Assignment 8

Ausgabe: 10 Dec 2014 Abgabe: 17 Dec 2014

Problem 1: Functional equivalence

A cycle C_4 of length 4 has 14 different acyclic orientations.

Find a set $L = \{f_1, f_2, f_3, f_4\}$ of local transition functions compatible with C_4 such that there are exactly 14 different global network maps (or state graphs, respectively).

Problem 2: Update graph

A graph G = (V, E) is said to be *sequentially equicausal* if and only if for all permutations $\pi, \pi': V \to V$, it holds that $\|[\pi]_U\| = \|[\pi']_U\|$ with respect to the update graph U = U(V, E).

Find the class of all sequentially equicausal graphs.

Problem 3: Acyclic orientations

For $n, m \in \mathbb{N} \setminus \{0\}$, an (n, m)-mesh $M_{n,m} = (V_{n,m}, E_{n,m})$ is an undirected graph defined as:

$$V_{n,m} =_{def} \{1, \dots, n\} \times \{1, \dots, m\}$$

$$E_{n,m} =_{def} \{ ((x,y), (x',y')) \mid x, x' \in \{1, \dots, n\}, y, y' \in \{1, \dots, m\}, \text{ and } |x - x'| + |y - y'| = 1 \}$$

In other words, $M_{n,m}$ consists of vertices arranged in n rows and m columns, and edges connect consecutive vertices along each row and consecutive vertices along each column. For instance, the cycle C_4 can be identified with a (2, 2)-mesh $M_{2,2}$.

How many acyclic orientations are there for an $M_{2,3}$?

Network Dynamics Winter 2014/15

10 Points

10 Points

10 Points