Network Dynamics Winter 2014/15

Assignment 6

Ausgabe: 26 Nov 2014 Abgabe: 03 Dec 2014

Problem 1: Phase space

Consider the following boolean map

$$F: \{0,1\}^3 \to \{0,1\}^3: (x_1, x_2, x_3) \mapsto (x_1 \oplus (x_2 \lor x_3), 1 \oplus x_1 \oplus x_2, x_2 \oplus x_3),$$

where \oplus denotes the XOR function.

- (a) Find a state with maximum visiting probability.
- (b) Find the probability that a random orbit of F has a fixed point.

Problem 2: Subdynamics

Let $F: D^n \to D^n$ be a map. A subset $L \subseteq \{1, \ldots, n\}$ of size ||L|| = m is called *level of* F if and only if $L = \emptyset$ or there is a map $G: D^m \to D^m$ such that for all $x \in D^n$,

$$\pi(F(x)) = G(\pi(x)),$$

where $\pi: D^n \to D^m$ is the projection that maps (x_1, \ldots, x_n) to those *m* components indexed by the set *L*, i.e., $\pi(x_1, \ldots, x_n) = (x_{i_1}, \ldots, x_{i_m})$ and $L = \{i_1, \ldots, i_m\}$.

Prove or disprove the following statements:

- (a) If L_1 and L_2 are levels of F then $L_1 \cap L_2$ is a level of F.
- (b) If L_1 and L_2 are levels of F then $L_1 \cup L_2$ is a level of F.

Problem 3: Local maps

Draw the directed interdependence graph of the iterated map $F : \{0, 1\}^4 \to \{0, 1\}^4$ given by the following truth table:

10 Points

10 Points

10 Points

(x_1, x_2, x_3, x_4)	$F(x_1, x_2, x_3, x_4)$	
0000	1001	
0001	1001	
0010	1000	
0011	1001	
0100	1001	
0101	1001	
0110	1000	
0111	1001	
1000	1001	
1001	1001	
1010	1000	
1011	1001	
1100	1011	
1101	1011	
1110	1010	
1111	1011	