Assignment 1

Ausgabe: 22 Oct 2014 Abgabe: 29 Oct 2014

Problem 1: Policy routing

Consider the following graph $G=(V, E)$ together with total orderings of all path sets:

$$
\begin{array}{lll}
P^{0} & :(0) \\
P^{1} & :(1,0) \succ_{1}(1,2,0) \succ_{1}(1,3,0) \succ_{1}(1,3,2,0)=_{1}(1,2,3,0) \succ_{1}(1) \\
P^{2} & :(2,3,0) \succ_{2}(2,1,0) \succ_{2}(2,1,3,0) \succ_{2}(2,3,1,0) \succ_{2}(2,0) \succ_{2}(2) \\
P^{3} & :(3,1,0) \succ_{3}(3,1,2,0) \succ_{3}(3,0) \succ_{3}(3,2,0) \succ_{3}(3,2,1,0) \succ_{3}(3)
\end{array}
$$

One stably confluent configuration $\pi: V \rightarrow V: u \mapsto \pi(u)$ is

$$
\pi(0)=0, \quad \pi(1)=0, \quad \pi(2)=1, \quad \pi(3)=1
$$

(a) Find another stably confluent configuration, if there is any.
(b) How many stably confluent configurations exist in total?

Problem 2: Policy routing

Suppose the graph $G=(V, E)$ your are given is the complete graph K^{3} on three vertices, i.e., G consists of vertex set $V=\{0,1,2\}$ and edge set $E=\{\{0,1\},\{0,2\},\{1,2\}\}$.
(a) Is there a total ordering of all path sets P^{0}, P^{1}, and P^{2} such that there is no stably confluent configuration?
(b) How many total orderings of the path sets exist such that there is no stably confluent configuration?

Problem 3: Routing hierarchy

An important aspect of Internet inter-domain routing is the reduction of the number of possible paths that can be selected for routing. For that, we make a distinction between the

Internet at the router level and the Internet at the $A S$ level, where AS is an abbreviation for Autonomous Systems, i.e., subnets within the Internet.

More formally, suppose we are given an undirected graph $G=(V, E)$ (which represents the Internet at the router level). Let $\mathcal{X}=\left\{X_{1}, \ldots, X_{r}\right\}$ be any partition of the vertex set V. Then, the $A S$ graph $H(G, \mathcal{X})$ is defined to consist of vertex set \mathcal{X} and the edge set

$$
\mathcal{A}={ }_{\operatorname{def}}\left\{\left\{X_{i}, X_{j}\right\} \mid \text { there exist } x \in X_{i} \text { and } y \in X_{j} \text { such that }\{x, y\} \in E\right\} .
$$

We say that a path $p=\left(u_{0}, u_{1}, \ldots, u_{k}\right)$ in G is a valid $A S$ path (with respect to $H(G, \mathcal{X})$) if and only if the sequence $\left(U_{0}, U_{1}, \ldots, U_{k}\right)$ of sets $U_{i} \in \mathcal{X}$ such that $u_{i} \in U_{i}$ for all $i \in\{0,1, \ldots, k\}$ satisfies the following property for all $i<\ell<j$: if $U_{i}=U_{j}$ then $U_{i}=U_{\ell}$.

Consider the following undirected graph $G=(V, E)$ which represent a possible, small portion of the Internet (at the router level):

Furthermore, the following partition of the vertex set $\{0,1, \ldots, 7\}$ of the graph G is given:

$$
A=\{6,7\}, \quad B=\{2,4\}, \quad C=\{3,5\}, \quad D=\{1,0\}
$$

The sets A, B, C, and D are Autonomous Systems.
(a) Determine the number of $(7,0)$-paths in G.
(b) Determine the AS graph given by the partition of the vertex set of G above.
(c) Determine the number of valid AS paths between nodes 7 and 0 .
(d) Which partition of the vertex set V gives the maximum number of valid AS paths?
(e) Which partition of the vertex set V gives the minimum number of valid AS paths?

