Network Dynamics Winter 2014/15

Assignment 1

Ausgabe: 22 Oct 2014 Abgabe: 29 Oct 2014

Problem 1: Policy routing

10 Points

Consider the following graph G = (V, E) together with total orderings of all path sets:

One stably confluent configuration $\pi: V \to V: u \mapsto \pi(u)$ is

$$\pi(0) = 0, \quad \pi(1) = 0, \quad \pi(2) = 1, \quad \pi(3) = 1$$

- (a) Find another stably confluent configuration, if there is any.
- (b) How many stably confluent configurations exist in total?

Problem 2: Policy routing

Suppose the graph G = (V, E) your are given is the complete graph K^3 on three vertices, i.e., G consists of vertex set $V = \{0, 1, 2\}$ and edge set $E = \{\{0, 1\}, \{0, 2\}, \{1, 2\}\}$.

- (a) Is there a total ordering of all path sets P^0 , P^1 , and P^2 such that there is no stably confluent configuration?
- (b) How many total orderings of the path sets exist such that there is no stably confluent configuration?

Problem 3: Routing hierarchy

An important aspect of Internet inter-domain routing is the reduction of the number of possible paths that can be selected for routing. For that, we make a distinction between the

10 Points

10 Points

Internet at the *router level* and the Internet at the AS level, where AS is an abbreviation for Autonomous Systems, i.e., subnets within the Internet.

More formally, suppose we are given an undirected graph G = (V, E) (which represents the Internet at the router level). Let $\mathcal{X} = \{X_1, \ldots, X_r\}$ be any partition of the vertex set V. Then, the AS graph $H(G, \mathcal{X})$ is defined to consist of vertex set \mathcal{X} and the edge set

$$\mathcal{A} =_{\text{def}} \{ \{X_i, X_j\} \mid \text{there exist } x \in X_i \text{ and } y \in X_j \text{ such that } \{x, y\} \in E \}.$$

We say that a path $p = (u_0, u_1, \ldots, u_k)$ in G is a valid AS path (with respect to $H(G, \mathcal{X})$) if and only if the sequence (U_0, U_1, \ldots, U_k) of sets $U_i \in \mathcal{X}$ such that $u_i \in U_i$ for all $i \in \{0, 1, \ldots, k\}$ satisfies the following property for all $i < \ell < j$: if $U_i = U_j$ then $U_i = U_\ell$.

Consider the following undirected graph G = (V, E) which represent a possible, small portion of the Internet (at the router level):

Furthermore, the following partition of the vertex set $\{0, 1, \ldots, 7\}$ of the graph G is given:

$$A = \{6,7\}, \quad B = \{2,4\}, \quad C = \{3,5\}, \quad D = \{1,0\}$$

The sets A, B, C, and D are Autonomous Systems.

- (a) Determine the number of (7, 0)-paths in G.
- (b) Determine the AS graph given by the partition of the vertex set of G above.
- (c) Determine the number of valid AS paths between nodes 7 and 0.
- (d) Which partition of the vertex set V gives the maximum number of valid AS paths?
- (e) Which partition of the vertex set V gives the minimum number of valid AS paths?