Assignment 3

Ausgabe: 05 Nov 2014 Abgabe: 12 Nov 2014

Problem 1: Whole networks

10 Punkte
(a) Let $A=\{1,2, \ldots, 10\}$ be the set of items and let $\mathcal{I}=A \times A \backslash\{(i, i) \mid i \in A\}$ be the interaction domain on A. Suppose you are given positive real numbers $w_{1}, w_{2}, \ldots, w_{10}$ and θ. Consider the following (single-attribute) network

$$
x: \mathcal{I} \rightarrow \mathbb{R}:(i, j) \mapsto \max \left\{w_{i}+w_{j}-\theta, 0\right\}
$$

Visualize the weighted, undirected graph of the (single-attribute) network x for $w_{i}=1 / i$ and $\theta=3 / 10$.
(b) Consider again the network x as in subproblem (a) for the same values for w_{i}. Visualize the weighted, undirected graph of x for $\theta=1 / 6$.

Problem 2: Two-mode networks

Let $A=\{1, \ldots, n\}$ be a set of (enumerated) politicians and let $S=\{1, \ldots, m\}$ be a set of (enumerated) boards convening at distinct times. Suppose politician i attends a meeting of board k with probability $p_{i k}$. We are interested in the corresponding board communication network. More specifically, we are interested in the following network

$$
x: \mathcal{I} \rightarrow[0,1]:(i, j) \mapsto \text { probability that politicians } i \text { and } j \text { meet in some board meeting }
$$

where $\mathcal{I}=A \times A \backslash\{(i, i) \mid i \in A\}$ is the interaction domain on A.
Find an appropriate representation of the network x for $n=5, m=3$, and the following probability matrix:

$$
\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 3 & 0 & 2 / 3 \\
1 / 4 & 0 & 0 \\
1 / 2 & 1 / 10 & 3 / 10 \\
0 & 1 & 0
\end{array}\right)
$$

Suppose you are given a bipartite graph $G=(V, E)$ such that $V=V_{1} \cup V_{2}$ for two disjoint sets V_{1} and V_{2}. For $i \in\{1,2\}$, let $\Delta_{i}(G)$ denote the maximum degree of a vertex $v \in V_{i}$. Assume that $G=G(x)$ represents a two-mode network x (on an affiliation domain $V_{1} \times V_{2}$). For $i \in\{1,2\}$, let G_{i} be the graph of the one-mode projection of x on V_{i}.
(a) Find a possibly tight upper bound on the value $\max \left\{\Delta\left(G_{1}\right), \Delta\left(G_{2}\right)\right\}$ depending on $\Delta_{1}(G)$ and $\Delta_{2}(G)$.
(b) Find a possibly tight lower bound on the value $\max \left\{\Delta\left(G_{1}\right), \Delta\left(G_{2}\right)\right\}$ depending on $\Delta_{1}(G)$ and $\Delta_{2}(G)$.

