Assignment 7

Ausgabe: 03 Dec 2014 Abgabe: 10 Dec 2014

Problem 1: Global transition function

10 Points
Consider the following set $L=\left\{f_{1}, f_{2}, f_{3}\right\}$ of boolean local transition functions

$$
\begin{array}{lll}
f_{1}\left(x_{1}, x_{2}, x_{3}\right) & =_{\text {def }} & x_{1} \oplus\left(x_{2} \vee x_{3}\right) \\
f_{2}\left(x_{1}, x_{2}, x_{3}\right) & =_{\text {def }} & 1 \oplus x_{1} \oplus x_{2} \\
f_{3}\left(x_{1}, x_{2}, x_{3}\right) & =_{\text {def }} & x_{2} \oplus x_{3}
\end{array}
$$

where \oplus denotes the XOR function.
Determine the global transition function for L.

Problem 2: Global network maps
10 Points
Suppose $A=\{1, \ldots, n\}$ is a set of n actors. An update schedule $\alpha:\{1, \ldots, T\} \rightarrow \mathcal{P}(A)$ is called sequential if and only if $T=n$ and there is a permutation $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that $\alpha(i)=\{\pi(i)\}$. A sequential update schedule is usually identified with a permutation.

Now consider again the same set L of boolean local transition function as in Problem 1.
How many of the six different permuations π of the set $A=\{1,2,3\}$ induce different global network maps $\mathbf{F}_{(L, \pi)}$?

Problem 3: Fixed points

10 Points
Suppose you are given a propositional formula $H=H\left(x_{1}, \ldots, x_{n}\right)$ in conjunctive normal form, i.e.,

$$
H=\bigwedge_{i=1}^{m}\left(L_{i, 1} \vee L_{i, 2} \vee L_{i, 3}\right),
$$

where $L_{i, j} \in\left\{x_{1}, \ldots, x_{n}, \neg x_{1}, \ldots, \neg x_{n}\right\}$ are literals. You may assume that no variable occurs twice in a clause ($L_{i, 1} \vee L_{i, 2} \vee L_{i, 3}$).

Find a possibly sparse undirected graph $G=(V, E)$ and a set L of boolean local transition functions compatible with G, both depending on H, such that the following is true:
there is a satisfying truth-assigment for $H \Longleftrightarrow \mathbf{F}_{(L, \alpha)}$ has a fixed point where $\alpha: 1 \mapsto V$ is a synchronous update schedule.

