Assignment 4

Ausgabe: 12 Nov 2014 Abgabe: 19 Nov 2014

Problem 1: Iterated maps

10 Punkte
Find a map $F: D^{n} \rightarrow D^{n}$ for each of the sequences $\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)$ listed below such that the given sequence is the orbit of x_{0} under F, if such an F exists; otherwise prove that no such F exists.
(a) $(0,1, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{n}, \ldots)$ for $D=\mathbb{R}_{\geq 0}, n=1$
(b) $\left(1,1 / 4,1 / 9,1 / 16, \ldots,(n+1)^{-2}, \ldots\right)$ for $D=\mathbb{R}_{\geq 0}, n=1$
(c) $(0,1,1,2,2,2,3,3,3,3, \ldots, \underbrace{n, \ldots, n}_{n+1 \text { times }}, \ldots)$ for $D=\mathbb{R}_{\geq 0}, n=1$
(d) $(0 . a_{1} a_{2} a_{3} \ldots, 0 . a_{1} a_{1} a_{2} a_{3} \ldots, 0 . a_{1} a_{1} a_{1} a_{2} a_{3} \ldots, \ldots, 0 . \underbrace{a_{1} \ldots a_{1}}_{n \text { times }} a_{2} a_{3} \ldots, \ldots)$, where $a_{i} \in$ $\{0,1\}$ for all $i \in \mathbb{N}$, for $D=[0,1), n=1$.
Hint: Consult the example describing the Bernoulli shift in the lecture notes.
(e) $\left((0,1),(1,1),(1,2),(2,3),(3,5),(5,8), \ldots,\left(F_{n}, F_{n+1}\right), \ldots\right)$ for $D=\mathbb{N}, n=2$, where F_{n} is the n-th Fibonacici number, i.e., $F_{0}={ }_{\operatorname{def}} 0$, and $F_{n}={ }_{\operatorname{def}} F_{n-1}+F_{n-2}$ for all $n>0$.

Problem 2: Orbits

10 Punkte
Let $A \in \mathbb{R}^{2 \times 2}$ be a matrix of the following type:

$$
A={ }_{\operatorname{def}}\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right), \quad a, b \in \mathbb{R}
$$

Consider the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}: x \mapsto A \cdot x$ (which depends on concrete choices of a, b).
Find all pairs (a, b) of values $a, b \in \mathbb{R}$ such that the orbits of $(-1,1)$ and $(1,1)$ under F are disjoint.

In a company, n trainee employees can be assigned to n positions in k departments D_{1}, \ldots, D_{k}. It is supposed that department D_{i} has n_{i} positions, so that $n_{1}+\cdots+n_{k}=n$. Assume that positions are enumerated in ascending order of the departments, i.e., $D_{i}={ }_{\operatorname{def}}\left\{n_{i-1}+1, \ldots, n_{i}\right\}$ for all $i \in\{1, \ldots, k\}$, where we set $n_{0}=_{\text {def }} 0$. Also assume that trainee employees are enumerated $1, \ldots, n$.

We consider two different networks: Let the set A of items consist of trainees, i.e., $A=$ $\{1, \ldots, n\}$. An assigment is a bijective mapping $\pi: A \rightarrow\{1, \ldots, n\}$, i.e., trainee i is currently at position $\pi(i)$. Let the set S of affiliations consist of departments, i.e., $S=\left\{D_{1}, \ldots, D_{k}\right\}$.

- A two-mode network $x: A \times S \rightarrow\{0,1\}$ is defined as follows:

$$
x\left(i, D_{j}\right)=1 \Longleftrightarrow{ }_{\text {def }} \pi(i) \in D_{j}
$$

- A one-mode network $y: A \times A \backslash\{(i, i) \mid i \in A\} \rightarrow\{0,1\}$ is defined as follows:

$$
y(i, j)=1 \Longleftrightarrow{ }_{\text {def }} \text { there is an } \ell \in\{1, \ldots, k\} \text { such that }\{\pi(i), \pi(j)\} \subseteq D_{\ell}
$$

We assume that the company rotates trainees cyclically to the next position.
(a) Find a total map F that maps, in the two-mode network x, a given assignment to the next assignment.
(b) Find a total map F that maps, in the one-mode network y, a given collaboration configuration to the next one.

