Assignment 9

Ausgabe: 17 Dec 2014 Abgabe: 14 Jan 2015

Problem 1: Chromatic polynomial

10 Points
Find the chromatic polynomial P_{n} for a cycle of length $n \in \mathbb{N} \backslash\{0,1\}$.

Problem 2: Chromatic polynomial

10 Points
Prove or disprove all trees on n vertices have the same chromatic polynomial; in case of an affirmative answer try to find the polynomial.

Problem 3: Games with utilities

10 Points
Consider a group $A=\{1, \ldots, n\}$ of n persons being pairwise friends. A person $i \in A$ wants to spend time with each friend $j \in A$ solely but has only limited amount t_{i} of spare time. The problem is how to distribute the time among the friends.

We formulate the problem as the following game $\Gamma=(A, S, u)$ with utilities:

- $A=\{1, \ldots, n\}$
- $S=S_{1} \times \cdots \times S_{n}$ where

$$
S_{i}=\left\{\left(s_{i 1}, \ldots, s_{i n}\right) \mid s_{i j} \geq 0 \text { and } s_{i 1}+s_{i 2}+\cdots+s_{i n}=t_{i}\right\}
$$

for each $i \in A$

- $u=\left(u_{1}, \ldots, u_{n}\right)$ where $u_{i}\left(s_{1}, \ldots, s_{n}\right)=\sum_{\substack{j=1 \\ i \neq j}}^{n} \min \left\{s_{i j}, s_{j i}\right\}$

The interpretation of the utility function is that the mutual time of two persons depends on the time reciprocally made available by both persons and that time spended without a friend is worthless.

Find a Nash equilibrium of the game Γ for arbitrary times $t_{1}, \ldots, t_{n}>0$.

