Assignment 11

Ausgabe: 21 Jan 2015 Abgabe: 28 Jan 2015

Problem 1: Potential games

In the following, apply the characterization of potential games by closed paths, as given in the lecture.
(a) Prove or disprove that the following bimatrix game

$$
\Gamma=\left(\begin{array}{lll}
(1,3) & (2,3) & (3,3) \\
(2,2) & (3,1) & (1,3) \\
(3,3) & (1,1) & (2,2)
\end{array}\right)
$$

is a potential game.
(b) Suppose you are given an $n \times k$-game $\Gamma=(A, S, u)$, i.e., a game with n agents each of which has k strategies at hand. Depending on n and k, how many closed paths do have to check in order to decide whether Γ is a potential game.

Problem 2: Ordinal potential games

10 Points
Prove or disprove that the following bimatrix game

$$
\Gamma=\left(\begin{array}{lll}
(1,2) & (2,3) & (3,1) \\
(2,2) & (3,1) & (1,3) \\
(3,3) & (1,1) & (2,2)
\end{array}\right)
$$

is an ordinal potential game.
Hint: Check the Finite Improvement Property for Γ.

Problem 3: Improvement paths

A game $\Gamma=(A, S, u)$ is called degenerate iff there exist $i \in A, s_{i}, s_{i}^{\prime} \in S_{i}, s_{i} \neq s_{i}^{\prime}$, and $s_{-i} \in S_{-i}$ such that $u_{i}\left(s_{i}, s_{-i}\right)=u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$; otherwise, Γ is called nondegenerate.

Find a nondegenerate 2×3-game Γ (i.e., a game with 2 players each of which has 3 strategies) such that the length of the longest (finite) improvement path of Γ is minimum among all nondegenerate 2×3-games.

Hint: Consult the proof of Theorem 6.10 in the lecture notes (v4.7 or higher), and construct an appropriate strict order for Γ.

