 The oracle hierarchy . 33

6.3 The quantifier hierarchy . 35

6.4 Complete problems . 35

7 Alternation 37

7.1 Alternating Turing machines . 37

7.2 Alternating time . 38

7.3 Alternating space . 38

8 Probabilisitic complexity 39

8.1 Probabilistic Turing machines . 39

8.2 The class BPP . 39

8.3 The classes #P and GapP . 39

8.4 The class PP . 39

8.5 The class ⊕P . 39

8.6 PH and PP . 39

9 Epilogue: The graph isomorphism problem 41

Bibliography 41

Complexity Theory – Lecture Notes

Complexity measures and classes 1

1.1 Deterministic measures

1.1.1 A general framework

We introduce a general, notational framework for complexity measures and classes.

Let τ be an algorithm type, e.g., Turing machine, RAM, Pascal/C/Java program, etc. For
any algorithm of type τ , it must be defined when the algorithm terminates (stops, halts)
on a given input and, if the algorithm terminates, what the result (outcome/output) is.

An algorithm A of type τ computes a mapping ϕA : (Σ∗)m → Σ∗:

ϕA(x) =def

{

result of A on input x if A terminates on input x
not defined otherwise

A complexity measure for algorithms of type τ is a mapping Φ:

Φ : finite computation of A of type τ on input x 7→ r ∈ N

A (finite) computation is a (finite) sequence of configurations (specific to the type τ). Note
that, in general, such a sequence need not be complete in the sense that it is reachable
from a defined initial configuration.

Examples: Standard complexity measures are the following:

Φ = τ -DTIME Φ = τ -DSPACE

Here, “D” indicates that algorithms are deterministic.

A complexity function for an algorithm A of type τ is a mapping ΦA : (Σ∗)m → N:

ΦA(x) =def

{

Φ(computation of A on input x) if A terminates on input x
not defined otherwise

A worst-case complexity function of A of type τ is a mapping ΦA : N→ N:

ΦA(n) =def max
|x|=n

ΦA(x)

Resource bounds are compared asymptotically. Define for f, g : N→ N:

f ≤ae g ⇐⇒def (∃n0)(∀n)[n ≥ n0 → f(n) ≤ g(n)]

version v2.11 as of February 15, 2017

2 Chapter 1. Complexity measures and classes

The subscript “ae” refers to “almost everywhere.”

Let t : N → N be a resource bound (i.e., t is monotone). We say that an algorithm A of
type τ computes the total function f in Φ-complexity t if and only if ϕA = f and ΦA ≤ae t.
We define the following complexity classes:

FΦ(t) =def { f | f is a total function and there is an algorithm A of type τ
computing f in Φ-complexity t }

FΦ(O(t)) =def

⋃

k≥1

FΦ(k · t)

FΦ(Pol t) =def

⋃

k≥1

FΦ(tk)

When considering the complexity of languages (sets) instead of functions, we use the
characteristic function to define the fundamental complexity classes. The characteristic
function cL : Σ∗ → {0, 1} of a language L ⊆ Σ∗ is defined to be for all x ∈ Σ∗:

cL(x) = 1⇐⇒def x ∈ L

Recall that an algorithm A accepts (decides) a language L ⊆ Σ∗ if and only if A computes
cL. Accordingly, we say that A accepts a language L in Φ-complexity t if and only if
ϕA = cL and ΦA ≤ae t. We obtain the following deterministic complexity classes of
languages (sets):

Φ(t) =def { L | L ⊆ Σ∗ and there is an algorithm A of type τ accepting L in
Φ-complexity t }

Φ(O(t)) =def

⋃

k≥1

Φ(k · t)

Φ(Pol t) =def

⋃

k≥1

Φ(tk)

Proposition 1.1 Let Φ be a complexity measure and let t, t′ be resource bounds.

1. If t ≤ae t
′ then FΦ(t) ⊆ FΦ(t′).

2. If t ≤ae t
′ then Φ(t) ⊆ Φ(t′).

Remarks:

1. In the definition of complexity classes, there is no restriction on a certain input
alphabet but all alphabets used must be finite.

2. Numbers are encoded in dyadic. That is, for a language L ⊆ N
m we use the following

encoding:

L ∈ Φ(t)⇐⇒def { (dya(n1), . . . ,dya(nm)) | (n1, . . . , nm) ∈ L } ∈ Φ(t)

Complexity Theory – Lecture Notes

1.1. Deterministic measures 3

A function f : Nm → N can be encoded as:

f ∈ FΦ(t)⇐⇒def f
′ ∈ FΦ(t) where f ′ : ({1, 2}∗)m → {1, 2} is given by

f ′(x1, . . . , xm) =def dya
(

f(dya−1(x1), . . . ,dya
−1(xm))

)

The dyadic encoding dya : N→ {1, 2}∗ is recursively defined by

dya(0) =def ε

dya(2n + 1) =def dya(n)1

dya(2n + 2) =def dya(n)2

The decoding dya−1 : {1, 2}∗ → N is given by

dya−1(an−1 . . . a1a0) =

n−1
∑

k=0

ak · 2k

Note that the dyadic encoding is bijective (in contrast to the usual binary encoding).

1.1.2 Complexity measures for RAMs

We consider the case τ = RAM. A RAM (random access machine) is a model of an
idealized computer based on the von Neumann architecture and consists of

• countably many register R0, R1, R2, . . ., each register Ri containing a number 〈Ri〉 ∈ N

• an instruction register BR containing the next instruction 〈BR〉 to be executed

• a finite instruction set with instructions of several types:

type syntax semantics

transport Ri← Rj 〈Ri〉 := 〈Rj〉, 〈BR〉 := 〈BR〉+ 1
RRi← Rj 〈R〈Ri〉〉 := 〈Rj〉, 〈BR〉 := 〈BR〉+ 1
Ri← RRj 〈Ri〉 := 〈R〈Rj〉〉, 〈BR〉 := 〈BR〉+ 1

arithmetic Ri← k 〈Ri〉 := k, 〈BR〉 := 〈BR〉+ 1
Ri← Rj+ Rk 〈Ri〉 := 〈Rj〉+ 〈Rk〉, 〈BR〉 := 〈BR〉+ 1
Ri← Rj− Rk 〈Ri〉 := max{〈Rj〉 − 〈Rk〉, 0}, 〈BR〉 := 〈BR〉+ 1

jumps GOTO k 〈BR〉 := k

IF Ri = 0 GOTO k 〈BR〉 :=
{

k if 〈Ri〉 = 0
〈BR+ 1〉 otherwise

stop STOP 〈BR〉 := 0

• a program consisting of m ∈ N instructions enumerated by [1], [2], . . . , [m]

version v2.11 as of February 15, 2017

4 Chapter 1. Complexity measures and classes

The input (x1, . . . , xm) ∈ N
m is given by the following initial configuration:

〈Ri〉 := xi+1 for 0 ≤ i ≤ m− 1

〈Ri〉 := 0 for i ≥ m

A RAM computation stops when the instruction register contains zero. Then, the output
is given by 〈R0〉.

The complexity measures we are interested in are the following. Let β be a computation
of a RAM:

RAM-DTIME(β) =def number of steps (tacts, cycles) of β

RAM-DSPACE(β) =def max
t≥0

BIT(β, t)

where BIT(β, t) =def
∑

i≥0 |dya(〈Ri〉t)|+
∑

〈Ri〉t 6=0 |dya(i)|
and 〈Ri〉t is the content of Ri after the t-th step of β

This gives the following complexity functions for a RAM M :

RAM-DTIMEM (x) =def

number of steps of a computation by M on input x
if M terminates on input x

not defined otherwise

RAM-DSPACEM (x) =def

maxt≥0 BIT(computation by M on input x, t)
if M terminates on input x

not defined otherwise

We obtain the following four complexity classes with respect to resource bounds s, t:

FRAM-DTIME(t), FRAM-DSPACE(s), RAM-DTIME(t), RAM-DSPACE(s)

Example: We design a RAM M computing mult : N×N→ N : (x, y) 7→ x · y
in order to analyze the time complexity. The simple idea is adding y-times x.
This is done by the following RAM:

[1] R3 ← 1

[2] IF R1=0 GOTO 6

[3] R2 ← R2 + R0

[4] R1 ← R1 - R3

[5] GOTO 2

[6] R0 ← R2

[7] STOP

Given the input (x, y), the M takes 4 · y+4 steps. In the worst case for inputs
of size n (i.e., x = 0), we obtain

2n+2 ≤ RAM-DTIMEM (n) ≤ 2n+3 − 4.

Complexity Theory – Lecture Notes

1.1. Deterministic measures 5

1.1.3 Complexity measures for Turing machines

In the following, we adopt the reader to be familiar with the notion of a Turing machine
(see, e.g., [HMU01]). According to the number of tapes Turing machines are equipped
with, we consider different algorithm types τ . A Turing machines consists of:

• (possibly) a read-only input tape which either can be one-way or two-way

• k working tapes with no restrictions

• a write-only one-way output tape

The corresponding algorithm types can be taken from the following table:

τ one working tape k working tapes arbitrarily many
working tapes

no input tape T kT multiT
one-way input tape 1-T 1-kT 1-multiT
two-way input tape 2-T 2-kT 2-multiT

The input (x1, . . . , xm) to a Turing machines is given by the following initial configuration:

• input tape (first working tape, resp.) contains . . .✷✷✷x1 ∗ . . . ∗ xm✷✷✷ . . .

• all other tapes are empty, i.e., they contain . . .✷✷✷ . . .

The Turing machines stops if the halting state is taken. Then, the output is given by
the configuration . . .✷✷✷z✷ . . . on the output tape where z is the leftmost word on the
output tape which does not contain the blank symbol ✷.

Turing machines accepting languages do not possess an output tape. Instead, they have
accepting and rejecting halting states.

The complexity measures we are interested in are the following. Let τ be a Turing machine
type and β be a computation of a Turing machine of type τ :

τ -DTIME(β) =def number of steps of β

τ -DSPACE(β) =def number of cells visited or containing an input symbol during
computation β

This yields the following complexity functions for a Turing machine M of type τ :

τ -DTIMEM (x) =def

number of steps of a computation by M on input x
if M terminates on input x

not defined otherwise

version v2.11 as of February 15, 2017

6 Chapter 1. Complexity measures and classes

τ -DSPACEM (x) =def

number of cells visited or containing any input symbol
during a computation of M on x

if M terminates on input x

not defined otherwise

We obtain the following set of complexity classes with respect to a resource bound r:

F

0
1
2

-

T
kT

multiT

-

{

DTIME
DSPACE

}

(r),

0
1
2

-

T
kT

multiT

-

{

DTIME
DSPACE

}

(r)

Example: We discuss several computational problems regarding their mem-
bership in complexity classes.

1. For the function len : x 7→ |x|, it holds len ∈ F1-T-DTIME((1+ ε) ·n) for
all ε > 0.

2. We consider two context-free languages over Σ = {0, 1}:

S =def { xxR | x ∈ {0, 1}∗ }
C =def { 0n1n | n ∈ N }

Then, the complexity classes (specified by resource bounds) S and C
belong to are given in the following table (where ε > 0).

T-DTIME(r) 1-T-DTIME(r) 2-T-DTIME(r) 1-T-DSPACE(r) 2-T-DSPACE(r)

S ε · n
2

ε · n
2 (1.5 + ε) · n ε · n ε · log n

C ε · n log n n n ε · log n ε · log n

We want to look more closely at a result of the table: S ∈ T-DTIME(ε · n2) for all ε > 0.
The basic idea of a suitable Turing machine M is to compare, in rounds, leftmost and
rightmost letters of a given word and removing compared letters. Suppose we are given
the word x = 1001001001 which belongs to S. The initial configuration is as follows (with
the inital state above a cell indicating the position of the head):

si
. . . ✷ ✷ 1 0 0 1 0 0 1 0 0 1 ✷ ✷ . . .

M stores the leftmost letters in two states: s1 for letter 1 and s0 for letter 0. The head
moves to right until the first blank symbol next to the rightmost letter is reached. The
head moves one cell to the left and compares that letter with the letter stored in the state.
The machine stops if there is a mismatch, otherwise it moves back to left using a state sℓ.
Then, the next round starts.

Complexity Theory – Lecture Notes

1.1. Deterministic measures 7

The first round is given by the following sequence of configurations:

si
. . . ✷ ✷ 1 0 0 1 0 0 1 0 0 1 ✷ ✷ . . .

s1
. . . ✷ ✷ ✷ 0 0 1 0 0 1 0 0 1 ✷ ✷ . . .

...
s1

. . . ✷ ✷ ✷ 0 0 1 0 0 1 0 0 1 ✷ ✷ . . .
s′1

. . . ✷ ✷ ✷ 0 0 1 0 0 1 0 0 1 ✷ ✷ . . .
sℓ

. . . ✷ ✷ ✷ 0 0 1 0 0 1 0 0 ✷ ✷ ✷ . . .
...

sℓ
. . . ✷ ✷ ✷ 0 0 1 0 0 1 0 0 ✷ ✷ ✷ . . .

si
. . . ✷ ✷ ✷ 0 0 1 0 0 1 0 0 ✷ ✷ ✷ . . .

Note that this round takes 2|x|+ 1 steps.

The second round is given by the following sequence of configurations:

si
. . . ✷ ✷ ✷ 0 0 1 0 0 1 0 0 ✷ ✷ ✷ . . .

s0
. . . ✷ ✷ ✷ ✷ 0 1 0 0 1 0 0 ✷ ✷ ✷ . . .

...
s0

. . . ✷ ✷ ✷ ✷ 0 1 0 0 1 0 0 ✷ ✷ ✷ . . .
s′0

. . . ✷ ✷ ✷ ✷ 0 1 0 0 1 0 0 ✷ ✷ ✷ . . .
sℓ

. . . ✷ ✷ ✷ ✷ 0 1 0 0 1 0 ✷ ✷ ✷ ✷ . . .
...

sℓ
. . . ✷ ✷ ✷ ✷ 0 1 0 0 1 0 ✷ ✷ ✷ ✷ . . .

si
. . . ✷ ✷ ✷ ✷ 0 1 0 0 1 0 ✷ ✷ ✷ ✷ . . .

Note that this round takes 2(|x| − 2) + 1 steps.

After a number of rounds all letters are removed. The machine accepts if and only if there
are no mismatches and in the last round there are exactly two letters on the tape.

The time complexity for x such that |x| = 2m can be estimated as follows:

T-DTIMEM (x) ≤
m−1
∑

i=0

4m− 4i+ 1 = 4m2 − 4m(m− 1)

2
+m = 2m2 + 3m ≤ae

2

3
· |x|2

version v2.11 as of February 15, 2017

8 Chapter 1. Complexity measures and classes

Now, instead of comparing one symbol, compare k symbols (by increasing the numbers of
states exponentially). This gives the following complexity analysis for x:

T-DTIMEM ′(x) ≤
⌊m/k⌋
∑

i=0

(|x| − 2ki) + (|x| − 2ki− k) + 1 + k

=

⌊m/k⌋
∑

i=0

4m− (4i + 1)k + 1 + k

≤ (4m+ 1)
(m

k
+ 1

)

+ k

≤ae
2

k
· |x|2

For k ≥ 2 · ε−1, we obtain S ∈ T-DTIME(ε · n2).

1.2 Nondeterministic measures

Nondeterminism of algorithms is a certain kind of parallelism:

• possibly many instructions to perform next given a situation

• realized in parallel (by identical copies of the machine/algorithm)

• number of instructions limited by a constant number

For a nondeterministic RAM, this means that instructions may have same numbers. For
a nondeterministic Turing machine, this means that, given a situation (i.e., a state and
symbols on tapes), there are many transitions applicable.

Nondeterministic machines produce computation trees. Let k be the maximum number
of nondeterministic branches of M . A computation path of M on input x is a word
a1 . . . ar ∈ {1, . . . , k}∗ such that at is the at-th instruction of the same number performed
in the t-th step of the computation. Note that not each word from {1, . . . , k}∗ describes a
computation path.

As an example consider the computation tree above. Here, x is the input to the algorithm.
The red computation path can be described by the word 1221232 ∈ {1, 2, 3}∗. In contrast,
the word 1212 ∈ {1, 2, 3} does not correspond to a computation path on input x.

Complexity Theory – Lecture Notes

1.2. Nondeterministic measures 9

As it is not obvious how to define nondeterministic function classes, we focus on decision
problems only in the forthcoming. We define the notion of “acceptance by a nondetermin-
istic machine:”

• τ is an algorithm type

• A is a nondeterministic algorithm of type τ

• x is an input

• z is a computation path of A on x

Then, we define:

• ϕA(x|z) =def result of A on x along z

• A accepts x ⇐⇒def there is a z of A on x such that ϕA(x|z) = 1 (i.e., there is an
accepting computation path of A on x)

• A accepts L ⊆ Σ∗ ⇐⇒def L = { x ∈ Σ∗ | A accepts x }

Note that deterministic algorithms are a subclass of nondeterministic algorithms.

A complexity measure for nondeterministic algorithm A of type τ is a mapping Φ:

Φ : computation path of A of τ on x 7→ r ∈ N

Example: Standard complexity measures are the following:

Φ = τ -NTIME Φ = τ -NSPACE

Here, “N” indicates that algorithms are nondeterministic. Note that if A is
actually deterministic then the following holds:

τ -NTIME(computation path) = τ -DTIME(computation)

τ -NSPACE(computation path) = τ -DSPACE(computation)

We define the following complexity functions: Let Φ be a complexity measure for nonde-
terministic algorithms A of type τ .

ΦA(x|z) =def Φ(computation path z of A on x)

ΦA(x) =def min { ΦA(x|z) | ϕA(x|z) = 1 } (we set min ∅ =def 0!)

ΦA(n) =def max
|x|=n

ΦA(x)

version v2.11 as of February 15, 2017

10 Chapter 1. Complexity measures and classes

We say that a nondeterministic algorithm A accepts a language L in Φ-complexity t if and
only if A accepts L and ΦA ≤ae t.

We obtain the following nondeterministic complexity classes of languages:

Φ(t) =def { L | L ⊆ Σ∗ and there is a nondeterministic algorithm A of type τ

accepting L in Φ-complexity t }
Φ(O(t)) =def

⋃

k≥1

Φ(k · t)

Φ(Pol t) =def

⋃

k≥1

Φ(tk)

Proposition 1.2 Let τ be any algorithm type, and let tt′ be resource bounds.

1. If t ≤ae t
′ then Φ(t) ⊆ Φ(t′) for all Φ.

2. τ -DTIME(t) ⊆ τ -NTIME(t).

3. τ -DSPACE(t) ⊆ τ -NSPACE(t).

For deterministic complexity classes, the following equivalences are true:

L ∈ τ -DTIME(t) ⇐⇒ L ∈ τ -DTIME(t)

L ∈ τ -DSPACE(t) ⇐⇒ L ∈ τ -DSPACE(t)

The same statements need not be true for τ -NTIME and τ -NSPACE because of the non-
symmetrical acceptance conditions.

Examples: We discuss the nondeterministic complexities of the problems S
and C with respect to various computational models. According to the remarks
above we make a distinction between S, S, C, and C. The differences in the
complexities illustrate the remark once more.

T-NTIME(r) 1-T-NTIME(r) 2-T-NTIME(r) 1-T-NSPACE(r) 2-T-NSPACE(r)

S ε · n
2

n n ε · n ε · log n

S ε · n · log n n n ε · log n ε · log n
C ε · n · log n n n ε · log n ε · log n

C ε · n · log log n n n ε · log log n ε · log log n

We discuss two particular cases in more detail:

1. In order to show that S ∈ T-NTIME(n · log n), define M to be the T-TM
that, on input x,

(a) guesses a position i,

Complexity Theory – Lecture Notes

1.2. Nondeterministic measures 11

(b) determines the letter at the i-th position from left (i.e., xi),

(c) determines the letter at the i-th position from right (i.e., xn−i),

(d) accepts if and only if the letters are different and |x| is even.

Clearly, M accepts S. Analyzing the complexity is as follows: if x ∈ S
then there is a position 0 ≤ i ≤ n

2 such that xi 6= xn−i. Let z be the
computation path for guessing i. Then, we obtain:

T-NTIMEM (x|z) ≤a.e. |x| · log |x|

Thus, S belongs to T-NTIME(n · log n).

2. In order to show C ∈ T-NTIME(n · log n), define M to be the T-TM that,
on input x,

(a) guesses a k ∈ N \ {0, 1},
(b) determines αk =def mod(|x|0, k) (|x|0 denotes the number of 0’s in

x),

(c) determines βk =def mod(|x|1, k) (|x|1 denotes the number of 1’s in x),

(d) accepts if and only if αk 6= βk or there occurs a 1 followed by 0.

Clearly, M accepts C. We analyze the complexity of M : if x 6∈ C (i.e.,
x = 0n1n) then there is no accepting path; if x ∈ C (i.e., |x|0 6= |x|1) then
there is an accepting path zk for k ≤ n. Thus, we obtain

T-NTIMEM (x|zk) ≤ |x| · log k

But this only proves an n · log n-bound. We can do a finer analysis: The
Chinese remainder theorem states that Zp·q

∼= (Zp) × (Zq) for different
prime numbers p and q. That is, if x ∈ C, we find αk 6= βk for at least
one of the first m prime numbers p1, . . . , pm such that n ≤ p1 · · · · · pm.
So, m =def ⌈log n⌉ is enough (since n ≤ 2logn ≤ 2m ≤ p1 · · · · · pm). By
the prime number theorem we know that pm ≤ c ·m · logm for some c > 1.
Then, we conclude

T-NTIMEM (x|zk) ≤ |x| · log k
≤ |x| · log pm
≤ |x| · log(c · log |x| · log log |x|))
≤ 2|x| · log log |x|+ |x| · log c ≤a.e 3|x| · log log |x|

Using linear compression we obtain C ∈ T-NTIME(n · log log n).

version v2.11 as of February 15, 2017

12 Chapter 1. Complexity measures and classes

1.3 Type-independent measures

We determine complexity classes τ -DSPACE(s) and τ -NSPACE(s) that do not depend on
τ for s(n) ≥ n.

Theorem 1.3 For X ∈ {D,N} and all s(n) ≥ 0, the following holds:

1. i-kT-XSPACE(s) = i-multiT-XSPACE(s) for i ∈ {0, 1, 2} and k ≥ 1

2. T-XSPACE(s) = 1-T-XSPACE(s) = 2-T-XSPACE(s) for s(n) ≥ n

3. 1-T-XSPACE(s) ⊆ 2-T-XSPACE(s)

4. RAM-XSPACE(O(s)) = T-XSPACE(s) for s(n) ≥ n

Turing machines equipped with a 2-way input tape are most flexible in sublinear space.
We define the following machine-independent space-complexity classes (for s(n) ≥ 0):

DSPACE(s) =def 2-T-DSPACE(s)

NSPACE(s) =def 2-T-NSPACE(s)

Proposition 1.4 DSPACE(s) ⊆ NSPACE(s) for all s(n) ≥ 0.

We introduce names for special space-complexity classes:

L =def DSPACE(log n)

NL =def NSPACE(log n)

LIN =def DSPACE(O(n))

NLIN =def NSPACE(O(n))

PSPACE =def DSPACE(Pol n)

NPSPACE =def NSPACE(Pol n)

Proposition 1.5 The following inclusions are true: ...

Remarks:

1. For arbitrary s : N → N, it is open whether DSPACE(s) ⊂ NSPACE(s) or whether
DSPACE(s) = NSPACE(s).

2. Special open questions are: L
?
= NL, LIN

?
= NLIN (aka the first LBA problem)

Complexity Theory – Lecture Notes

1.3. Type-independent measures 13

Theorem 1.6 For X ∈ {D,N} and all t(n) ≥ n, the following holds:

1. i-kT-XTIME(Pol t) = i-multiT-XTIME(Pol t) for i ∈ {0, 1, 2} and k ≥ 1

2. T-XTIME(Pol t) = 1-T-XTIME(Pol t) = 2-T-XTIME(Pol t)

3. RAM-XTIME(Pol t) = T-XTIME(Pol t)

Remarks: There are some results regarding tight simulations for “easy-to-compute” time
bounds t(n) ≥ n:

• multiT-DTIME(t) ⊆ T-DTIME(t2)

• multiT-DTIME(t) ⊆ 2T-DTIME(t · log t)

• multiT-NTIME(t) = 2T-NTIME(t)

• multiT-DTIME(t) ⊆ RAM-DTIME (O(t/ log t)) for t(n) ≥ n · log n

• RAM-DTIME(t) ⊆ multiT-DTIME(t3)

• multiT-NTIME(t) ⊆ RAM-NTIME(O(t)) ⊆ multiT-NTIME(t3)

We define the following machine-independent time-complexity classes (for t(n) ≥ n):

DTIME(Pol t) =def T-DTIME(Pol t)

NTIME(Pol t) =def T-NTIME(Pol t)

Proposition 1.7 DTIME(Pol t) ⊆ NTIME(Pol t) for all t(n) ≥ n.

We introduce name for special time-complexity classes:

P =def DTIME(Pol n)

NP =def NTIME(Pol n)

E =def DTIME(Pol 2n)

NE =def NTIME(Pol 2n)

EXP =def DTIME
(

2Pol n
)

NEXP =def NTIME
(

2Pol n
)

Proposition 1.8 The following inclusions are true: ...

version v2.11 as of February 15, 2017

14 Chapter 1. Complexity measures and classes

Remarks:

1. For arbitrary t : N → N, it is open whether DTIME(t) ⊂ NTIME(t) or whether
DTIME(t) = NTIME(t); an exception is the following proven result: DTIME(O(n))
⊂ NTIME(O(n)).

2. Special open questions are P
?
= NP, E

?
= NE, and EXP

?
= NEXP

Complexity Theory – Lecture Notes

Complexity hierarchies 2

Let Φ be any complexity measure. Which of the following both (complementary) state-
ments is true?

1. Is there a computable function t : N→ N such that Φ(t) contains all decidable sets?

2. Given any computable function t : N → N, is there a decidable set A such that
A /∈ Φ(t)?

In the case that the answer to the second question is “yes”:

3. Given t, how much greater has t′ to be in order to get Φ(t) ⊂ Φ(t′)?

That is: Is there an infinite hierarchy of complexity classes Φ(t)?

2.1 Deterministic space

We consider DSPACE = 2-T-DSPACE.

As a preliminary remark we syntactically define a 2-T-TM M as a tuple (Σ,∆, S, δ, s+, s−)
where

• Σ is a finite input alphabet

• ∆ is a finite internal alphabet

• S is a finite set of states

• δ : S × Σ×∆→ S ×∆× {L, 0, R}2

• s+ is the accepting halting state

• s− is the rejecting halting state

Let |M | denote the description length of M :

|M | ≥ ‖S‖ · ‖Σ‖ · ‖∆‖

Lemma 2.1 If a deterministic 2-T-TM M terminates on input x then it holds

2-T-DTIMEM (x) ≤ ‖x‖ · 2|M |·DSPACEM (x)

version v2.11 as of February 15, 2017

16 Chapter 2. Complexity hierarchies

Corollary 2.2 DSPACE(s) ⊆ DTIME(2O(s)) for s(n) ≥ log n.

Theorem 2.3 For every computable function s : N → N there is a decidable language L
such that L /∈ DSPACE(s).

A function s : N→ N is said to be space-constructible if and only if there is a 2-T-TM M
such that DSPACEM (x) = s(|x|).

Proposition 2.4 Let s : N→ N be a function. Then, the following equivalence holds:

s is space-constructible ⇐⇒ s ◦ len ∈ FDSPACE(s)

Remarks:

1. len : Σ∗ → N : x 7→ |x|

2. s ◦ len : Σ∗ → N : x 7→ s(len(x)) = s(|x|)

Examples: nk for k ≥ 1, log n, 2n are space-constructible functions.

Proposition 2.5 Let s and s′ be space-constructible functions. Then,

1. s+ s′, s · s′, max(s, s′) are space-constructible,

2. s ◦ s′ is space-constructible, if s(n) ≥ n.

Theorem 2.6 (Hierarchy Theorem) Let s and s′ be space-constructible functions,
s(n) ≥ log n. If s′ = o(s) then DSPACE(s′) ⊂ DSPACE(s).

Theorem 2.7 (Linear Compression) For every function s : N→ N,

DSPACE(s) = DSPACE(O(s)).

Remarks:

1. Gap Theorem (Trakhtenbrot 1964, Borodin 1972): For every computable
r : N→ N there is a computable s : N→ N such that DSPACE(s) = DSPACE(r ◦s).
(So, s is not space-constructible.)

2. There is an s such that DSPACE(s) = DSPACE(2s).

3. REG = DSPACE(1) = DSPACE(s) for s = o(log log n).

Complexity Theory – Lecture Notes

2.2. Nondeterministic space 17

2.2 Nondeterministic space

We consider NSPACE = 2-T-NSPACE.

Theorem 2.8 (Hierarchy Theorem) For every space-constructible s(n) ≥ log n and
every s′ such that s′(n+ 1) = o(s(n)),

NSPACE(s′) ⊂ NSPACE(s).

Remarks:

1. Diagonalization does not work for nondeterministic measures.

2. Proof is based on recursive padding. The padding technique is as follows: For a set
A and a function r(n) > n define

Ar =def { xbar(|x|)−|x|−1 | b 6= a ∧ x ∈ A }.

Then, one can prove that

Ar ∈ NSPACE(s) ⇐⇒ A ∈ NSPACE(s ◦ r)

3. Upward translation of equality: We show that

NSPACE(n2) ⊆ NSPACE(n) =⇒ NSPACE(n3) ⊆ NSPACE(n).

Let r(n) =def n
3/2 and note that n3 = (n3/2)2. Then, conclude as follows:

A ∈ NSPACE(n3) =⇒ Ar ∈ NSPACE(n2)

=⇒ Ar ∈ NSPACE(n)

=⇒ A ∈ NSPACE(n3/2)

=⇒ A ∈ NSPACE(n2)

=⇒ A ∈ NSPACE(n)

4. Savitch’s Theorem: NSPACE(s) ⊆ DSPACE(s2). We obtain that

NSPACE(s) ⊆ DSPACE(s2) ⊂ DSPACE(s3) ⊆ NSPACE(s3).

In particular, NSPACE(n) ⊂ NSPACE(n2)

Theorem 2.9 (Linear Compression) For every function s : N→ N,

NSPACE(s) = NSPACE(O(s)).

version v2.11 as of February 15, 2017

18 Chapter 2. Complexity hierarchies

2.3 Deterministic time

Theorem 2.10 (Hierarchy Theorem) For “easy-to-compute” functions t(n) ≥ n and
for all t′(n) = o(t(n)),

multiT-DTIME(t′) ⊂ multiT-DTIME(t · log t).

Remarks:

1. Proof is by diagonalization; the log t factor appears because of the simulation of
arbitrarily many tapes by a fixed number of tapes.

2. Using recursive padding: multiT-DTIME(t′) ⊂ multiT-DTIME(t · √log t)

3. For k ≥ 2 fixed: kT-DTIME(t′) ⊂ kT-DTIME(t)

4. RAM-DTIME(t) ⊂ RAM-DTIME(c · t) for some c > 1.

Theorem 2.11 (Linear Speed-up) For t(n) ≥ c · n such that c > 1,

multiT-DTIME(t) = multiT-DTIME(O(t)).

Theorem 2.12 multiT-DTIME(n) ⊂ multiT-DTIME(O(n)).

2.4 Nondeterministic time

Theorem 2.13 (Hierarchy Theorem) For “easy-to-compute” functions t(n) ≥ n and
for all t′(n) ≥ n such that t′(n+ 1) = o(t(n)),

multiT-NTIME(t′) ⊂ multiT-NTIME(t)

Theorem 2.14 (Linear Speed-up) For t(n) ≥ n,

multiT-NTIME(t) = multiT-NTIME(O(t)).

Remarks:

1. The linear speed-up already holds for t(n) = n in contrast to the linear speed-up for
deterministic time.

2. multiT-DTIME(n) ⊂ multiT-NTIME(n).

3. multiT-DTIME(O(n)) ⊂ multiT-NTIME(O(n)).

Complexity Theory – Lecture Notes

Relations between space and time

complexity 3

In this chapter we relate DSPACE, NSPACE, DTIME, and NTIME.

3.1 Space versus time

We first study time-efficient simulations of space-bounded computations.

Proposition 3.1 If a nondeterministic 2-T-TM M accepts a language L in space
s(n) ≥ log n then M accepts L in time 2O(s).

Theorem 3.2 Let s(n) ≥ log n be space-constructible. Then,

NSPACE(s) ⊆ DTIME(2O(s)).

Corollary 3.3 1. NL ⊆ P.

2. NLIN ⊆ E.

3. NPSPACE ⊆ EXP.

We turn to space-efficient simulations of time-bounded computations. Clearly, it holds
that DTIME(t) ⊆ DSPACE(t) and NTIME(t) ⊆ NSPACE(t).

Theorem 3.4 For any space-constructible function t(n) ≥ n,

T-NTIME(t) ⊆ DSPACE(t).

Corollary 3.5 1. -NTIME(Pol t) ⊆ -DSPACE(Pol t) for any space-constructible func-
tion t(n) ≥ n.

2. NP ⊆ PSPACE.

version v2.11 as of February 15, 2017

20 Chapter 3. Relations between space and time complexity

3.2 Nondeterministic space versus deterministic space

Lemma 3.6 For all space-constructible functions s(n), t(n) ≥ log n, the following holds:
If a language L is accepted by a 2-T-NTM in space s and time 2t then L is accepted by a
2-T-DTM in space s · t.

Theorem 3.7 (Savitch 1970) For any space-constructible function s(n) ≥ log n,

NSPACE(s) ⊆ DSPACE(s2).

Corollary 3.8 1. NL ⊆ DSPACE(log2 n).

2. NLIN ⊆ DSPACE(n2).

3. NPSPACE = PSPACE.

3.3 Complementing nondeterministic space

For each set class K define

coK =def { A | A ∈ K }.

Note that in order to prove K = coK it is enough to prove one of the inclusions K ⊆ coK
or coK ⊆ K.

Theorem 3.9 (Szelepczényi, Immerman 1987) For any space-constructible functions
s(n) ≥ log n,

coNSPACE(s) = NSPACE(s).

Corollary 3.10 1. coNL = NL.

2. coNLIN = NLIN.

Complexity Theory – Lecture Notes

3.4. Open problems in complexity theory 21

3.4 Open problems in complexity theory

The following table shows that general complexity-theoretic open problems. The most
important open problems are framed.

General Problem Special cases

DSPACE(s)
?
= NSPACE(s) L

?
= NL

LIN
?
= NLIN

NSPACE(s)
?
= DTIME(2O(s)) NL

?
= P

NLIN
?
= E

PSPACE
?
= EXP

DTIME(Pol t)
?
= NTIME(Pol t) P

?
= NP

E
?
= NE

EXP
?
= NEXP

NTIME(Pol t)
?
= DSPACE(Pol t) NP

?
= PSPACE

NE
?
= DSPACE(2O(s))

NEXP
?
= DSPACE(2Pol s)

NTIME(Pol t)
?
= coNTIME(Pol t) NP

?
= coNP

NE
?
= coNE

NEXP
?
= coNEXP

Remark: The classes L,NL,P,NP, coNP,PSPACE, . . . are the most important complex-
ity classes as they contain many practically relevant problems. Furthermore, they are
reference classes for more advanced or refined computational models, e.g., quantum, ran-
domized, or parallel computations.

In the following we want to study relations among open problems (upward translation of
equality): For a function r : N → N, a set A ⊆ Σ∗, and a fixed, distinct letters a, b ∈ Σ
define the set

Ar =def

{

xbar(|x|)−|x|−1 | b 6= a ∧ x ∈ A
}

version v2.11 as of February 15, 2017

22 Chapter 3. Relations between space and time complexity

A function t : N → N is time-constructible if and only if t ◦ len ∈ FDTIME(Pol t), i.e.,
x 7→ t(|x|) is computable in time t(|x|)k for some k ≥ 1.

Lemma 3.11 (Padding Lemma) Let X ∈ {D,N}.
1. For any space-constructible function s(n) ≥ log n and any function r(n) > n such

that r ◦ len ∈ DSPACE(s ◦ r),

A ∈ XSPACE(s ◦ r)⇐⇒ Ar ∈ XSPACE(s).

2. For any time-constructible function t(n) ≥ n and any function r(n) > n,

A ∈ XTIME(Pol t ◦ r)⇐⇒ Ar ∈ XTIME(Pol t).

Theorem 3.12 Let s be a space-constructible function, and let t be time-constructible
function.

1. L = NL =⇒ DSPACE(s) = NSPACE(s) for s(n) > log n

2. LIN = NLIN =⇒ DSPACE(s) = NSPACE(s) for s(n) > n

3. NL = P =⇒ NSPACE(s) = DTIME(2O(s)) for s(n) > log n

4. P = NP =⇒ DTIME(Pol t) = DSPACE(Pol t) for t(n) > n

5. NP = PSPACE =⇒ NTIME(Pol t) = DSPACE(Pol t) for t(n) > n

6. NP = coNP =⇒ NTIME(Pol t) = coNTIME(Pol t) for t(n) > n

Corollary 3.13 1. L = NL =⇒ LIN = NLIN

2. NL = P =⇒ NLIN = E =⇒ PSPACE = EXP

3. P = NP =⇒ E = NE =⇒ EXP = NEXP

4. NP = PSPACE =⇒ NE = DSPACE(2O(n)) =⇒ NEXP = DSPACE(2Pol n)

Complexity Theory – Lecture Notes

Lower bounds 4

We turn to a complexity theory for computational problems.

Let t : N→ N be a resource bound, and let A be any language. Then,

• t is a lower bound for A with respect to Φ-complexity if and only if A /∈ Φ(t),

• t is an upper bound for A with respect to Φ-complexity if and only if A ∈ Φ(t).

Remark: If Φ admits linear compression or speed-up then there is no greatest lower bound.
Suppose A /∈ Φ(t) and t is greatest lower bound for A. Then, A /∈ Φ(t) but A ∈ Φ(2t). By
linear compression/speed-up, A ∈ Φ(t) which is a contradiction.

The goal in this chaper is to provide techniques for proving lower bound for concrete prob-
lems. We consider two techniques: the completeness method (based on diagonalization)
and the counting method (based on the pigeonhole principle).

4.1 The completeness method

Instead of proving explicite resource bound, we compare computational problems, i.e., we
prove statements like “A is computationally not harder then B.”

4.1.1 Reducibilities

Definition 4.1 Let A ⊆ Σ∗ and B ⊆ ∆∗ be languages.

1. A ≤p
m B if and only if there is an f ∈ FP such that for all x ∈ Σ∗

x ∈ A⇐⇒ f(x) ∈ B.

2. A ≤log
m B if and only if there is an f ∈ FL such that for all x ∈ Σ∗

x ∈ A⇐⇒ f(x) ∈ B.

3. A ≤log
m B if and only if there exist an f ∈ FL and a c > 0 such that for all x ∈ Σ∗,

|f(x)| ≤ c · |x| and
x ∈ A⇐⇒ f(x) ∈ B.

version v2.11 as of February 15, 2017

24 Chapter 4. Lower bounds

Example: Consider the following two sets:

Subset Sum =def

{

(a1, . . . , am, b) | (∃I ⊆ {1, . . . ,m})
[
∑

i∈I ai = b
]}

Partition =def

{

(a1, . . . , am) | (∃I ⊆ {1, . . . ,m})
[
∑

i∈I ai =
∑

i/∈I ai
] }

We show Subset Sum ≤log
m Partition. Consider the following function

f : (a1, . . . , am, b) 7→ (a1, . . . , am, b+ 1, N − b+ 1)

where N =def
∑m

i=1 ai. That is, f(a1, . . . , am, b) = (a′1, . . . , a
′
m+2) such that

a′i = ai for i ∈ {1, . . . ,m}, a′m+1 = b, and a′m+2 = N − b.

Claim: (a1, . . . , am, b) ∈ Subset Sum⇐⇒ f(a1, . . . , am, b) ∈ Partition.

For (⇒) let (a1, . . . , am, b) ∈ Subset Sum, i.e., there is an I ⊆ {1, . . . ,m} such
that

∑

i∈I ai = b. Define I ′ =def I ∪ {m+ 2}. Then,
∑

i∈I′

a′i =
∑

i∈I

a′i + a′m+2 =
∑

i∈I

ai +N − b+ 1 = b+N − b+ 1 = N + 1

∑

i/∈I′

a′i =
∑

i/∈I

a′i + a′m+1 =
∑

i/∈I

ai + b+ 1 = N − b+ b+ 1 = N + 1

Hence, f(a1, . . . , am, b) ∈ Partition.

For (⇐) let f(a1, . . . , am, b) ∈ Partition, ie., there is an I ′ ⊆ {1, . . . ,m+ 2}
such that

∑

i∈I′

a′i =
∑

i/∈I′

a′i =
1

2
·
m+2
∑

i=1

a′i = N + 1.

It holds that m+2 ∈ I ′ if and only if m+1 /∈ I ′ (since a′m+1+a′m+2 = N +2).
Without loss of generality, assume that m+2 ∈ I ′. Define I =def I

′ \ {m+2}.
Then,

N + 1 =
∑

i∈I′

a′i =
∑

i∈I

a′i + a′m+2 =
∑

i∈I

ai +N − b+ 1

Thus,
∑

i∈I′ ai = b. Hence, (a1, . . . , am, b) ∈ Subset Sum.

The running space of an appropriate Turing machine summing up all ai’s to
compute N is certainly O(log n). That is, f ∈ FL.

Proposition 4.2 Let A and B be any languages.

1. A ≤log -lin
m B =⇒ A ≤log

m B =⇒ A ≤p
m B.

2. ≤p
m, ≤log

m , and ≤log -lin
m are reflexive and transitive.

3. If A ∈ P and B,B 6= ∅ then A ≤p
m B.

4. If A ∈ L and B,B 6= ∅ then A ≤log -lin
m B.

Complexity Theory – Lecture Notes

4.1. The completeness method 25

The proposition implies that non-trivial problems in P cannot be separated by means of
≤p

m, i.e., ≤p
m is too coarse for P (and NL).

By experience, ≤p
m-reductions between concrete problems can be replaced by ≤log

m . (Note

that this is not a theorem!) That is, in the following we only consider ≤log
m and ≤log -lin

m .

Closure of (complexity) class K under ≤r
m:

• Rr
m(K) =def { A | (∃B ∈ K)[A ≤r

m B] }

• Rr
m(B) =def Rr

m({B}) = { A | A ≤r
m B }

• K is closed under ≤r
m ⇐⇒def Rr

m(K) = K

Proposition 4.3 Let K be any class of languages.

1. Rlog
m and Rlog -lin

m are hull operators (i.e., they are extensional, monotone, and idem-
potent).

2. K ⊆ Rlog -lin
m (K) ⊆ Rlog

m (K).

3. If K is closed under ≤log
m then K is closed under ≤log -lin

m .

Theorem 4.4 Let X ∈ {D,N}, s(n) ≥ log n be space-constructible, and t(n) ≥ n.

1. Rlog
m (XSPACE(s)) = XSPACE(s(Pol n)).

2. Rlog -lin
m (XSPACE(s)) = XSPACE(s(O(n))).

3. Rlog
m (XTIME(Pol t)) = XTIME(Pol t(Pol n)).

4. Rlog -lin
m (XTIME(Pol t)) = XTIME(Pol t(O(n))).

Corollary 4.5 1. L,NL,P,NP,PSPACE,EXP,NEXP are closed under ≤log
m .

2. LIN,NLIN,E,NE are not closed under ≤log
m .

3. L,NL,P,NP,PSPACE,EXP,NEXP,LIN,NLIN,E,NE are closed under ≤log -lin
m .

4.1.2 Complete problems

Definition 4.6 Let K be closed under ≤r
m for r ∈ {log, log -lin}, and let B be any set.

1. B is hard for K with respect to ≤r
m ⇐⇒def K ⊆ Rr

m(B).

2. B is complete for K with respect to ≤r
m ⇐⇒def K = Rr

m(B).

version v2.11 as of February 15, 2017

26 Chapter 4. Lower bounds

We also say that B is ≤r
m-hard (≤r

m-complete) for K.

Suppose a set B is ≤r
m-complete for K. Now let C ∈ K be another set such that B ≤r

m C.
Then, (by transitivity of ≤r

m and closedness of K under ≤r
m) we obtain that C is ≤r

m-
complete for K. This establishes a methodology for proving problems complete for a
complexity class.

Proposition 4.7 Let K1 and K2 be closed under ≤r
m, and let B be ≤r

m-complete for K1.
Then,

K1 ⊆ K2 ⇐⇒ B ∈ K2.

Corollary 4.8 Let B ≤r
m-complete for K.

1. If K = NL then: L = NL ⇐⇒ B ∈ L

2. If K = P then: NL = P ⇐⇒ B ∈ NL

3. If K = NP then: P = NP ⇐⇒ B ∈ P

4. If K = PSPACE then: NP = PSPACE ⇐⇒ B ∈ NP

5. If K = coNP then: NP = coNP ⇐⇒ B ∈ NP

Theorem 4.9 1. There are ≤log
m -complete sets for NL,P,NP,PSPACE,EXP,NEXP.

2. There are ≤log -lin
m -complete sets for LIN,NLIN,E,NE.

3. There are no ≤log -lin
m -complete sets for PSPACE,EXP,NEXP.

Complete problems for the class NL:

Problem: GAP (graph accessibility problem)

Input: directed graph G = (V,E), vertices u, v ∈ V

Question: Is there a (u, v)-path in G?

Theorem 4.10 GAP is ≤log
m -complete for NL.

Corollary 4.11 GAP ∈ L⇐⇒ L = NL.

Remark: UGAP (undirect graph accessbility problem) is in L by a theorem of Reingold
from 2004.

Complexity Theory – Lecture Notes

4.1. The completeness method 27

Complete problems for the class P:

Problem: CVP (circuit value problem)

Input: logical circuit using {∧,∨,¬}-gates (of arbitrary fan-in), assignment z

Question: Does the circuit evaluate to 1?

Theorem 4.12 CVP is ≤log
m -complete for P.

Complete problems for the class NP:

Lemma 4.13 For each language A ⊆ Σ∗, it holds that A ∈ NP if and only if there exist
a set B ∈ P and a polynomial p such that for all x ∈ Σ∗,

x ∈ A ⇐⇒ (∃z)[|z| = p(|x|) ∧ (x, z) ∈ B].

Problem: Circuit Sat (circuit satisfiability)

Input: logical circuit using {∧,∨,¬}-gates (without an assigment to the inputs)

Question: Is there an assignment z to the inputs of C such that C(z) evaluates to
1?

Theorem 4.14 Circuit Sat is ≤log
m -complete for NP.

Problem: SAT (satisfiability)

Input: propositional formula H = H(x1, . . . , xn) over {∧,∨,¬}
Question: Is there a truth assignment to x1, . . . , xn making H true?

Problem: 3SAT

Input: a CNF H = H(x1, . . . , xn) with exactly 3 literals in each clause

Question: Is there a truth assignment to x1, . . . , xn making H true?

Theorem 4.15 SAT and 3SAT are ≤log
m -complete for NP.

Corollary 4.16 P = NP ⇐⇒ Circuit Sat ∈ P ⇐⇒ SAT ∈ P ⇐⇒ 3SAT ∈ P

version v2.11 as of February 15, 2017

28 Chapter 4. Lower bounds

What is the simplest NP-complete SAT version to reduce from?

Problem: (k, ℓ)-SAT

Input: a CNF H = H(x1, . . . , xn) with exactly k literals in each clause such
that each variable xi occurs in exactly ℓ clauses as a literal

Question: Is there a truth assignment to x1, . . . , xn making H true?

Then, if k ≥ 3 and ℓ ≥ 4 then (k, ℓ)-SAT is ≤log
m -complete for NP; otherwise it is P. So,

a complexity jump occurs between (3, 3)-SAT and (3, 4)-SAT.

Corollary 4.17 Subset Sum is ≤log
m -complete for NP.

Problem: TAUT (tautology)

Input: propositional formula H = H(x1, . . . , xn)

Question: Is H a tautology, i.e., is each truth assignment to x1, . . . , xn a satisfying
assignment for H?

Corollary 4.18 TAUT is ≤log
m -complete for coNP.

Complete problems beyond NP

Let Σ be an alphabet, ‖Σ‖ ≥ 2. We define regular expressions over ∪, ·,∗:

• ∅ is an expression.

• If a ∈ Σ then a is an expression.

• If H and H ′ are expressions then H ∪H ′, H ·H ′, and H∗ are expressions.

A regular expression H defines a language L(H) according to the following rules:

• L(∅) =def ∅.

• L(a) =def {a}.

• L(H ∪H ′) =def L(H) ∪ L(H ′).

• L(H ·H ′) =def { xy | x ∈ L(H), y ∈ L(H ′) } = L(H) · L(H ′).

• L(H∗) =def L(H)∗.

Complexity Theory – Lecture Notes

4.2. The counting method 29

We consider the following inequivalence problem for regular expressions:

INEQ(Σ,∪, ·,∗) =def { (H,H ′) | L(H) 6= L(H ′) }

We also discuss INEQ version for regular expressions defined by other operations, e.g.,
INEQ(Σ,∪, ·,2), INEQ(Σ,∪, ·,−).

Theorem 4.19 1. INEQ(Σ,∪, ·,∗) is ≤log -lin
m -complete for NLIN.

2. INEQ(Σ,∪, ·,∗) is ≤log
m -complete for PSPACE.

3. INEQ(Σ,∪, ·,2) is ≤log -lin
m -complete for NE.

4. INEQ(Σ,∪, ·,2) is ≤log
m -complete for NEXP.

5. INEQ(Σ,∪, ·,∗ ,2) is ≤log -lin
m -complete for DSPACE(2O(n)).

6. INEQ(Σ,∪, ·,∗ ,∩) is ≤log -lin
m -complete for DSPACE(2O(n)).

7. INEQ(Σ,∪, ·,−) is ≤log
m -hard for DSPACE(2

2
·

·

·

2

O(logn)

)

4.2 The counting method

Appropriate (but combinatorially hard) for concrete computational models.

As an example, we consider the set S =def { wwR | w ∈ {0, 1}∗ }.

Theorem 4.20 S /∈ 1-T-DSPACE(s) for s = o(n).

Theorem 4.21 S /∈ 2-T-DSPACE(s) for s = o(log n).

version v2.11 as of February 15, 2017

30 Chapter 4. Lower bounds

Complexity Theory – Lecture Notes

P versus NP 5

The possible outcomes of the P
?
= NP challenge are:

• P = NP – find a polynomial algorithm for SAT!

• P 6= NP – prove a superpolynomial lower bound for SAT!

• P
?
= NP is independent of (certain systems of) set theory

Most complexity theorists believe that P 6= NP.

Why is it hard to prove that P 6= NP?

• By counting: it is combinatorially involved, e.g., only 4n lower bound for SAT,
and applicable only to concrete computational models that are typical for small
complexity classes, e.g., circuit complexity.

• By diagonalization: it leads to relativizable results.

5.1 Oracle Turing machines

An oracle Turing machine M is a Turing machine equipped with an additional (one-way)
oracle tape. M has special oracle states:

• s? is the query state, i.e., M asks a question z (the content of the oracle tape) to
the oracle

• s+ is the positive return state, i.e., oracles answer “yes” to the question (and the
oracle tape is cleared)

• s− is the negative return state, i.e., oracles answer “no” to the question (and the
oracle tape is cleared)

The oracle answer appears in a single step!

The work of a deterministic oracle Turing machine on input x and for a general oracle B
can be depicted by a decision tree:

If the oracle B is fixed then one path is realized.

For complexity considerations the work of the oracle is neglected, i.e., the space used on
oracle tape for asking questions does not count for running space and asking an oracle

version v2.11 as of February 15, 2017

32 Chapter 5. P versus NP

question (and getting the answer) is counted as one step. (Note that an oracle is allowed
to be undecidable.)

We define the relativized complexity classes (relative to an oracle B):

1. DSPACEB(s),NSPACEB(s),DTIMEB(Pol t)NTIMEB(Pol t)

2. LB ,NLB ,PB ,NPB ,PSPACEB .

3. Let K be a class of oracle sets. Then,

XSPACEK(s) =def

⋃

B∈K

XSPACEB(s)

XTIMEK(t) =def

⋃

B∈K

XTIMEB(t)

All theorem relating complexity classes are true relative to an arbitrary oracle B:

• DSPACEB(s) ⊆ NSPACEB(s) ⊆ DTIMEB(2O(s))

• DTIMEB(Pol t) ⊆ NTIMEB(Pol t) ⊆ DSPACEB(Pol t)

• NSPACEB(s) ⊆ DSPACEB(s)

• coNSPACEB(s) = NSPACEB(s)

Hierarchy theorems are, as well, true relative to an arbitrary oracle. We say that these
theorems relativize. So, basically, diagonalization is a relativizable proof technique.

However, P
?
= NP cannot be solved using a relativizable proof technique.

5.2 P=NP relative to some oracle

Theorem 5.1 There is an oracle B such that PB = NPB.

5.3 P 6=NP relative to some oracle

Theorem 5.2 There is an oracle B such that PB 6= NPB.

Remark: For the complexity classes IP and PSPACE, it is known that

• IP = PSPACE and

• there is an oracle B such that IPB 6= PSPACEB.

The proof of IP = PSPACE is based on the non-relativizable proof technique called alge-
braization.

Complexity Theory – Lecture Notes

The polynomial hierarchy 6

6.1 Turing reductions

Definition 6.1 Let A ⊆ Σ∗, B ⊆ ∆∗ be sets. Then, A is said to be polynomial-time
Turing-reducible to B (in symbols: A ≤p

T B) if and only if A ∈ PB.

Remark: ≤p
m-reducibility is special case of ≤p

T : one oracle query and no post-computation.

Proposition 6.2 1. A ≤p
m B =⇒ A ≤p

T B.

2. ≤p
T is reflexive and transitive.

3. A ≤p
T A.

6.2 The oracle hierarchy

For r : N→ N define the following classes:

PB [r] =def class of all sets that can be accepted by a POTM asking ≤a.e. r(|x|)
queries to B on input x

PB[Pol r] =def

⋃

k≥1

PB[rk]

PB[O(r)] =def

⋃

k≥1

PB[k · r]

We use obvious extensions to classes K of oracles.

Proposition 6.3 For any r : N→ N and any set B,

P = PB [0] ⊆ PB[r] ⊆ PB [Pol n] = PB.

Definition 6.4 The polynomial hierarchy consists of the following classes:

1. Θp
0 = ∆p

0 = Σp
0 = Πp

0 =def P.

2. Θp
k+1 =def P

Σp

k [O(log n)], ∆p
k+1 =def P

Σp

k , Σp
k+1 =def NP

Σp

k , Πp
k+1 =def coΣ

p
k+1.

3. PH =def
⋃

k≥0

(

Θp
k ∪∆p

k ∪Σp
k ∪Πp

k

)

.

version v2.11 as of February 15, 2017

34 Chapter 6. The polynomial hierarchy

Theorem 6.5 1. Θp
1 = ∆p

1 = P, Σp
1 = NP, Πp

1 = coNP.

2. coΣp
k = Πp

k, co∆
p
k = ∆p

k, coΘ
p
k = Θp

k.

3. Σp
k ∪Πp

k ⊆ Θp
k+1 ⊆ ∆p

k+1 ⊆ Σp
k+1 ∩Πp

k+1.

4. NP ⊆ PH ⊆ PSPACE.

The following inclusion diagram shows the structure of the polynomial hierarchy according
to Theorem 6.5:

Θp
0 = ∆p

0 = Σp
0 = Πp

0 = Θp
1 = ∆p

1 = P

NP ∩ coNP

Σp
1 = NP Πp

1 = coNP

Σp
1 ∪Πp

1 = NP ∪ coNP

Θp
2 = PNP[O(log n)]

∆p
2 = PNP

Σp
2 ∩Πp

2

Σp
2 = NPNP Πp

2 = coNPNP

Σp
2 ∪Πp

2

PH

PSPACE

Complexity Theory – Lecture Notes

6.3. The quantifier hierarchy 35

Proposition 6.6 1. Σp
k is closed under ∩,∪,×,≤p

m.

2. Πp
k is closed under ∩,∪,×,≤p

m.

3. Θp
k and ∆p

k both are closed under ∩,∪,×,≤p
m.

6.3 The quantifier hierarchy

For a set B, define the following sets:

B∧ =def { (x1, . . . , xm) | m ≥ 1, x1 ∈ B ∧ . . . ∧ xm ∈ B }
B∨ =def { (x1, . . . , xm) | m ≥ 1, x1 ∈ B ∨ . . . ∨ xm ∈ B }

Lemma 6.7 For any set B, k ≥ 0, the following holds:

1. B ∈ Σp
k =⇒ B∧, B∨ ∈ Σp

k

2. B ∈ Πp
k =⇒ B∧, B∨ ∈ Πp

k

6.4 Complete problems

In the following, we use ~xi to denote a sequence of propositional variables. We define
quantified versions of the satisfiablity problem for a fixed number k ∈ N+ of alternating
quantifier

SATk =def { H | H = H(~x1, . . . , ~xk) is a propositional formula such that

(∃z1)(∀z2)(∃z3) . . . (Qzk)[H(z1, . . . , zk)] is true }

and the saitsfiability problem for quantified boolean formulas

QBF =def { (H, k) | H ∈ SATk }

Theorem 6.8 1. SATk is ≤log
m -complete for Σp

k for k ∈ N+.

2. SATk is ≤log
m -complete for Πp

k for k ∈ N+.

3. QBF is ≤log
m -complete for PSPACE.

version v2.11 as of February 15, 2017

36 Chapter 6. The polynomial hierarchy

Complexity Theory – Lecture Notes

Alternation 7

Alternation is a further computational mode generalizing nondeterminism.

7.1 Alternating Turing machines

An alternating Turing machine is defined to be an NTM with the following types of states:

• an accepting halting state

• a rejecting halting state

• existential states

• universal states

The states of an ATM decompose into pairwise disjoint, exhausting sets with respect to
the types. Accordingly, configurations consisting of tape inscriptions, head positions, and
states are classified into accepting, rejecting, existential, or universal one’s depending on
the state.

Let βM (x) be the computation tree of an ATM M on input x, i.e., vertices represent
configurations, children are successor configurations. Define an accepting subtree β of
βM (x) to fulfill the following conditions:

• β contains the root of βM (x), i.e., the initial configuration,

• for each existential configuration in β, β contains exactly one child of βM (x),

• for each universal configuration in β, β contains all children of βM (x),

• leaves of β are accepting configurations.

Next we introduce the semantics for an ATM. We say that an ATM M

• accepts x ⇐⇒def there exists an accepting subtree β of βM (x),

• accepts the set L(M) =def { x | M accepts x },

• accepts L(M) in time t : N→ N⇐⇒def for each x ∈ L(M), there exists an accepting
subtree β of βM (x) of height ≤ t(|x|),

• accepts L(M) in space s : N→ N⇐⇒def for each x ∈ L(M), there exists an accepting
subtree β of βM (x) such that all configurations in β are length-bounded by s(|x|).

version v2.11 as of February 15, 2017

38 Chapter 7. Alternation

7.2 Alternating time

7.3 Alternating space

Complexity Theory – Lecture Notes

Probabilisitic complexity 8

8.1 Probabilistic Turing machines

The model of a probabilistic Turing machine is essentially the same like a nondeterministic
Turing machine with the difference that only one computation paths is followed. In order
to decide which path to follow, a fair coin is tossed for each nondeterministic branch.
Thus, for a computation path r we obtain a certain probability

prob(r) =def

(

1

2

)number of branches on r

8.2 The class BPP

8.3 The classes #P and GapP

8.4 The class PP

8.5 The class ⊕P

8.6 PH and PP

version v2.11 as of February 15, 2017

40 Chapter 8. Probabilisitic complexity

Complexity Theory – Lecture Notes

Epilogue: The graph isomorphism

problem 9

version v2.11 as of February 15, 2017

42 Chapter 9. Epilogue: The graph isomorphism problem

Complexity Theory – Lecture Notes

Bibliography

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Read-
ing, MA, 1994.

[BDG95] José L. Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Complexity I.
Texts in Theoretical Computer Science. 2nd edition. Springer-Verlag, Berlin,
1995.

[BDG90] José L. Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Complexity II.
EATCS Monographs in Theoretical Computer Science. Springer-Verlag, Berlin,
1990.

[BC93] Daniel P. Bovet and Pierluigi Crescenzi. Introduction to the Theory of Com-
plexity. Prentice Hall International Series in Computer Science. Prentice-Hall,
Englewood Cliffs, NJ, 1993.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, Cambridge, UK, 2009.

[HO01] Lane A. Hemaspaandra and Mitsunori Ogihara. The Complexity Theory Com-
panion. An EATCS series. Springer-Verlag, Berlin, 2001.

[WW86] Klaus W. Wagner and Gerd Wechsung. Computational Complexity. Reidel,
Dordrecht, 1986.

[Wec00] Gerd Wechsung. Vorlesungen zur Komplexitätstheorie. Teubner-Verlag,
Stuttgart, 2000. In German.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation 2nd edition. Addison Wesley,
Reading, MA, 2001.

version v2.11 as of February 15, 2017

44 Bibliography

Complexity Theory – Lecture Notes

