Network Dynamics Winter 2014/15

Assignment 11

Ausgabe: 21 Jan 2015 Abgabe: 28 Jan 2015

Problem 1: Potential games

In the following, apply the characterization of potential games by closed paths, as given in the lecture.

(a) Prove or disprove that the following bimatrix game

$$\Gamma = \left(\begin{array}{rrrr} (1,3) & (2,3) & (3,3) \\ (2,2) & (3,1) & (1,3) \\ (3,3) & (1,1) & (2,2) \end{array}\right)$$

is a potential game.

(b) Suppose you are given an $n \times k$ -game $\Gamma = (A, S, u)$, i.e., a game with n agents each of which has k strategies at hand. Depending on n and k, how many closed paths do have to check in order to decide whether Γ is a potential game.

Problem 2: Ordinal potential games

Prove or disprove that the following bimatrix game

$$\Gamma = \left(\begin{array}{ccc} (1,2) & (2,3) & (3,1) \\ (2,2) & (3,1) & (1,3) \\ (3,3) & (1,1) & (2,2) \end{array} \right)$$

is an ordinal potential game.

Hint: Check the Finite Improvement Property for Γ .

Problem 3: Improvement paths

A game $\Gamma = (A, S, u)$ is called *degenerate* iff there exist $i \in A$, $s_i, s'_i \in S_i$, $s_i \neq s'_i$, and $s_{-i} \in S_{-i}$ such that $u_i(s_i, s_{-i}) = u_i(s'_i, s_{-i})$; otherwise, Γ is called *nondegenerate*.

Find a nondegenerate 2×3 -game Γ (i.e., a game with 2 players each of which has 3 strategies) such that the length of the longest (finite) improvement path of Γ is minimum among all nondegenerate 2×3 -games.

10 Points

10 Points

10 Points

Hint: Consult the proof of Theorem 6.10 in the lecture notes (v4.7 or higher), and construct an appropriate strict order for Γ .