Assignment 9

Ausgabe: 17 Dec 2014 Abgabe: 14 Jan 2015

Problem 1: Chromatic polynomial

Find the chromatic polynomial P_n for a cycle of length $n \in \mathbb{N} \setminus \{0, 1\}$.

Problem 2: Chromatic polynomial

Prove or disprove all trees on n vertices have the same chromatic polynomial; in case of an affirmative answer try to find the polynomial.

Problem 3: Games with utilities

Consider a group $A = \{1, ..., n\}$ of n persons being pairwise friends. A person $i \in A$ wants to spend time with each friend $j \in A$ solely but has only limited amount t_i of spare time. The problem is how to distribute the time among the friends.

We formulate the problem as the following game $\Gamma = (A, S, u)$ with utilities:

- $A = \{1, ..., n\}$
- $S = S_1 \times \cdots \times S_n$ where

$$S_i = \{ (s_{i1}, \dots, s_{in}) \mid s_{ij} \ge 0 \text{ and } s_{i1} + s_{i2} + \dots + s_{in} = t_i \}$$

for each $i \in A$

•
$$u = (u_1, \dots, u_n)$$
 where $u_i(s_1, \dots, s_n) = \sum_{\substack{j=1\\i \neq j}}^n \min\{s_{ij}, s_{ji}\}$

The interpretation of the utility function is that the mutual time of two persons depends on the time reciprocally made available by both persons and that time spended without a friend is worthless.

Find a Nash equilibrium of the game Γ for arbitrary times $t_1, \ldots, t_n > 0$.

Merry Christmas and a Happy New Year!

Network Dynamics Winter 2014/15

10 Points

10 Points

10 Points