Assignment 3

Ausgabe: 05 Nov 2014 Abgabe: 12 Nov 2014

Problem 1: Whole networks

(a) Let $A = \{1, 2, ..., 10\}$ be the set of items and let $\mathcal{I} = A \times A \setminus \{(i, i) \mid i \in A\}$ be the interaction domain on A. Suppose you are given positive real numbers $w_1, w_2, ..., w_{10}$ and θ . Consider the following (single-attribute) network

$$x : \mathcal{I} \to \mathbb{R} : (i,j) \mapsto \max\{w_i + w_j - \theta, 0\}.$$

Visualize the weighted, undirected graph of the (single-attribute) network x for $w_i = 1/i$ and $\theta = 3/10$.

(b) Consider again the network x as in subproblem (a) for the same values for w_i . Visualize the weighted, undirected graph of x for $\theta = 1/6$.

Problem 2: Two-mode networks

10 Punkte

Let $A = \{1, \ldots, n\}$ be a set of (enumerated) politicians and let $S = \{1, \ldots, m\}$ be a set of (enumerated) boards convening at distinct times. Suppose politician *i* attends a meeting of board *k* with probability p_{ik} . We are interested in the corresponding board communication network. More specifically, we are interested in the following network

 $x \ : \ \mathcal{I} \to [0,1] \ : \ (i,j) \mapsto$ probability that politicians i and j meet in some board meeting

where $\mathcal{I} = A \times A \setminus \{ (i, i) \mid i \in A \}$ is the interaction domain on A.

Find an appropriate representation of the network x for n = 5, m = 3, and the following probability matrix:

$$\begin{pmatrix} 1/2 & 1/2 & 0\\ 1/3 & 0 & 2/3\\ 1/4 & 0 & 0\\ 1/2 & 1/10 & 3/10\\ 0 & 1 & 0 \end{pmatrix}$$

10 Punkte

Problem 3: Two-mode networks

Suppose you are given a bipartite graph G = (V, E) such that $V = V_1 \cup V_2$ for two disjoint sets V_1 and V_2 . For $i \in \{1, 2\}$, let $\Delta_i(G)$ denote the maximum degree of a vertex $v \in V_i$. Assume that G = G(x) represents a two-mode network x (on an affiliation domain $V_1 \times V_2$). For $i \in \{1, 2\}$, let G_i be the graph of the one-mode projection of x on V_i .

- (a) Find a possibly tight upper bound on the value $\max\{\Delta(G_1), \Delta(G_2)\}$ depending on $\Delta_1(G)$ and $\Delta_2(G)$.
- (b) Find a possibly tight lower bound on the value $\max{\{\Delta(G_1), \Delta(G_2)\}}$ depending on $\Delta_1(G)$ and $\Delta_2(G)$.