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An Internet example 1

Internet routing involves the next-hop principle in the following way:

• A path is a sequence of entities which pairwise share a direct data link.

• Sending data from an entity to an entity (the next hop) over a direct data link is
called forwarding.

• A transmission is the process of successively forwarding data from a source to a
destination over a path with source as its first and the destination as its last element.

• The selection of a path for a transmission is called routing.

1.1 Policy routing

We consider the formal next-hop routing problem for a destination node 0.

Suppose we are given an undirected (or bidirected) graph G = (V,E), i.e., it holds that
(u, v) ∈ E ⇔ (v, u) ∈ E. Each nodes chooses a neighbor in G including itself. A configu-
ration is a mapping π : V → V : u 7→ v ∈ N+(u) ∪ {u}.

Example: Assume that a tiny portion of the Internet is represented by the
following graph G = (V,E) and configurations are represented by red arrows:

0

1 2

3

0

1 2

3

π(1) = 2
π(2) = 0
π(3) = 1

good

0

1 2

3

π(1) = 2
π(2) = 1
π(3) = 3

bad

The mutual goal is to find a directed tree rooted at 0. We say that a configuration π is
confluent if and only if for each u ∈ V , there is a k ∈ N such that πk(u) = 0. Recall that
the function πk : V → V is inductively defined by π0(x) =def x and πk(x) =def π(πk−1(x))
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2 Chapter 1. An Internet example

for all x ∈ V and k ∈ N. It is clear that a configuration π is confluent if and only if the
directed graph (V, {(x, π(x))|x ∈ V \ {0}}) is a tree rooted at 0. Note that a directed
graph G = (V,E) is called tree (rooted at v ∈ V ) iff d+(v) = 0 and there is exactly one
(u, v)-path for all u ∈ V . A good choice of a tree is a shortest-path tree; however, it needs
global coordination.

An approach which avoids global coordination makes use of the following notions:

• P u =def { p | p is a path in G starting at u and ending at 0 }∪{(u)} for each u ∈ V

• (P u,�u) is a total preorder (preference ordering, ranking)

• p �u (u) for all p ∈ P u \ {(u)} (i.e., non-reachability is the last resort or reachability
is always superior to non-reachability)

Example: We extend our example by ranked path sets P u.

0

1 2

3
P 0 : (0)

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 (1)

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 (2)

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 (3)

For instance, node 3 always prefers a route over node 1 over a direct route to
zero or a route over node 2.

Now, suppose a given configuration is

π(0) = 0, π(1) = 2, π(2) = 0, π(3) = 1;

thus the nodes realize the following paths:

0

1 2

3
P 0 : (0)

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 (1)

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 (2)

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 (3)

An easy analysis shows that node 1 can realize path (1, 0) by using its directed
connection to 0, thus a better alternative; node 2 can realize an other option
without destroying confluence; node 3 cannot realize path (3, 1, 0). Therefore,
the configuration is not stable.
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1.2. Best-response dynamics 3

If the given configuration is instead

π(0) = 0, π(1) = 0, π(2) = 1, π(3) = 1,

nodes can realize the following paths to 0:

0

1 2

3
P 0 : (0)

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 (1)

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 (2)

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 (3)

Again, an easy analysis shows that nodes 1 and 3 both realize their best alter-
natives and node 2 cannot realize path (2, 3, 0), so node 2 realizes also its best
path given all other paths. Threfore, the configuration can be viewed as stable.

The example suggests the following definition: A configuration π is said to be stably
confluent iff π is confluent and no node u can realize a better path to 0 without losing
confluence. A stably confluent configuration solves the formal routing problem.

1.2 Best-response dynamics

But how can we find a stably confluent configuration without global coordination? The
mechanism is: always take the best path. We give a formal description of the mechanism,
which represents a very simplified BGP dynamics.

Let π : V → V be any configuration for a graph G = (V,E). For a node u ∈ V , define the
following path set

Ru,0,π =def { p(v) | v ∈ N+(u) and p(v) is a (u, 0)-path with next hop v

in graph (V, {(x, π(x)|x 6= u} ∪ {(u, v)} }

and the following function

βu(π) =def

{
v if p(v) = max�u Ru,0,π
u if Ru,0,π = ∅

Here we assume, for simplicity of description, that (P u,�u) is total order such that
p �u (u). Finally, define β(π) : u 7→ βu(π).

Example (cont’d): Consider the graph and the sets of paths from above.
Suppose all nodes update their paths simultaneously. Then, we could obtain
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4 Chapter 1. An Internet example

the following evolution of the routing network when starting with the inital
configuration in time step t = 0:

0

1 2

3
P 0 : (0)

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 (1)

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 (2)

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 (3)

If we consider node 2 then the path colored red in the path set is best path
(only path) with next hop 0, the path colored green is the best path with next
hop 1, and the path colored blue is the best path with next hop 2. That is,
node 2 choose 2 as the next hop. Similar considerations for the other nodes
lead to the following new configuration

β0(π) = 0, β1(π) = 0, β2(π) = 3, β3(π) = 1.

After one update step of each nodes given the network in t = 0, the resulting
routing network is thus the following (t = 1):

0

1 2

3
P 0 : (0)

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 (1)

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 (2)

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 (3)

Observe that node 2 had chosen path (2, 3, 0) as the new best path. However,
as only the edge (2, 3), i.e., the edge to the next hop of the best path, has been
included in the routing network, and node 3 has chosen (3, 1, 0) as the new
best path, adding the edge (3, 1) to the routing network, the current available
path of node 2 to destination 0 is (2, 3, 1, 0) which is an alternative worse than
the originally chosen one. Colored paths represent again the decision situation
for node 2. The new configuration is

β0(π) = 0, β1(π) = 0, β2(π) = 1, β3(π) = 1.

Given the network for t = 1, another simultaneous update step of all nodes
gives the routing network for time step t = 2.

Network Dynamics – Lecture Notes



1.3. Fixed-point analysis 5

0

1 2

3
P 0 : (0)

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0) �1 (1)

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0) �2 (2)

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0) �3 (3)

For t > 2, the configurations do not change anymore. We have reached an
equilibrium or fixed point.

Proposition 1.1 Let G = (V,E) be any connected graph and let the path sets P u be
totally ordered for all u ∈ V . Let π be any configuration. Then, it holds

π = β(π) ⇐⇒ π is stably confluent

Proof: We prove both directions individually.

(⇐) By definition.

(⇒) Suppose π = β(π). It is enough to show that βu(π) 6= u for all u ∈ V \ {0}, as in
this case each node u ∈ V \ {0} has exactly one path to 0. Assume to the contrary,
βu(π) = u for some u ∈ V \ {0}. Since G is connected, there is such a u so that
N(u) contains a node v possessing a path p to 0. Thus, by prolonging path p with
u as the new first node we obtain (u, p) �u (u). A contradiction.

This completes the proof of the proposition.

1.3 Fixed-point analysis

A fundamental question in Interdomain routing is: When does BGP converge?

If we investigate this question algorithmically then we ask if a given BGP system has a
fixed point or allows for reaching a fixed point. Here, a BGP system is defined to consist
of a graph G = (V,E) and a family of ranked path-set in G to destination 0 ∈ V (in the
above-mentioned sense) where we assume that not all paths to 0 need be included.

Answers to these questions are negative, in general:

• There is no guarantee of convergence (see examples on the Assignments).

• It is NP-complete to decide if a BGP system has a stably confluent configuration
[18].
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6 Chapter 1. An Internet example

• It is PSPACE-complete to decide if a BGP system always converges into some stably
confluent state [8].

Why, then, does BGP appear to be rather stable in everyday experience?

There are rational rules for local policies which ensure convergence, but they are not
part of the protocol specification. These rules are based on contractual business relation-
ships between Autonomous Systems which typically belong to a certain Internet Service
Provider. For simplification, let us assume that there are only two types of Autonomous
Systems: customers and providers. Customers buy routes from providers to get global
connectivity to 0. Accordingly, providers sell routs to customers.

Given a graph G = (V,E) we can decompose the neighborhood of a node v ∈ V :

• Cust(v) is the set of all customers of v (buying routes from v)

• Prov(v) is the set of all providers of v (selling routes to v)

The graph G can be oriented given such a decmposition. Let u, v ∈ V be two nodes such
{u, v} ∈ E. Then,

• an oriented edge u→ v indicates that u ∈ Cust(v) and

• an oriented edge u← v indicates that u ∈ Prov(v).

The orientation can be extended to paths. A path p in G is said to be valley-free if and
only if its orientation pattern belongs to →∗←∗.

Example: We consider a graph with contracts among the nodes:

0

1 2

3

• The path (1, 3, 2, 0) is valley-free: → → →

• The path (3, 1, 2, 0) is not valley-free: ← → →

• The path (1, 3, 0, 2) is valley-free: → → ←

A path p = (u0, u1, . . . , um) (with um = 0) is called a customer route iff u1 ∈ Cust(u0),
and is called a provider route iff u1 ∈ Prov(u0).

Example (cont’d): We classify routes other than ε for the graph above. Red
routes are customer routes, black routes are provider routes.

Network Dynamics – Lecture Notes



1.3. Fixed-point analysis 7

0

1 2

3

P 1 : (1, 0) �1 (1, 2, 0) �1 (1, 3, 0) �1 (1, 3, 2, 0) =1 (1, 2, 3, 0)

P 2 : (2, 3, 0) �2 (2, 1, 0) �2 (2, 1, 3, 0) �2 (2, 3, 1, 0) �2 (2, 0)

P 3 : (3, 1, 0) �3 (3, 1, 2, 0) �3 (3, 0) �3 (3, 2, 0) �3 (3, 2, 1, 0)

Given these notions we can formulate the Gao-Rexford convergence criterion [13]: A BGP
system converges into a stable confluent state if the following three conditions are fulfilled:

1. All paths are valley-free.

2. The oriented graph is acyclic.

3. For all nodes a and all paths p, q beginning with a, if p is a customer route and q is
a provider route then p �a q.

Note that this criterion expresses only sufficient conditions for convergence.

For instance, if we eliminate all routes from the example above that are not valley-free
then the Gao-Rexford criterion applies to the BGP system.
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8 Chapter 1. An Internet example
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Networks 2

We foster a data-driven approach to understanding dynamical network behavior.

2.1 Network exploration and analysis

Sketch of research pipeline in empirical sciences:

1. Theory ← often omitted from the cycle

2. Hypotheses

3. Research design

4. Data collection

5. Exploration and analysis ← often data-driven studies start here

6. Interpretation and presentation

These steps are iterated (when new evidence comes in).

Step 5 will be the focus of this course. We will study

• formal and algorithmic concepts

• simulation and modelling techniques

for evaluting time-dependent network data.

2.2 Network data

2.2.1 Data

Data refers to variables for entites (or units of observation). More specifically,

• A is a set of (atomic) items,

• for i ∈ A, variable xi represents values of a common attribute for all items in A, i.e.,
x is a mapping x : A→ R : i 7→ xi, or x = (xi)i∈A where xi ∈ R,

version v4.12 as of November 11, 2015



10 Chapter 2. Networks

• R is the range of x, A is called the domain of x

Typically in emprical research, multiple attributes are collected in tables where the columns
represent items and the rows represent attributes.

According to the range, attributes can be classified:

• nominal or categorical: there are no relationships among the elements of the range
other than equality or inequality (e.g., names, types, labels)

• ordinal: the range satisfy certain order properties such as required for weak orders,
preference relations, rankings (e.g., paths in policy routing)

• numerical: the range consists of number such as N or R≥0.

We assume that 0 represents a massing or neutral datum.

2.2.2 Dyadic data

Entities need not be atomic; they can be compound objects of more elementary entities.
A dyad is a pair of items.

Example: In a study we could explore relationship among married couples.
The relevant data may include:

• attributes of individuals: gender, income, personality

• attributes of the couple: age difference, duration of marriage, number of
children

The general assumption in (classical) dyadic data analysis is that dyads are independent.

We say that two dyads overlap if and only if they share a member. This gives us the
characteristic of network data:

1. Units of observation are dyads.

2. Dyads are overlapping.

That is, the essential assumption in network analysis is that dyads are dependent. We
even cab define network analysis as the study of effects of overlapping dyads.

Network Dynamics – Lecture Notes



2.3. Network representations 11

2.2.3 Time-dependent data

Attribute values may change over time. And, there are differences in how data can depend
on time. In general, data time-dependent data can be classified as follows:

• panel data (or longitudinal data): we have attributes values of all items for at least
two points in time, i.e., x(1), x(2), . . . , x(k) where x(j) = (xi(j))i∈A.

• time-series data: we have attribute values of a single item over time.

• cross-sectional data: we have attribute values of all items for one specific point in
time.

• event data: we have attribute values for items labelled with a time stamp (e.g., log
files, audit trails, live scores, etc.)

Typically, event data are transformed into panel data.

2.3 Network representations

We adopt a network view where we consider networks to be representations of a specific
format. That is, we are not so much interested in what is represented, but how it is
represented.

2.3.1 Whole networks

As overlapping dyads are the fundamental objects of network analysis, we need a notion
to collect all possible dependencies among dyads. This is done by introducing interaction
domains.

Definition 2.1 Let A be a set of items. An interaction domain I on A is a binary,
symmetric relation I ⊆ A×A.

In many cases, I = A × A or I = (A × A) \ { (i, i) | i ∈ A }. However, when studying
BGP systems, the interaction domain is the AS graph.

Definition 2.2 Let A be a set of items. A (whole) network consists of a set of attributes
on an interaction domain I ⊆ A×A and a (possibly empty) set of attributes on A.
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12 Chapter 2. Networks

For a network, items of A represent actors, and attribute values xi,j 6= 0, where (i, j) ∈ I,
are ties. Notice that xij is a usual abbreviation for x(i,j) for any dyad (i, j) ∈ I.

Definition 2.3 Let x : I → R be an attribute defined on an interaction domain I ⊆ A×A.
The (weighted, directed) graph G(x) = (V,E,w) of network x consists of

• vertex set V =def A,

• edge set E =def { (i, j) ∈ I | xij 6= 0 }, and

• edge weights w : E → R : (i, j) 7→ xij.

If xij = xji for all (i, j) ∈ I, G(x) can be defined correspondingly as an undirected graph.

A completion of an attribute to the full interaction domain A×A by imputing zeroes gives
the adjacency matrix of the associated weighted graph, which is another representation of
a network.

Definition 2.4 Let x : I → R be an attribute defined on an interaction domain I ⊆ A×A.
The (binary) relation →⊆ A×A of network x is defined by

(i, j) ∈→ ⇐⇒def (i, j) ∈ I ∧ xij 6= 0

In infix notation, this is written as i→ j.

2.3.2 Two-mode networks

Assume that the observational units are relations between pairs of items of different types,
e.g., users and fan sites on Facebook, authors and scientific papers, or politicians and
boards.

We generalize interaction domains.

Definition 2.5 An affiliation domain is a relation A ⊆ A× S on disjoint sets A and S.

Definition 2.6 A two-mode network consists of a set of attributes on an affiliation
domain A ⊆ A× S and a (possibly empty) set of attributes on A and S.

All notions for networks translate to two-mode networks. Note that two-mode networks
are bipartite by definition.

Definition 2.7 Let X ∈ Rn×m be the matrix associated with a two-mode network
attribute, ‖A‖ = n and ‖S‖ = m. The networks associated with the matrices X · XT

and XT ·X are called one-mode projections.

Network Dynamics – Lecture Notes



2.3. Network representations 13

Note that the interaction domain of X ·XT is A×A and the interaction domain of XT ·X
is S × S.

Example: Consider sets A = {1, 2, 3} and S = {a, b}. Suppose a two-mode
network attribute is given by the following graph and the associated matrices
X and XT :

a

b

1

2

3

X =

1 0
1 1
0 1

 , XT =

(
1 1 0
0 1 1

)

Then, we calculate

X ·XT =

1 0
1 1
0 1

 · (1 1 0
0 1 1

)
=

1 1 0
1 2 1
0 1 1


The (multi)graph of the network can be drawn as follows:

1 3

2

Analogously, we calculate for the other one-mode projection

X ·XT =

(
1 1 0
0 1 1

)
·

1 0
1 1
0 1

 =

(
2 1
1 2

)

The (multi)graph of the network can be drawn as follows:

a b

Note that each directed edge u→ v respresents one walk from u to v.

2.3.3 Ego and personal networks∗

Definition 2.8 An affiliation domain A ⊆ A × S is said to be egocentric if and only if
‖{ s | (i, s) ∈ A }‖ = 1 for all i ∈ A. In other words, every element of A is affiliated with
exactly one element of S.
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14 Chapter 2. Networks

In an egocentric domain, elements of S are called egos, and elements of A are called alteri.
An egocentric domains is uniquely decomposable into its ego partition (see example below).

Definition 2.9 Given a two-mode network on an egocentric domain, each restriction of
its attributes to an element of the ego partition defines an ego network.

Definition 2.10 Let A and S be disjoint sets, let I ⊆ A × A be an interaction domain,
and let A ⊆ A × S be an egocentric affiliation domain. For a set of attributes defined on
I and A, every restriction induced by an element of the ego partition defines one personal
network.

Example: . . .

2.3.4 Time-dependent networks

We consider attributes on an interaction (or affiliation) domain changing over time. The
focus is on panel network-data.

Definition 2.11 A time-dependent network is a set of attributes on an interaction
domain I ⊆ A × A and a (possibly empty) set of attributes on A, where all atributes
depend on (same) time t ∈ N.

Note that we consider time-discrete networks.
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Iterated network maps 3

3.1 Networks as dynamical systems

In this section, we want to introduce specific formal notions for studying the dynamical
behavior of networks. We restrict ourselves to single-attribute networks (with a fixed
interaction domain).

Let x : I → R be an attribute. For the sake of convenience, we assume that x is a
numerical attribute. Furthermore, we consider an infinite sequence of identical copies of
x, i.e., (x(t))t∈N or x : I × N → R. The attribute values are called states. The set of all
possible sequences is called a process; one specific sequence is called trajectory. A dynamic
F is a mechanism for selecting trajectories of a process. A dynamic makes assumptions
on how the state at time step k will look like; here, depending only on the initial state z0
and time k. We thus can express a dynamic as a sequence (ϕt)t∈N where ϕk : RI → RI .

We adopt notions and notations from dynamical systems. That is, the functions ϕk are
iterated maps. Let F : RI → RI be any function. Then, inductively define

F 0(z) =def z, F k(z) =def F (F k−1(z)) for k > 0.

So, ϕk = F k.

The following summarizes the notions schematically:

x(0) → x(1) → x(2) → . . . → x(k) → . . . process
↓ ↓ ↓ ↓
z0 → z1 → z2 → . . . → zk → . . . trajectory
↓ ↓ ↓ ↓

ϕ0(z0) → ϕ1(z0) → ϕ2(z0) → . . . → ϕk(z0) → . . . dynamic
↓ ↓ ↓ ↓

F 0(z0) → F 1(z0) → F 2(z0) → . . . → F k(z0) → . . . iterated map

Notice that iterated maps describe memory-less dynamics. In this sense, they are deter-
ministic versions of Markov chains.

3.2 The phase space

We investigate dynamics induced by iterating a map F : Dn → Dn where, more commonly,
D denotes the domain of F (i.e., D corresponds to the range of an attribute) and n is the
number of items or dyads.
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16 Chapter 3. Iterated network maps

A fundamental concept in the study of iterated maps is the orbit.

Definition 3.1 Let F : Dn → Dn be a total mapping. Then, the orbit of z0 under F is
defined to be the sequence (z0, z1, z2, . . . , zk, . . . ) such that zk = F k(z0) for all k ∈ N.

An orbit is a specific trajectory.

Example: We discuss some examples of iterated maps and orbits.

• Let D = N, n = 1, and F (x) =def x+ 1. The orbit of 0 is (0, 1, 2, 3, . . . ).

• Let D = R≥0, n = 1, and F (x) =def
x
x+1 . The orbit of 1 is (1, 12 ,

1
3 ,

1
4 , . . . ).

• A prominent iterated map is the Bernoulli shift: Let D = [0, 1), n = 1,
and F : D → D : x 7→ 2xmod 1, i.e.,

F (x) =def

{
2x if 0 ≤ x < 1

2
2x− 1 if 1

2 ≤ x < 1

Suppose x ∈ [0, 1) is given in binary expansion as 0.a1a2a2 . . . , ai ∈ {0, 1},
i.e., it holds that x =

∑∞
i=1 ai2

−i. Without loss of generality, and to avoid
ambuigity, we only consider binary expanions with an infinite number of
zeroes. We have two cases:

– Case a1 = 0: That is, x < 1
2 . Applying F to x gives

F

( ∞∑
i=1

ai2
−i

)
= 2

∞∑
i=1

ai2
−i =

∞∑
i=1

ai2
−(i−1)

=

∞∑
i=2

ai2
−(i−1) =

∞∑
i=1

ai+12
−i

– Case a1 = 1: That is, x ≥ 1
2 . Analogously to the first case, applying

F to x gives

F

( ∞∑
i=1

ai2
−i

)
= 2

∞∑
i=1

ai2
−i − 1 =

∞∑
i=1

ai2
−(i−1) − 1

= 1 +
∞∑
i=2

ai2
−(i−1) − 1

=
∞∑
i=2

ai2
−(i−1) =

∞∑
i=1

ai+12
−i

Hence, F (0.a1a2a3 . . . ) = 0.a2a3a4 . . . . The orbit of x0 = 0.a1a2a3 . . . is
the sequence (xk)k∈N such that xk = 0.ak+1ak+2ak+3 . . . .
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3.2. The phase space 17

• Let D = {0, 1}, n = ‖{ (i, j) ∈ I | i < j }‖, and I = A×A\{ (i, i) | ∈ A }
for some set A be given. That is, we consider an interaction domain
representing a complete undirected graph. So, n is the number of edges,
i.e., n =

(‖A‖
2

)
. Suppose edges are lexicographically enumerated. Then,

x ∈ Dn encodes an undirected graph. For example, the following graph
represents the interaction domain for ‖A‖ = 4 and edges colored red
represent the value xij = 1:

1

23

0

2

45

6

3

1

Define F : Dn → Dn to be the mapping that satisfies

F (x)max{k|xk=1} = 0 if x contains a cycle

F (x)min{k|xk=0} = 1 if x contains no cycle

with all other components of F (x) unchanged compared to x. Then, an
example of an orbit for ‖A‖ = 4 are the following:

−→ −→ −→ −→ −→ −→ · · ·

Proposition 3.2 Let F : Dn → Dn be a total mapping, and let x, y ∈ Dn. Then, the
orbits of x and y under F are either disjoint or there exist k ∈ N and r ∈ Z such that
F k
′
(x) = F k

′+r(y) for all k′ ≥ k.

Proof: Suppose the orbits of x and y are not disjoint, i.e., there are t, t′ ∈ N such that
F t(x) = F t

′
(y). Define r =def t

′ − t. So, t′ = t + r. Then, by induction on ` ∈ N, we
obtain that F t+`(x) = F t+r+`(y) for all ` ∈ N:

• Base of induction ` = 0: Then, F t+0(x) = F t(x) = F t
′
(y) = F t+r+0(y).

• Inductive step ` > 0: By the induction assumption we conclude that

F t+`(x) = F (F t+`−1(x)) = F (F t+r+`−1(y)) = F t+r+`(y).

Hence, setting k =def t and k′ =def t+ ` proves the proposition.

Given a map F : Dn → Dn, all orbits under F are collected in the phase space. The
fundamental problem (in statistical mechanics) is getting knowledge on the probability
distribution over the phase space, i.e., to determine the visiting probablity of a certain
state in an orbit.
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18 Chapter 3. Iterated network maps

The following concepts are essential for addressing this question.

Definition 3.3 Let F : Dn → Dn be a total mapping.

1. A state x ∈ Dn is called fixed point of F if and only if F (x) = x.

2. A state x ∈ Dn is called periodic under F if and only if there exists a k ∈ N+ such
that F k(x) = x. The number k0 ∈ N+ minimal subject to F k0(x) = x is called the
periodic order of x, and x is then called periodic of order k0.

3. A state x ∈ Dn is called transient under F if and only if F k(x) 6= x or all k ∈ N+,
i.e., x is not periodic.

Obviously, a fixed point is a periodic state of order 1.

Example: We give examples for each part of the definition.

• For the Bernoulli shift, 0 is the only fixed point, 2
3 is an example of a

periodic state of order 2, and 1√
2

is an example of a transient state.

• Consider again the map F : {0, 1}n → {0, 1}n from above for n = 4.
Then, there is no fixed point of F , . . . are periodic of order 2, and . . . is
transient.

The following proposition explains why recurring states are referred to as “periodic.”

Proposition 3.4 Let F : Dn → Dn be a total function. Let x ∈ Dn be a periodic state of
order k0, and let k ∈ N. Then, the following holds:

F k(x) = x ⇐⇒ k0 divides k

Proof: We prove both directions individually.

(⇐) Observe that x = F k0(x) = F k0(F k0(x)). An easy inductive argument shows that
x = F c·k0(x) for all c ∈ N. Hence, if k0 divides k, i.e., k = c · k0 for some c ∈ N, then
F k(x) = x.

(⇒) Case k = 0 is trivial. Now, suppose k ≥ k0 > 0. Then, k = c · k0 + r for uniquely
determined c ∈ N+ and r ∈ {0, 1, . . . , k0 − 1}. Thus,

x = F k(x) = F c·k0+r(x) = F r(F c·k0(x)) = F r(x)

Since k0 is the smallest positive number with this property, it follows that r = 0.
Hence, k = c · k0. So, k0 divides k.

Network Dynamics – Lecture Notes
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This proves the proposition.

Definition 3.5 Let F : Dn → Dn be a total mapping. Let x be a periodic state of order
k. Then, the set {x, F (x), F 2(x), . . . , F k−1(x)} is called a limit cycle (of length k) of F .

Limit cycles (of length k) are also called attractors (of length k). The limit cycle corre-
sponding to a fixed point is also called singleton attractor.

Any easy consequence of Proposition 3.2 is that limit cycles are either disjoint or identical.

Corollary 3.6 Let F : Dn → Dn be a map. If {x1, . . . , x`} and {y1, . . . , yr} are two limit
cycles of F such that {x1, . . . , x`} ∩ {y1, . . . , yr} 6= ∅ then {x1, . . . , x`} = {y1, . . . , yr}.

For finite domains, orbits have a simple structure.

Proposition 3.7 Let F : Dn → Dn be a map over a finite domain D. Let (xi)i∈N be the
orbit of x0 ∈ Dn under F . Then, there are k0 ∈ N and `0 ∈ N+ such that

(a) {x0, . . . , xk0−1} is the set of k0 transient states of the orbit of x0 under F and

(b) {xk0 , . . . , xk0+`0−1} is a limit cycle of length `0 of F .

Proof: Let (xi)i∈N be the orbit of x0 ∈ Dn under F , i.e., xi = F i(x0). D is finite, so
is Dn. Thus, there are k ≥ 0 and ` > 0 such that F k(x0) = xk = xk+`)F

k+`(x0). Define
parameters k0 and `0 as follows (in this order):

k0 =def min { k | F k(x0) = F k+r(x0) for some r > 0 }
`0 =def min { r | F k(x0) = F k0+r(x0) }

Then, for all r > 0, it holds that

F k0+r(x0) = F r
(
F k0(x0)

)
= F r

(
F k0+`0(x0)

)
= F k0+`0+r(x0).

Hence, xi is periodic of order `0 if i ≥ k0, which is tatement (b), and xi is transient if
i < k0, which is statement (a). This proves the Proposition.

The orbit under a iterated, finite-domain map can be visualized by the following transition
diagramm:

. . .
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20 Chapter 3. Iterated network maps

In principle, iterated maps can be studied graph-theoretically. A map F : Dn → Dn over
a finite domain D can be associated with the directed graph Γ(F ) = (V,E), called state
graph of F , where

V =def D
n, E =def { (x, F (x)) | x ∈ Dn }.

Note that Γ(F ) might have loops.

According to Proposition 3.2, Corollary ??, and Proposition ??, the state graph of F can
be uniquely decomposed into

• disjoint cycles C1, . . . , Ck (representing limit cycles) and

• disjoint (directed) trees T1, . . . , Tr (representing transient states) each of which is
incident with exactly one cycle C1, . . . Ck

Example: We consider the map

F : {0, 1}3 → {0, 1}3 : (x1, x2, x3) 7→ (x2 ⊕ x3, 1⊕ x1 ⊕ x3, x! ⊕ x2)

where ⊕ denotes XOR or, equivalently, addition modulo 2. In order to deter-
mine the state graph of F , we first represent F as a truth table:

(x1, x2, x3) F (x1, x2, x3)

000 010
001 100
010 111
011 001
100 001
101 111
110 100
111 010

From this, we easily obtain the state graph of F :

. . .

A cycle together with all its incident trees is called basin of attraction.

It is clear that transient states have visiting probability zero. The following proposition
gives the precise visiting probability of a periodic state in terms of the structure of its
corresponding basin of attraction.

Proposition 3.8 Let F : Dn → Dn be a map over a finite domain D, ‖D‖ = m. Let
z ∈ Dn be periodic, and let E ⊆ Dn be the basin of attraction of (the limit cycle of) z.
Suppose E consists of s transient and r periodic states. Then, the visiting probability of z
in a random orbit is (

1 +
s

r

)
·m−n.
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Proof: Let x ∈ Dn be an arbitrary state. Consider the orbit (xi)i∈N such that x = x0
and F k(x0) = xk for all k > 0. Suppose x0, . . . , xk0−1 are all transient states and
xk0 , . . . , xk0+r−1 are all periodic states (of order r). Let z ∈ Dn be a state in the orbit
(xi)i∈N. Define

Pz =def P [z is visited in (xi)i∈N] .

Then, Pz is given by a frequency sequence of the initial segments of the orbit:

Pz = lim
N→∞

‖{ i | i ∈ {0, 1, . . . , N − 1} and xi = z }‖
N

To calculate Pz, we have two cases.

• Suppose z is transient. Thus, ‖{ i | i ∈ {0, 1, . . . , N − 1} and xi = t }‖ = 1 for
N ≥ k0. Hence,

Pz = lim
N→∞

1

N
= 0.

• Suppose z is perdiodic. Thus, for N ≥ k0 + 1,⌊
N − k0 − 1

r

⌋
≤ ‖{ i | i ∈ {0, 1, . . . , N − 1} and xi = t }‖ ≤

⌊
N − k0 − 1

r

⌋
+ 1.

Hence, we obtain

Pz ≤ lim
N→∞

N−k0−1
r + 1

N
= lim

N→∞

N − k0 − 1 + r − 1

rN
=

1

r

Pz ≥ lim
N→∞

1 + N−k0−1
r − 1

N
= lim

N→∞

N − k0 − 1− r
rN

=
1

r

Consequently, Pz = 1
r .

Now, consider any periodic z ∈ Dn following the specification given in the proposition.
Then, z lies on s+ r orbits. So, the visiting probability of z is

P[z is visited in some orbit] =
s+ r

mn
· 1

r
=
(

1 +
s

r

)
·m−n.

This proves the proposition.

Example (cont’d): Consider the map F : {0, 1}3 → {0, 1}3 from above. The
visiting probabilities for the periodic states 010, 111, 001, 100 are all 1

4 .
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22 Chapter 3. Iterated network maps

3.3 Series, levels, and plots∗

Even for finite domains D, the state graph Γ(F ) for an iterated map F : Dn → Dn can
be too large to construct explicitly. Since ‖V ‖ = ‖E‖ = ‖D‖n, it has size exponential in
the number n. If we consider boolean network attributes then the size 2O(n2). This forces
us to reduce the dimensionality of the phase space. In this subsection, we look at three
methods to achieve this reduction.

(Multivariate) Time series

Let F : Dn → Dn be a map. Let τ : Dn → R be any function. Then, the time series
(τi)i∈N associated with an orbit (xi)i∈N is given by

τi = τ(xi) = τ(F i(x0)).

The following summarizes the construction of a time series schematically:

x0
F→ x1

F→ x2
F→ . . .

F→ xk
F→ . . . orbit

τ ↓ τ ↓ τ ↓ τ ↓
τ0 → τ1 → τ2 → . . . → τk → . . . time series

If τ : Dn → Rm has m-dimensional function values then the sequence (τi)i∈N is called
multivariate (or multidimensional) time series.

Example: A typical example of derived time series from an underlying dynam-
ics is the evolution of the voting distribution among voters over some time
period. (We will study this in the opinion dyamics section.)

For a more technical example, consider the following state graph:

. . .

Several time series can be derived from the orbit of this state graph.

• Define τ1 : {0, 1}4 → R : (x1, x2, x3, x4) 7→ |(x1, x2, x3, x4)|1 (where |x|a
denotes the number of a’s in a tuple x ∈ {0, 1}n)

• For a bivariate times series, define

τ2 : {0, 1}4 → R2 : (x1, x2, x3, x4) 7→ (|(x1, x2, x3, x4)|0, |(x1, x2, x3, x4)|1)

• Define τ3 : {0, 1}4 → R : (x1, x2, x3, x4) 7→ x1 ⊕ x2 ⊕ x3 ⊕ x4 (i.e., τ3 is a
parity function)

• Define τ3 : {0, 1}4 → R : (x1, x2, x3, x4) 7→ x2 (i.e., τ4 is a projection
function)
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Levels

Let F : Dn → Dn be a map. A subset L ⊆ {1, . . . , n} of size ‖L‖ = m is called level of F
if and only if L = ∅ or there is a map G : Dm → Dm such that for all x ∈ Dn,

π(F (x)) = G(π(x)),

where π : Dn → Dm is the projection that maps (x1, . . . , xn) to those m components
indexed by the set L, i.e., π(x1, . . . , xn) = (xi1 , . . . , xim) and L = {i1, . . . , im}.

Note that by an inductive argument, it follows that:

π(F k(x)) = Gk(π(x)) for all k ∈ N

Indeed, case k = 0 is trivial, and for the case k > 0, we obtain by using the inductive
assumption

π(F k(x)) = π(F (F k−1(x)) = G(π(F k−1(x))) = G(Gk−1(π(x))) = Gk(π(x)).

So, the iterated map G induces a subdynamic on the elements of the level L.

This can be summarized schematically as follows:

x0
F→ x1

F→ x2
F→ . . .

F→ xk
F→ . . . orbit

π ↓ π ↓ π ↓ π ↓
y0

G→ y1
G→ y2

G→ . . .
G→ yk

G→ . . . orbit

Example: We determine all levels for the state graph Γ(F ) above:

• {2, 3, 4} is a level of F with the map G : {0, 1}3 → {0, 1}3

. . .

• {3, 4} is a level of F (and of G) with the map G′ : {0, 1}2 → {0, 1}2

. . .

There are no other levels of F . As an example, consider the set {1, 3, 4}. The
sequence (π(F i(.., .., ..)))i∈N

The Derrida plot

This is a method for identifying turbulent behavior in the phase space.

Consider a map F : {0, 1}n → {0, 1}n. Let dH(x, y) denote the Hamming distance between
x = (x1, . . . , xn) and y = (y1, . . . , yn), i.e.,

dH(x, y) =def ‖{ i | xi 6= yi }‖.
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The Derrida relation D(F ) consists of the following multiset

D(F ) =def { (h1, h2) | there are states x, y such that dH(x, y) = h1
and dH(F (x), F (y)) = h2 }

The multiplicity of the pairs (h1, h2) is given by the number of pairs (x, y) that realize the
values specified by h1 and h2.

Now, we can plot the relation D(F ) as a diagram (with an appropriate representation of
multiplicities).

Example: We consider the following three maps for n = 4: Then, plot might
look like as follows

The curves are interpolations of resulting distances.

The intuition behind the Derrida plot is the following: The more pairs above the diagonal,
the more chaos.

Using this intuition we can introduce a numerical measure for chaos. The measure is
based on linear regression. Suppose (x1, y1), . . . , (xN , yN ) are pairs in D(F ) with multiple
occurrences corresponding up to their multiplicities. We try to find a linear function βx
which minimizes the distances to all pairs in the list, i.e., we want to find the right slope
β. According to the methode of least squares we define

L(β) =def

N∑
i=1

(yi − βxi)2.

By taking derivatives, we obtain

L′(β) =
N∑
i=1

2(yi − βxi)(−xi), L′′(β) =
N∑
i=1

2x2i > 0

Therefore, any zero of L′ minimizes L. Hence, the optimale slope is

β =

∑N
i=1 yixi∑N
i=1 x

2
i

The Derrida coefficient Dc(F ) of a map is a scaled version of β:

Dc(F ) =def log2 β

It is obvious that the Derrida coefficient ranges between −∞ and∞. The coefficient can
be used to make distinction between different behaviors of iterated maps. The interpreta-
tions for F are as follows:

Dc(F )� 0 : F shows chaotic behavior

Dc(F ) ≈ 0 : F shows critical behavior

Dc(F )� 0 : F shows frozen behavior

The classification into these three types of behaviors becomes clear by looking at the
following diagrams:
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3.4 Local maps

An iterated map F : Dn → Dn describes a global behavior:

x1 ← F (x1, x2, . . . , xn)1 = f1(x1, x2, . . . , xn)

x2 ← F (x1, x2, . . . , xn)2 = f2(x1, x2, . . . , xn)
...

xn ← F (x1, x2, . . . , xn)n = fn(x1, x2, . . . , xn)

global map local maps

In many cases, only local descriptions are available or even observable.

Let f : Dn → D be any function. A variable xj (or an index j) is fictive in f if and only if

f(z1, . . . , zj−1, zj , zj+1, . . . zn) = f(z1, . . . , zj−1, z
′
j , zj+1, . . . zn)

for all z1, . . . , zj−1, zj+1, . . . zn ∈ D, zj , z
′
j ∈ D. Given a collection of functions (local maps)

f1, . . . , fn : Dn → D, we say that xi depends on xj in fi iff xj is not fictive in fi.

The interdependence graph of an iterated maps F : {0, 1}n → {0, 1}n (considered as the
collection of its n local maps) is defined to consist of

• vertex set V =def {1, . . . , n} and

• edge set E = { (i, j) | xi depends on xj in F }

We also uses undirected versions without loops.

Example: Let F : {0, 1}3 → {0, 1}3 be given by the following truth table.

(x1, x2, x3) F (x1, x2, x3)

000 100
001 101
010 011
011 011
100 100
101 101
110 101
111 101

Then, x1 depends on x1, x2, x2 depends on x1, x2, and x3 depends on x2, x3.
So, the interpendence graph of F is as follows:
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We briefly discuss the connection between the interdependence graph of an iterated net-
work map and its underlying interaction domain. Suppose F is a map on an attribute x
on a symmetrical interaction domain I ⊆ A×A.

1. Suppose x is an attribute on items, i.e., x : A→ R. Then, xi depends on all xj such
that {i, j} ∈ I. So, the (undirected) interdependence graph of F is a subgraph of I.

2. Suppose x is an attribute on dyads, i.e., x : I → R. Then, xij depends on all
xe such that e ∈ I and e ∩ {i, j} 6= ∅. So, the interdependence graph of F is a
subgraph of L(I), where L(G) is the line graph of an undirected graph G = (V,E),
i.e., L(G) = (V ′, E′) such that

V ′ =def E, E′ =def { (e, f) | e, f ∈ E and e ∩ f = ∅ }

So far, we have considered a given iterated network map F decomposed into a collection
of local network maps. We now turn our point of view and consider iterated network maps
composed by a given collection of local network maps f1, . . . , fn.

Suppose x : I → R is a network attribute. Assume that I is enumerated 1, . . . , n. Let
M = { fi | i ∈ I } be a set of local transitions fi : Ddegi +1 → D where degi denotes
the in-degree of i in the interdependence graph. Additionally, suppose that we are given
a mapping α : {1, . . . T} → P(I) which is called schedule; the parameter T > 0 is any
natural number.

For each i ∈ I and for each subset U ⊆ I, activity function ϕi[U ] is defined for configuration
~z = (z1, . . . , zn) ∈ Dn by

ϕi[U ](~z) =def

{
fi(zi1 , . . . , zidegi +1

) if i ∈ U
zi if i 6∈ U

where {i1, i2, . . . , idegi +1} is the set of neighbors in the interdependence graph.

For each set U ⊆ I, the global transition (function) FM [U ] : Dn → Dn is defined for
configuration ~z = (z1, . . . , zn) by

FF [U ](~z) =def

(
ϕ1[U ](~z), . . . , ϕn[U ](~z)

)
Finally, the global network map F(M,α) : Dn → Dn induced by (M,α) is defined by

F(M,α) =def

T∏
k=1

FM [α(k)],

i.e., F(M,α) is defined by the composition of global transition functions specified by the
update schedule. Note that f · g is the function defined by (f · g)(x) = g(f(x)). The
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following shall elucidate the above definition in detail. For T = 3 and ~z ∈ Dn, we have

F(M,α)(~z, 3) =

(
3∏

k=1

FM [α(k)]

)
(~z) =

(
FM [α(1)] ·

3∏
k=2

FM [α(k)]

)
(~z)

=

(
3∏

k=2

FM [α(k)]

)(
FM [α(1)](~z)

)
=
(
FM [α(2)] · FM [α(3)]

)(
FM [α(1)](~z)

)
= FM [α(3)]

(
FM [α(2)]

(
FS [α(1)](~z)

))

Also notice that activity functions and global transitions do not depend on schedules.

Example: Suppose I = L(I) = K3. Let M = {f1, f2, f3} consist of local
transitions fi{0, 1}3 → {0, 1} such that for each i ∈ {1, 2, 3}, z1, z2, z3 ∈ {0, 1}

fi : {z1, z2, z3} 7→
{
zi if z1 + z2 + z3 = 1
1− zi otherwise

Let U1 = {1, 2} and U2 = {1, 2, 3} be subsets of I. Then we obtain the
following activity functions:

• ϕ1[U1] = f1, ϕ2[U1] = f2, and ϕ3[U1] = id;

• ϕ1[U2] = f1, ϕ2[U2] = f2, and ϕ3[U2] = f3.

The global transition function looks as follows:

• FM [U1](z1, z2, z3) = (f1(z1, z2, z3), f2(z1, z2, z3), z3); concrete function val-
ues are, e.g.,

FM [U1](1, 1, 1) = (0, 0, 1)

FM [U1](1, 0, 1) = (0, 1, 1)

FM [U1](0, 0, 1) = (0, 0, 1)

• FM [U2](z1, z2, z3) = (f1(z1, z2, z3), f2(z1, z2, z3), f3(z1, z2, z3); concrete
values are, e.g.,

FM [U2](1, 1, 1) = (0, 0, 0)

FM [U2](0, 0, 0) = (1, 1, 1)
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The following figure visualizes the global transition functions completely:
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For the update schedules α1 : {1} → P({1, 2, 3}) and α2 : {1, 2, 3} → P({1, 2, 3})
given by

α1 : {1} 7→ {1, 2, 3}, α2 :
{1} 7→ {2}
{2} 7→ {1}
{3} 7→ {3}

the induced network maps are as follows:

(x1, x2, x3) F (x1, x2, x3)

000 111
001 001
010 010
011 100
100 100
101 010
110 001
111 000

(x1, x2, x3) F (x1, x2, x3)

000 010
001 001
010 010
011 001
100 100
101 010
110 100
111 001
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Chapter to be worked out.

Agent-based modelling (ABM) is a (physics-oriented) methodology for studying complex
networks. It uses simplified interaction models and simulations to explore a nonlinear
dynamical behavior. ABM is typically applied when kinetic models involving differen-
tial/difference equation systems are inappropriate, e.g., due to the number and hetero-
geneity of variables.

The following fundamental design questions need to be answered when applying agent-
based modelling:

• Who has the agency? – possible alternatives are actors or dyads.

• What type of agency? – possible alternatives are push or pull.

• Which update orders? – possible selection modes are deterministic or stochastic.

ABM is useful to gather information on the visiting probability distribution in the phase
space; ideally, ABM runs converge to that distribution.

ABM replaces one application of an iterated map by a sequence of ministeps, chosen deter-
ministically or randomly. This causes some problems, as ministeps introduce additional
causality—causality understood as order of events. The effects of this additional causality
are still unclear.
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We focus on, so called, sequential dynamical systems (SDS): A sequential dynamical system
results from a dynamical system on n items or dyads by replacing each update step with a
sequence of n update steps in which only one item or dyad is allowed to update its state.
In this sense, the ministeps consist of permutations.

More formally, an update schedule α : {1, . . . , T} → P(A) is called sequential if and only if
T = n and there is a permutation π : {1, . . . , n} → {1, . . . , n} such that α(i) = {π(i)}. A
sequential update schedule is usually identified with a permutation. An SDS S = (G,L, π)
consists of an interdependence graph G = (V,E), without loss of generality V = {1, . . . , n},
a set L = {f1, . . . , fn} of local transitions (compatible with G), and a permutation
π : V → V .

We study the effect of the choice of π on the phase space (state graph) of the induced
global network map.

5.1 Functional equivalence

Definition 5.1 Let L be a set of local transitions on V , ‖V ‖ = n. Let π, π′ : X → X
be permutations on V . Then, π and π′ are said to be functionally equivalent, π ≡f π

′ in
symbols, if and only if F(L,π) = F(L,π′) for all k ∈ N+.

A deeper analysis of the notion of functional equivalence is based on update orders given
by permutations. Let SV denote the symmetric group of V , i.e., the set all permutations
π : V → V . For distinct π, π′ ∈ SV , we say that π and π′ are adjacent (with respect
to a graph G = (V,E)) if and only if there is a k such that {π(k), π(k + 1)} /∈ E and
π(i) = π′(i) for i /∈ {k, k + 1}. In other words, π and π′ are adjacent with respect to G iff
π′ is obtained by swapping consecutive elements, not neighbored in G, in the permutation
order of π.

Proposition 5.2 Let π, π′ ∈ SV be adjacent with respect to some G = (V,E). Let k ∈ V
be such that {π(k), π(k + 1)} /∈ E and π(i) = π′(i) for all i /∈ {k, k + 1}. Then,

FL[π(k)] · FL[π(k + 1)] = FL[π(k + 1)] · FL[π(k)]

for all sets L of local transition functions compatible with G.

Proof: Since {π(k), π(k + 1)} /∈ E, π(k) is fictive in fπ(k+1) and π(k + 1) is fictive in
fπ(k). That is, we can replace the π(k)-th argument in fπ(k+1) as well as the π(k + 1)-st
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argument in fπ(k) arbitrarily. Suppose L is a set of local transitions. Let ~z = (z1, . . . , zn)
be any configuration. Assume that, without loss of generality, π(k) < π(k + 1). Then,(

FL[π(k)] · FL[π(k + 1)]
)
(~z)

= FL[π(k + 1)]
(
FL[π(k)](~z)

)
= FL[π(k + 1)](z1, . . . , fπ(k)(z1, . . . , zn), . . . , zn)

= (z1, . . . , fπ(k)(z1, . . . , zn), . . . , fπ(k+1)(z1, . . . , fπ(k)(z1, . . . , zn), . . . , zn), . . . , zn)

= FL[π(k)](z1, . . . , fπ(k+1)(z1, . . . , zn), . . . , zn)

= FL[π(k)]
(
F[π(k + 1)](~z)

)
=

(
FL[π(k + 1)] · FL[π(k)]

)
(~z)

This proves the proposition.

5.2 The update graph

Given an undirected graph G = (V,E), the update graph U = U(G) = U(V,E) consists of
vertex set SV and edge set {(π, π′) | π and π′ are adjacent}.

Example: We determine the update graph for Circ4 with V = {0, 1, 2, 3}.

(0,1,2,3) (1,2,3,0)

(2,3,0,1) (3,0,1,2)

(2,1,3,0) (2,3,1,0)

(0,1,3,2) (0,3,1,2)

(0,2,1,3) (0,2,3,1)

(2,0,1,3) (2,0,3,1)

(3,2,1,0) (2,1,0,3)

(1,0,3,2) (0,3,2,1)

(1,2,0,3) (1,0,2,3)

(1,0,2,3) (1,2,0,3)

(1,3,2,0) (3,1,2,0)

(1,3,0,2) (3,1,0,2)

Based on the update graph, we can define an equivalence relation on SV with respect to
U = U(V,E):

π ∼U π′ ⇐⇒def π and π′ are connected by a path in U

Proposition 5.3 Let G = (V,E) be an undirected graph, ‖V ‖ = n. Let π, π′ ∈ SV and
let U = U(V,E) be the update graph. If π ∼U π′ then F(L,π) = F(L,π′) for all sets L of
local transition functions compatible with G.

Network Dynamics – Lecture Notes



5.2. The update graph 33

Proof: The proof is by induction on the distance d between permutations in the update
graph U . The distance dU (π, π′) is defined to be the length of a shortest path from π to
π′ in U .

• Base of induction: Let d = 0. So, dU (π, π′) = 0, i.e., π = π′.

• Induction step: Let dU (π, π′) = dU (π′, π) = d > 0. Let (π0, . . . , πd−1, πd) be a
shortest path in U such that π0 = π′ and πd = π. It follows that πd−1 and πd are
adjacent with respect to U . Thus, there is a k such that {π(k), π(k + 1)} /∈ E and
π(i) = πd−1(i) for all i /∈ {k, k + 1}. We obtain for any set L of local transition
functions and ~z ∈ Dn

F(L,π)(~z, n)

=

 n∏
j=1

FL[π(j)]

 (~z)

=

k−1∏
j=1

FL[π(j)] · FL[π(k)] · FL[π(k + 1)] ·
n∏

j=k+2

FL[π(j)]

 (~z)

=

k−1∏
j=1

FL[π(j)] · FL[π(k + 1)] · FL[π(k)] ·
n∏

j=k+2

FL[π(j)]

 (~z)

(by Proposition 5.2)

=

k−1∏
j=1

FL[πd−1(j)] · FL[πd−1(k)] · FL[πd−1(k + 1)] ·
n∏

j=k+2

FL[πd−1(j)]

 (~z)

=

 n∏
j=1

FL[πd−1(j)]

 (~z)

= F(L,πd−1)(~z, n)

= F(L,π′)(~z, n) (by induction assumption)

This proves the proposition.

We consider equivalence classes [π]U of a permutation π with respect to U = U(V,E), i.e.,

[π]U =def {π′ | π ∼U π′},

together with the quotient set with respect to the equivalence relation ∼U

SX/ ∼U= {[π]U | π ∈ SX} .
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Proposition 5.4 Let G = (V,E) be an undirected graph and let U = U(V,E) be the
update graph. Then, there exists a bijective mapping

fG : SV / ∼U → Acyc(G),

where Acyc(G) is the set of all acyclic orientations of G.

Proof: We first construct an appropriate mapping f̃G : SV → Acyc(G). Any permutation
π ∈ SV induces a linear ordering ≤π on V by

i ≤π j ⇐⇒def π(i) ≤ π(j).

Any linear ordering ≤π on V induces an acyclic orientation: for each {i, j} ∈ E set

i→ j ⇐⇒def i <π j

Let f̃G map each permutation to the according orientation. We have to argue that
f̃G(π) = f̃G(π′) for π ∼U π′. It suffices to show f̃G(π) = f̃G(π′) for adjacent permutations
π, π′ (proof of the general case is then by induction): If π and π′ are adjacent, they differ
in exactly two consecutive entries not connected by an edge in E. Thus, f̃G(π) = f̃G(π′).

Now, define fG : SV / ∼U→ Acyc(G) by fG([π]U ) =def f̃G(π). Observe that fG is injective
(exercise!). It remains to show that fG is surjective. Consider an acyclic orientation of G.
For vertex i ∈ V define the rank of i as follows:

rank(i) =def length of a longest directed path to i

(with respect to the given acyclic orientation)

We should note that rank(i) = rank(j) implies {i, j} /∈ E for i 6= j. We define

H =def {h | rank−1(h) 6= ∅}

and for h ∈ H
rnk−1(h) =def (i1, . . . , imh

),

where rank(ij) = h and ij < ik for j < k. Furthermore, consider[(
rnk−1(0), rnk−1(1), . . . , rnk−1(t)

)]
U

with t = maxH. Then, clearly, fG maps
[(

rnk−1(0), . . . , rnk−1(t)
)]
U

to the given orien-
tation. Thus, fG is surjective. Hence, fG is bijective. This proves the proposition.

Example: Consider again Circ4:

[(0, 2, 1, 3)]U 7−→
3 2

0 1

[( 0, 2︸︷︷︸
rnk−1(0)

, 1, 3︸︷︷︸
rnk−1(1)

)]U ←− [
3 2

0 1

1 0

0 1
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Proposition 5.5 For any undirected graph G = (V,E), ‖V ‖ = n, and any set L of local
transition functions compatible with G,

‖
{
F(L,π) | π ∈ SV

}
‖ ≤ ‖Acyc(G)‖;

and the bound is sharp.

Proof: Using Proposition 5.3 and Proposition 5.4, we obtain the following:∥∥{F(L,π) | π ∈ SV
}∥∥ ≤ ‖{[π]U | π ∈ SV }‖ = ‖SV / ∼U‖ = ‖Acyc(G)‖

Sharpness is left as an exercise. This proves the proposition.

Example: It holds that ‖Acyc(Circn)‖ = 2n − 2, since only two of the 2n

possible orientations of Circn are not acyclic. Thus, there are at most 2n − 2
essentially different global network maps.

5.3 Acyclic orientations and the chromatic polynomial

How to compute ‖Acyc(G)‖?

Let G = (V,E) be an undirected graph. A vertex coloring with k colors 1, . . . , k is a
mapping f : V → {1, . . . , k} such that f(u) 6= f(v) if {u, v} ∈ E. Define PG(k) to be
the number of different vertex colorings with k colors of G. The pausible choices for
the number of colors are 0, 1, . . . , n. Thus, we know the function values of PG for n + 1
arguments. Hence, there is a uniquely determined normal polynomial (i.e., the leading
coefficient in the expanded form of the polynomial is 1) of degree n which takes on these
specified function values. We identify PG with this polynomial, and we call PG(x) the
chromatic polynomial of graph G.

Example: Let G = Kn. It holds that PG(k) = 0 for k ∈ {0, 1, . . . , n − 1}.
Moreover, PG(n) = n!. Thus, the chromatic polynomial of G is given by

PG(x) =
n−1∏
j=0

(x− j).

Lemma 5.6 Let G,H be undirected graphs.

1. If G is a one-vertex graph, PG(x) = x.

2. PG⊕H(x) = PG(x) · PH(x)

3. PG(x) = PG−e(k)− PG/e(x)
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Example: Let T be a tree with n vertices. Let u be an arbitrary leaf of T
and e = {u, v} be the edge connecting u with T . Then, it holds

PT (x) = PT−e(x)− PT/e(x)

= PT ′(x) · x− PT ′′(x)
Here, T ′ is a tree with n−1 vertices, T ′′ is a tree with n−1 vertices. Actually,
T ′ ' T ′′. We conclude

PT (x) = PT ′(x) · (x− 1).

By iteration, we obtain PT (x) = x(x− 1)n−1.

Thus, each tree with n vertices has the same chromatic polynomial independent
of its structure. Moreover, a graph G with n vertices is a tree if and only if
PG(x) = x(x− 1)n−1.

Lemma 5.7 Let G be an undirected graph. Suppose there are graphs G1, G2 such that
G = G1 ∪G2 and G1 ∩G2 = Kn. Then,

PG(x) =
PG1(x) · PG2(x)

PKn(x)

Proof: Each vertex coloring f of G corresponds to exactly one pair (f1, f2) of colorings
of G1 and G2 which are identical on Kn. So, let f1 be a k-coloring of G1. Then, there
are PG2(k)/PKn(k) k-colorings of G2 which are identical on Kn with f1. This proves the
lemma.

Example: We want to compute, once more, the chromatic polynomial for Kn.
We start with the following recursion:

PKn(x) = PKn−e(x)− PKn/e(x)

=
PKn−1(x)2

PKn−2(x)
− PKn−1(x)

=
PKn−1(x)

PKn−2(x)
(PKn−1(x)− PKn−2(x))

By induction we can prove that Pkn(x) = xn:

• Base of induction: We have two case here, n ∈ {1, 2}: PK1(x) = x = x1

and PK2(x) = x(x− 1) = x2.

• Induction step: For n > 2, we have

PKn(x) =
xn−1

xn−2
·
(
xn−1 − xn−2

)
(by induction assumption)

= (x− (n− 1) + 1) · xn−2 · ((x− (n− 1) + 1)− 1)

= xn−2 · (x− (n− 2)) · (x− (n− 1))

= xn
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We give a different interpretation of PG(x).

Proposition 5.8 Let G = (V,E) be an undirected graph. Then, PG(k) is equal to the
numbers of pairs (f,O) where f : V → {1, . . . , k} and O is an orientation of G such that

1. the orientation O is acyclic,

2. if u→ v in orientation O then f(u) > f(v).

Proof: Consider a pair (f,O) satisfying (i), (ii). From (ii) it follows that f(u) 6= f(v)
for {u, v} ∈ E. Thus, f is a vertex coloring with k colors. Moreover, (ii) implies (i).
Conversely, if f is a vertex coloring with k colors then f defines a unique acyclic orientation
O by u → v if and only if f(u) > f(v). Hence, the number of allowed pairs (f,O) is the
number of vertex colorings with colors 1, . . . , k and is, thus, PG(k).

Proposition 5.8 suggests the following modification: Let G = (V,E) be an undirected
graph and let k ∈ {1, . . . , n} where n = ‖V ‖. Define PG(k) to be the number of pairs
(f,O) where f : V → {1, . . . , k} and O is an orientation of G such that:

1. the orientation O is acyclic,

2. if u→ v in orientation O then f(u) > f(v).

We say that the function f is compatible with O if f satisfies the second conditions.

Lemma 5.9 Let G,H be undirected graphs.

1. If G is one-vertex graph then PG(x) = x.

2. PG⊕H(x) = PG(x) · PH(x)

3. PG(x) = PG−e(x) + PG/e(x) for any e ∈ E

Proof: The first two statements are obvious.

In order to show the third statement, let f : V → {1, . . . , k} be a mapping and let O be
an acyclic orientation of G−e compatible with f , where e = {u, v} ∈ E. Let O1 be the
orientation of G obtained by adjoining u→ v to O, and O2 that is obtained by adjoining
v → u to O. We show that for each pair (f,O) exactly one of O1 and O2 is an acyclic
orientation compatible with f , except for PG/e(k) of the pairs, in which case both O1 and

O2 are acyclic orientations compatible with f . Thus, PG−e(k) = PG(k) − PG/e(k). We
consider the following three cases:

• If f(u) > f(v) then O2 is not compatible with f while O1 is compatible. Moreover,
O1 is acyclic, since if u→ v → w1 → w2 → · · · → u were a directed cycle in O1, we
would have f(u) > f(v) ≥ f(w1) ≥ f(w2) ≥ · · · ≥ f(u), which is a contradiction.
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• If f(u) < f(v) then we can argue symmetrically to the first case.

• If f(u) = f(v), both O1 and O2 are compatible with f . Then, at least one of
them is acyclic; if not: O1 contains a cycle u → v → w1 → w2 → · · · → u and
O2 contains a cycle v → u → w′1 → w′2 → · · · → v. Hence, O contains a cycle
v → w1 → w2 → · · · → u→ w′1 → w′2 → · · · → u which is not possible.

It remains to prove that O1 and O2 are acyclic for exactly PG/e(k) pairs (f,O) with
f(u) = f(v). Define Φ(f,O) =def (f ′, O′) such that f ′ : V (G/e) → {1, . . . , k} (note that
f(u) = f(v)) and O′ is an acyclic orientation of G/e compatible with f ′. Let z be the
vertex obtained by identifying u and v. Define f ′ to be the following function:

f ′(w) =def

{
f(w) if w ∈ V \ {u, v}
f(u) if w = z

Define O′ by w1 → w2 in O′ if and only if w1 → w2 in O. Then, Φ is a bijection. This
proves the proposition.

Theorem 5.10 (Stanley 1973) For each graph G = (V,E) such that ‖V ‖ = n,

PG(x) = (−1)nPG(−x).

Proof: Using the recursive rules according to Lemma 5.9 and Lemma ??, we prove the
statement by induction on the number n of vertices.

• Base of induction: Let n = 1. Then, PG(x) = x = (−1)1(−x) = (−1)1PG(−x).

• Induction step: Suppose n > 1. Again, we argue inductively, in this case however,
on the number of edges. For the base of induction, let G be the empty graph on n
vertices. Then, PG(x) = xn = (−1)n(−x)n = (−1)nPG(−x). For the induction step,
suppose ‖E‖ ≥ 1. Then, for some edge e ∈ E

PG(x) = PG−e(x) + PG/e(x)

= (−1)n PG−e(−x) + (−1)n−1 PG/e(−x)

= (−1)n
(
PG−e(−x)− PG/e(−x)

)
= (−1)n PG(−x)

This proves the theorem.

Corollary 5.11 ‖Acyc(G)‖ = (−1)n PG(−1).
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Proof: It holds that ‖Acyc(G)‖ = PG(1) = (−1)n PG(−1).

Example: We want to compute ‖Acyc(Circn)‖ for n ≥ 3. First, we prove that
PCircn(x) = (x− 1)n + (−1)n(x− 1) by induction on n ≥ 3.

• Base of induction: For n = 3, we calculate

PCirc3(x) = x(x− 1)(x− 2)

= x3 − 3x2 + 2x

= x3 − 3x2 + 3x− 1− (x− 1)

= (x− 1)3 + (−1)3(x− 1)

• Induction step: For n > 3, we calculate

PCircn(x) = PCircn−e(x)− PCircn/e(x)

= x(x− 1)n−1 −
(
(x− 1)n−1 + (−1)n−1(x− 1)

)
= (x− 1)n(x− 1)− (−1)n−1(x− 1)

= (x− 1)n + (−1)n(x− 1)

Now, from Corollary 5.11, we obtain ‖Acyc(Circn)‖ = 2n − 2 by considering
two distinctive cases:

• If n is even then PCircn(1) = PCircn(−1) = 2n − 2

• If n is odd then PCircn(1) = −PCircn(−1) = − (−2n − (−2)) = 2n − 2

Note that, unless P = NP, there is no algorithm for computing the number of acyclic
orientations of a given graph with n vertices, which runs in time polynomial in n.
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Potential models 6

6.1 Network games

Models based on maximizing a certain potential function are typical for rational actors
(aka agents). They belong to a class of mechanisms where actors choose their decisions on
changing attribute values depending on the decisions of other actors in such a way they
maximize their benefits, utilities, or preferences. In the following, we use game theory to
analyze such models.

6.1.1 Games with utilities

Definition 6.1 A game with utilities Γ is a triple (A, (S1, . . . , Sm), (u1, . . . , um)), where

1. A = {1, . . . ,m} is a finite, non-empty set of agents,

2. Si is a non-empty set of strategies of agent i ∈ A, and

3. ui : S1 × · · · × Sm → R is a utility function for agent i.

According to the definiton above, we introduce some notations:

• S =def

m

×
k=1

Sk denotes the set of all strategy profiles of all agents; S−i =def

m

×
k=1
k 6=i

Sk

denotes the set of all strategy profiles of all agents except agent i.

• For a strategy profile s = (s1, . . . , sm) ∈ S, let s−i denote the (m−1)-tuple consisting
of strategies of all agents except agent i, i.e., s−i = (s1, . . . , si−1, si+1, . . . , sm).

• So, s = (si, s−i) and S = Si × S−i, by convention.

• We use u = (u1, . . . , um) : S → Rm to denote the vector utility function, and we use
ui(s) = ui(s1, . . . , sm) = ui(si, s−i) to denote agent’s i utility of a strategy profile

We consider a game Γ as a one-shot non-cooperative game. Each agent u chooses a strategy
si ∈ Si independently of other agents and without knowing the choices of the other agents.
The result is a strategy profile s = (s1, . . . , sm). Each agent i evaluates strategy profile s
according to the utility function ui.
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A notion central to game theory is the Nash equilibrium.

Definition 6.2 Let Γ = (A,S, u) be a game with utilities, involving m agents. A strategy
profile s∗ = (s∗1, . . . , s

∗
m) is called Nash equilibrium if and only if ui(s

∗
i , s
∗
−i) ≥ ui(si, s

∗
−i)

for all si ∈ Si and all i ∈ A.

Intuitively, in a Nash equilibrium, no agent has an incentive to deviate from the chosen
strategy.

Example: We exemplify the notions for three standard games.

• Battle of sexes: Male M and Female F want to spend time together, i.e.,
A = {M,F}. Alternatives are cinema (c) or football (f). So, the sets of
strategies for both are SM = SF = {c, f}. The set of strategy profiles is

S = SF × SM = { (c, c), (c, f), (f, c), (f, f) }

where the first component of a pair denotes Female’s strategy and the
second component is Male’s strategy. Now, on the one hand-side, Male
prefers football over cinema but together is better than alone. So, M ’s
preference can be described by the following utility function:

uM :

(f, f) 7→ 3

(c, c) 7→ 2

(c, f) 7→ 1

(f, c) 7→ 0

On the other hand-side, Female prefers cinema over football but together
is better than alone. So, F ’s utilities could be as follows:

uF :

(c, c) 7→ 3

(f, f) 7→ 2

(c, f) 7→ 1

(f, c) 7→ 0

Combined, both utility functions can be modelled as a payoff (bi-)matrix:

M

f c

F
f

c

(
(2, 3) (0, 0)

(1, 1) (3, 2)

)

Since all information on the game is contained in this representation, we
will also identify such a matrix with a 2-person game.
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Which strategy profiles are Nash equilibria? We examine all strategy
profiles individually:

– (c, c) is a Nash equilibrium, since

uF (c, c) = 3 > 0 = uF (f, c)

uM (c, c) = 2 > 1 = uM (c, f)

– (c, f) is not a Nash equilibrium, since

uF (c, f) = 1 < 2 = uF (f, f)

– (f, c) is not a Nash equilibrium, since

uM (f, c) = 0 < 3 = uM (f, f)

– (f, f) is a Nash equilibrium, since

uF (f, f) = 2 > 1 = uF (c, f)

uM (f, f) = 3 > 0 = uM (f, c)

Now, suppose Female is more decisive: she excludes football an option.
Thus, F ’s modified utility function leads to the following (bimatrix) game(

(1, 3) (0, 0)

(2, 1) (3, 2)

)
Then, the only Nash equilibrium is (c, c).

• Prisoner’s dilemma: Bonnie and Clyde have been captivated and charged
with bank robbery. However, the prosecutor is only able to prove illegal
possession of firearms to them; without confessions, the sentence will then
be 3 years in prison. If one of them makes a confession then the confessor
will be sentenced to one year and the non-confessor will be sentenced to
9 years in prison. If both confess then they will be sentenced to 7 years
in prison, respectively.

A game-based formulation of this decision scenario is given by the follow-
ing game with utilities:

s21 s22

s11

s12

(
(2, 3) (0, 0)

(1, 1) (3, 2)

)
where si1 stands for strategy “confession” and si2 stands for “no confes-
sion.”

Which strategy profiles are Nash equilibria?

– (s11, s21) is a Nash equilibrium, since

u1(s11, s21) = −7 > −9 = u1(s12, s21)

u2(s11, s21) = −7 > −9 = u2(s11, s22)
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– (s11, s22) is not a Nash equilibrium, since

u2(s11, s22) = −9 < −7 = u2(s11, s21)

– (s12, s21) is not a Nash equilibrium, since

u1(s12, s21) = −9 < −7 = u1(s11, s21)

– (s12, s22) is not a Nash equilibrium, since

u1(s12, s22) = −3 < −1 = u1(s11, s22)

Why is this game a dilemma? Because (s12, s21) would be a better strat-
egy profile for both. But it is no equilibrium; each agent could be better
off when changing the strategy. The reason for that is the lack of com-
munication and coordination.

• Rock-paper-scissor: The scenario consists of two players each of them
chooses one of the three gestures“rock”, “paper”, or“scissor”as a strategy.
The rules of winning the game are as follows:

– rock defeats scissor

– scissor defeats paper

– paper defeats rock

The loser of a game pays a unit to the winner. We can express this a
game with utilities by the following bimatrix game:

rock paper scissor

rock

paper

scissor

 (0, 0) (−1, 1) (1,−1)

(1,−1) (0, 0) (−1, 1)

(−1, 1) (1,−1) (0, 0)


Obviously, there is no Nash equilibrium for this game in pure strategies.

An alternative characterization of Nash equilibria can be given by best-response dynamics.

Definition 6.3 Let Γ = (A,S, u) be a game with utilities.

1. The best response (map) βi : S−i → P(Si) for agent i ∈ A is defined by

βi(s−i) =def

{
si ∈ Si

∣∣∣∣ ui(si, s−i) = max
s′i∈Si

ui(s
′
i, s−i)

}

2. The best response β : S →
m

×
i=1

P(Si) is defined by

β(s) =def β1(s−1)× · · · × βn(s−n).
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Theorem 6.4 Let Γ = (A,S, u) be a game with utilities. For all s∗ ∈ S, it holds

s∗ is a Nash equilibrium ⇐⇒ s∗ ∈ β(s∗).

Proof: Let s∗ ∈ S be a strategy profile. Then, the following chain of equivalences holds:

s∗ is a Nash equilibrium

⇐⇒ ui(s
∗
i , s
∗
−i) ≥ ui(si, s∗−i) for all i ∈ A, si ∈ Si (by Definition 6.2)

⇐⇒ ui(s
∗
i , s
∗
−i) = max

si∈Si

ui(si, s
∗
−i) for all i ∈ A, si ∈ Si

⇐⇒ s∗i ∈ βi(s∗−i) for all i ∈ A (by Definition 6.3.1)

⇐⇒ s∗ ∈ β(s∗) (by Definition 6.3.2)

This proves the theorem.

Example: Consider the following payoff matrix for a two-person game with
identical utility function

s21 s22

s11

s12

(
1 3

1 2

)

The best responses for the agents are

β1(s21) = {s11, s12}, β1(s22) = {s11}
β2(s11) = {s22}, β2(s12) = {s22}

So, the best response is:

β(s11, s21) = {s11, s12} × {s22}
β(s11, s22) = {s11} × {s22}
β(s12, s21) = {s11, s12} × {s22}
β(s12, s22) = {s11} × {s22}

By Theorem 6.4, (s11, s22) is a unique Nash equilibrium.
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6.1.2 Potential games

An important class of games with equilibrium guarantee is the class of potential games.

Definition 6.5 Let Γ = (A,S, u) be a game with utilities, and let P : S → R be any
function.

1. P is said to be an ordinal potential function for Γ if and only if for all i ∈ A,
s−i ∈ S−i, si, s̄i ∈ Si,

ui(si, s−i)− ui(s̄i, s−i) > 0 ⇐⇒ P (si, s−i)− P (s̄i, s−i) > 0.

Γ is said to be an ordinal potential game if and only if there is an ordinal potential
function for Γ.

2. P is said to be a potential function for Γ if and only if for all i ∈ A, s−i ∈ S−i,
si, s̄i ∈ Si,

ui(si, s−i)− ui(s̄i, s−i) = P (si, s−i)− P (s̄i, s−i).

Γ is said to be a potential game if and only if there is a potential function for Γ.

Example: We discuss the notions for two games.

• Consider the following bimatrix game:

Γ =

(
(0, 3) (1, 2)

(3, 1) (2, 0)

)
According to Definition 6.5, it suffices to consider the following differences:

u1(s11, s21)− u1(s12, s21) = −3

u1(s11, s22)− u1(s12, s22) = −1

u2(s11, s21)− u2(s11, s22) = 1

u2(s12, s21)− u2(s12, s22) = 1

Then, Γ is an ordinal potential game. An ordinal potential function P is
represented by the matrix

Γ =

(
1 0

2 1

)
,

since

P (s11, s21)− P (s12, s21) = −1 < 0

P (s11, s22)− P (s12, s22) = −1 < 0

P (s11, s21)− P (s11, s22) = 1 > 0

P (s12, s21)− P (s12, s22) = 1 > 0

However, Γ is not a potential game. (An explanation will be given later.)
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• Recall that the prisoner’s dilemma can be represent by the following bima-
trix game:

Γ =

(
(−7,−7) (−1,−9)

(−9,−1) (−3,−3)

)
Γ is a potential game, where the potential function P is given by

P =

(
4 2

2 0

)
.

Proposition 6.6 Let Γ = (A,S, u) be a game with utilities and an ordinal potential func-
tion P , and let s∗ ∈ S. Then, s∗ is a Nash equilibrium if and only if for all i ∈ A and
si ∈ Si, it holds that

P (s∗) ≥ P (si, s
∗
−i).

Proof: Immediate from Definition 6.5.

Corollary 6.7 Each finite ordinal potential game has a Nash equilibrium.

Proof: For a finite ordinal potential game Γ, it’s ordinal potential funciton P has a
maximum. Let s∗ ∈ S be such that P (s∗) is maximum. Then, s∗ is a Nash equilibrium
by Proposition 6.6.

Though we have a certain flexibility in choosing an ordinal potential for an ordinal potential
game, in case of exact potentials it is less so: they are unique up to some additive constant.

Proposition 6.8 Let Γ = (A,S, u) be a potential game with potentials P1 and P2. Then,
there is a c ∈ R such that for all s ∈ S,

P1(s)− P2(s) = c

Proof: Choose any s∗ ∈ S. Define for all s ∈ S,

H(s) =def

m∑
i=1

(
ui(t

i−1 − ui(ti)
)
,

where t0 = s and ti = (s∗i , t
i−1
−i ) for i ∈ {1, . . . ,m}. For each potential P for Γ we have

H(s) =

m∑
i=1

(
ui(t

i−1)− ui(ti)
)

=

m∑
i=1

(
P (ti−1)− P (ti)

)
= P (t0)− P (tm) = P (s)− P (s∗).
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Hence,

P1(s)− P2(s) = H(s) + P1(s
∗)− (H(s) + P2(s

∗)) = P1(s
∗)− P2(s

∗).

The last difference is constant. This proves the proposition.

How can we decide whether a given game with utilites is, in fact, a potential game? To
answer this question, we give a characterization based on the structure of utility functions.
It is helpful to introduce some additional notions.

Let Γ = (A,S, u) be a game with utilites.

A sequence p = (s0, s1, . . . , sN ) is a path in Γ if and only if for all k ≥ 1, there is an i ∈ A
such that sk = (si, s

k−1
−i ) for some si ∈ Si with si 6= sk−1i . The agent i ∈ A is then called

the deviator for k. A path p = (s0, s1, . . . , sN ) is said to be closed iff s0 = sN . A path
p = (s0, s1, . . . , sN ) is said to be simple iff sj 6= sk for all 0 ≤ j < k ≤ N − 1.

Furthermore, for a finite path p = (s0, s, . . . , sN ) in Γ, define

I(Γ, p) =def

N∑
k=1

(
uik(sk)− uik(sk−1)

)
,

where ik is the deviator for k.

Theorem 6.9 Let Γ = (A,S, u) be a game with utilities. The following statements are
equivalent:

1. Γ is a potential game.

2. I(Γ, p) = 0 for each finite, closed path p in Γ.

3. I(Γ, p) = 0 for each finite, simple, closed path p in Γ.

4. I(Γ, p) = 0 for each finite, simple, closed path p in Γ of length 4.

Proof: We show the following implications:

• (1) ⇒ (2): Let P be a potential function for Γ = (A,S, u). Let p = (s0, s1, . . . , sN )
be a closed path. Then, we conclude

I(Γ, p) =
N∑
k=1

(
uik(sk)− uik(sk−1)

)

=
N∑
k=1

(
P (sk)− P (sk−1)

)
(since P is a potential function for Γ)

= P (sN )− P (s0)

= 0 (since sN = s0)

Network Dynamics – Lecture Notes



6.1. Network games 49

• (2)⇒ (1): Fix an arbitrary strategy profile z ∈ S. For s ∈ S, let p(s) = (s0, . . . , sN )
denote an arbitrary path from s0 = z to sN = s. We define

P (s) =def I(Γ, p(s)).

Note that there is always a path from z to a strategy profile s. We have to show
that the following two statements are true:

1. P is well-defined, i.e., the definition of P is independent of the choice of the
path p(s).

2. P is a potential function for Γ

This can be seen as follows:

1. Let q(s) = (s0, . . . tM ) be another path such that t0 = z and tM = s. Then, the
concatenated path γ = (s0, . . . , sN , tM−1, . . . , t0) is a closed path in Γ. By our
assumption, it holds that I(Γ, γ) = 0. We conclude

I(Γ, p(s)) = −I
(
Γ, (sN , tM−1, . . . , t0)

)
= I

(
Γ, (t0, . . . , tM−1, sN )

)
= I(Γ, q(s))

2. For i ∈ A, let si, s
′
i ∈ Si be two strategies, let s−i ∈ S−i. Again by our

assumption, we obtain

0 = I
(
Γ,
(
(si, s−i), . . . , z, . . . , (s

′
i, s−i), (si, s−i)

))
= I (Γ, ((si, s−i), . . . , z)) + I

(
Γ,
(
z, . . . , (s′i, s−i), (si, s−i)

))
= −I (Γ, (z, . . . , (si, s−i))) + I

(
Γ,
(
z, . . . , (s′i, s−i)

))
+

+ ui(si, s−i)− ui(s′i, s−i)

Consequently,

ui(si, s−i)− ui(s′i, s−i) = I(Γ, (z, . . . , (si, s−i)))− I(Γ, (z, . . . , (s′i, s−i)))

= P (si, s−i)− P (s′i, s−i)

Hence, P is a potential function.

• (2)⇒ (3): Trivial.

• (3)⇒ (4): Trivial.

• (4) ⇒ (2): Suppose I(Γ, p) = 0 for all simple, closed paths p of length 4 in
Γ = (A,S, u). We show that I(Γ, p) = 0 for all closed paths p of length N in Γ
by induction on N :

– base of induction N ≤ 4: Cases N ∈ {1, 2, 3} are trivial (in particular, there
are no closed paths of odd lengths); for N = 4, the statement holds by the
assumption.
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– inductive step N > 4: Let p = (s0, s1, . . . , sN ) be a closed path with N ≥ 5. Let
(i1, . . . , iN ) be the sequence of deviators for each step, i.e., sj = (sij , s

j−1
−ij ) such

that sij 6= sj−1ij
. Without loss of generality, assume i1 = 1. Since sN = s0, there

is 2 ≤ j ≤ N such that ij = 1 and sjij = s01. Choose j to be minimal subject to

this condition, i.e., there is no 2 ≤ k < j satisfying ik = 1 and skik = s01.

First, suppose j = 2. That is, s2 = s0. Consider the path q =def (s2, . . . , sN )
of length N − 1. Then,

I(Γ, p) = I(Γ, q) + u1(s
2)− u1(s1) + u1(s

1)− u1(s0)
= u1(s

2)− u1(s0) (by inductive assumption)

= 0 (since s2 = s0)

Now, suppose j ≥ 3, i.e, j ∈ {3, . . . , N}. Then, we have two subcases:

1. Subcase ij−1 = ij . Consider path q =def (s0, . . . , sj−2, sj , . . . , sN ). It holds

I(Γ, q)

= I
(
Γ, (s0, . . . , sj−2)

)
+ uij (s

j)− uij (sj−2) + I
(
Γ, (sj , . . . , sN )

)
= I

(
Γ, (s0, . . . , sj−2)

)
+ uij (s

j)− uij (sj−1) +

+ uij (s
j−1)− uij (sj−2) + I

(
Γ, (sj , . . . , sN )

)
= I

(
Γ, (s0, . . . , sj−2)

)
+ uij (s

j)− uij (sj−1) +

+ uij−1(sj−1)− uij−1(sj−2) + I
(
Γ, (sj , . . . , sN )

)
(since ij−1 = ij)

= I
(
Γ, (s0, . . . , sj−2, sj−1, sj , . . . , sN )

)
= I(Γ, p)

Thus, by the inductive assumption, I(Γ, p) = I(Γ, q) = 0.

2. Subcase ij−1 6= ij . That is, we have the following scenario: ... Define a path

qj = def(s0, . . . , sj−2, tj−1, sj , . . . , sN ) where tj−1 = (sij , s
j−2
−ij ), i.e., the

deviator in (j − 1)-st step is 1. Now, path r =def (sj−2, tj−1, sj , sj−1, sj−2)
is simple (since ij 6= ij−1), closed, and has length 4. Hence, I(Γ, r) = 0.
That is,

I
(
Γ, (sj−2, sj−1, sj)

)
= I

(
Γ, (sj−2, tj−1, sj)

)
.

Therefore, I(Γ, p) = I(Γ, qj).
Recursively repeated, we obtain a sequence of paths qj , qj−1, . . . , q3 such
that I(Γ, p) = I(Γ, qk) for all k ∈ {3, . . . , j} and the deviator in qk’s step
k − 1 is 1. The path q3 corresponds to the case j = 2 above. Thus,

I(Γ, p) = I(Γ, q3) = 0.
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This proves the theorem.

We want to characterize potential games from a dynamical perspective.

Let Γ = (A,S, u) be a game with utilities. Let (st)t∈I be any finite or infinite sequence
of strategy profiles, i.e., I = N or I = {0, 1, . . . , n} for some n ∈ N. Then, the sequence
(st)t∈I is called an improvement path if and only if for all t ∈ I, t > 0, there is an i ∈ A
such that st 6= st−1, (st)−i = (st−1)−i, and ui(s

t) > ui(s
t−1). The intuition behind this

definition is that each deviator choose a better alternative. Γ is said to have the Finite
Improvement Property (FIP) if and only if every improvement path is finite.

To establish our characterization, some technical limitations on games are required: A
game Γ = (A,S, u) is called degenerate iff there exist i ∈ A, si, s

′
i ∈ Si, si 6= s′i, and

s−i ∈ S−i such that ui(si, s−i) = ui(s
′
i, s−i); otherwise, Γ is called nondegenerate.

Theorem 6.10 Let Γ be a finite, nondegenerate game with utilities. Then, Γ has the FIP
if and only Γ is an ordinal potential game.

Proof:

(⇐): Let Γ = (A,S, u) be a finite game with ordinal potential function P , i.e., for all
i ∈ A, si, s

′
i ∈ Si, s−i ∈ S−i,

ui(s
′
i, s−i) ≥ ui(si, s−i)⇐⇒ P (si, s−i) ≥ P (s′i, s−i).

Let γ = (s0, s1, s2, . . . ) be an improvement path, and let (i1, i2, . . . ) be the sequence
of γ’s deviators. Then, for all t ∈ I, t > 0, it holds that uit(s

t) > uit(s
t−1). Hence,

P (s0) < P (s1) < P (s2) < . . . . As S is a finite set, γ = (s0, s1, s2, . . . ) is a finite
sequence, i.e., ‖I‖ <∞.

(⇒): Let Γ = (A,S, u) have the FIP. Define a binary relation > on S:

s > s′ ⇐⇒def s 6= s′ and there is an improvement path from s to s′

Since Γ has the FIP, > is a strict order relation on S, i.e., > is irreflexive and
transitive. Any finite strict order can be represented by a function: A set Z ⊆ S
is represented iff there is a mapping Q : Z → R such that for all s, s′ ∈ Z, s > s′

implies Q(s) > Q(S′). Let Z∗ be a maximal, represented subset of S.

We show Z∗ = S. To the contrary, assume there is an x ∈ S, x /∈ Z∗. Then, there
are three (possibly overlapping) cases:

1. There is no z ∈ Z∗ such that z > x. Define an extension Q′ : Z∗ ∪{x} → R by:

Q′(z) =

{
Q(z) if z ∈ Z∗
max{ Q(z) | z ∈ Z∗ }+ 1 if z = x

Q′ represents Z∗ ∪ {x} and, thus, contradicts to the maximality of Z∗.
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2. There is no z ∈ Z∗ such that z < x. Dually to the first case, define an extension
Q′ : Z∗ ∪ {x} → R by:

Q′(z) =

{
Q(z) if z ∈ Z∗
min{ Q(z) | z ∈ Z∗ } − 1 if z = x

Q′ represents Z∗ ∪ {x} and, thus, contradicts to the maximality of Z∗.

3. For some z, z′ ∈ Z∗, it holds that z > x > z′. In this case, define an extension
Q′ : Z∗ ∪ {x} → R by:

Q′(z) =

{
Q(z) if z ∈ Z∗
1
2 (max{ Q(z) | z < x }+ min{ Q(z) | z > x }) if z = x

Q′ represents Z∗ ∪ {x} and, thus, contradicts to the maximality of Z∗.

Therefore, Z∗ = S.

Let Q represent S. Then, Q is an ordinal potential function: Suppose si, s
′
i ∈ Si,

s−i ∈ S−i. Then, ui(si, s−i) 6= ui(s
′
i, s−i) since Γ is nondegenerate. So, without loss

of generality, ui(si, s−i) > ui(s
′
i, s−i). Thus, (si, s−i) > (s′i, s−i). (Note there is an

improvement path of length one.) Hence, Q(si, s−i) > Q(s′i, s−i).

This proves the theorem.

6.1.3 Congestion games

Congestion games have been introduced in economics by Robert W. Rosenthal in 1973.
A scenario related to computer science is as follows. Suppose we are given the following
interaction domain I ⊆ A×A, A = {A, B, C, D}:

...

Here, A, B, C, and D are routers. Router A wishes to select to route to C, and router B wishes
to select a route to D. If both routers use the same link then the congestion, or latency,
increases according to cost function ci. The routers aim at minimizing their costs.

We can analyze this scenario as a game with utilities

Γ =def ({A, B}, {{1, 2}, {3, 4}} × {{1, 3}, {2, 4}}, u)

where the utility function u = (u1, u2) is given by the following bimatrix:

{1, 3} {2, 4}

{1, 2}
{3, 4}

(
(c1(2) + c2(1), c1(2) + c3(1)) (c1(1) + c2(2), c2(2) + c4(1))

(c3(2) + c4(1), c1(1) + c3(2)) (c3(1) + c4(2), c2(1) + c4(2))

)
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There are two simple, closed paths of length 4 in the game Γ. So, let p be the one in
counter-clockwise direction starting with the upper left strategy profile corner, and let q
be the one in clockwise direction also starting with the upper left strategy profile corner.
It holds that

I(Γ, p) = c3(2) + c4(1)− c1(2)− c2(1)︸ ︷︷ ︸
A deviates

+

B deviates︷ ︸︸ ︷
c2(1) + c4(2)− c1(1)− c3(2) +

+ c1(1) + c2(2)− c3(1)− c4(2)︸ ︷︷ ︸
A deviates

+

B deviates︷ ︸︸ ︷
c1(2) + c3(1)− c2(2)− c4(1)

= 0

Since I(Γ, q) = −I(Γ, p) = 0, we obtain from Theorem 6.9 that Γ is a potential game.

Definition 6.11 A congestion model is a tuple (A,F, (Si)i∈A, (wf )f∈F ) such that

1. A = {1, . . . , n} is a non-empty, finite set of agents (routers),

2. F is a non-empty, finite set of facilities (links),

3. Si ⊆ P(F ) is a non-empty set of strategies (routes) for each agent i ∈ A, and

4. wf : {1, . . . , n} → R is a cost (wealth, latency) function for each facility f ∈ F ; if k
agents choose f then the cost for each agent is wf (k).

Definition 6.12 Let (A,F, (Si)i∈A, (wf )f∈F ) be a congestion model. Then,
Γ = (A, (Si)i∈A, u) is called congestion game if and only if for all i ∈ A, s = (si, s−i) ∈ S,

ui(s) =
∑
f∈si

wf (σf (s)),

where σf (s) = ‖{i ∈ A|f ∈ si}‖.

Without proof we state the following theorem which shows that potential games and
congestion games are essentially the same class of finite games.

Theorem 6.13 1. Each congestion game is a potential game.

2. Each potential game is isomorphic to a congestion game.

The proof of the first statement relies on the Rosenthal potential:

P (s) =def

∑
f∈

⋃
i∈A si

σf (s)∑
k=1

wf (k)
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6.2 Network potentials

To be filled in
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Threshold models are a widely used class of models for behavioral attributes, that is,
attributes on items. For instance, they have been used to model diffusion processes (con-
tagion) of innovation, riots, rumors and diseases, strikes, voting (see, e.g, [16]), and fur-
thermore in the context of neural networks (e.g., Hopfield networks).

Example: The following scenario was discussed by Granovetter in [16] to
advocate the usage of threshold models in social sciences: Imagine there are
100 people milling around in a square–a potential riot situation. Now, assume
that there are two slightly different threshold distribution among individuals:

1. There is one individual with threshold 0 (the instigator), one individual
with threshold 1, and so on, and one individual with threshold 99. In a
“domino” effect, the instigator breaks a window; this activates the person
with threshold 1, and so on; finally, all 100 people have joined.

2. There is one individual with threshold 0, no individual with threshold 1,
two individuals with threshold 2, one individual with threshold 3, and so
on. That is, the crowds are essentially identical. Of course, the riots end
with one rioter.

However, newspapers will likely react very differently:

1. “A crowd of radicals engaged in riotous behavior.”

2. “A demented troublemaker broke a window while a group of solid citiziens
looked on.”

It is hazardous to infer individual dispositions from aggregate outcomes.

7.1 Boolean threshold models

An n-ary function f : {0, 1}n → {0, 1} is a threshold function if and only if there are
weights w1, . . . , wn ∈ R≥0 and a threshold ϑ ∈ R≥0 such that for all z1, . . . , zn ∈ {0, 1},

f(z1, . . . , zn) = 1 ⇐⇒
n∑
i=1

wi · zi ≥ ϑi

Example: We discuss several functions.

• The standard case of a threshold function is the n-ary majority function
which is specified via weights w1 = · · · = wn = 1 and threshold ϑ = dn+1

2 e.
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• Which binary functions are threshold functions?

– AND is a threshold function: w1 = w2 = 1, ϑ = 2:

x1 x2 x1 ∧ x2
0 0 0
0 1 0
1 0 0
1 1 1

– OR is a threshold function: w1 = w2 = 1, ϑ = 1:

x1 x2 x1 ∨ x2
0 0 0
0 1 1
1 0 1
1 1 1

– XOR is not a threshold function:

x1 x2 x1 ⊕ x2
0 0 0
0 1 1
1 0 1
1 1 0

• The ternary function f : {0, 1}3 → {0, 1} : (x1, x2, x3) 7→ (x1 ∧ x2) ∨ x3 is
a threshold function, e.g., via w1 = 2, w2 = 2, w3 = 5, and ϑ = 4:

x1 x2 x3 f(x1, x2, x3)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Observe that f is the disjunction of two threshold functions.

• In light of the preceding example, is (x1 ∧x2)∨ (x3 ∧x4) then a threshold
function as well? No, it is not. Assume it is. Then, there are weights
w1, w2, w3, w4 such that

(x1 ∧ x2) ∨ (x3 ∧ x4) ≡ 1 ⇐⇒ w1 · x1 + w2 · x2 + w3 · x3 + w4 · x4 ≥ 1.
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So, the following inequalities are true:

w1 + w2 ≥ 1 since (1, 1, 0, 0) is a satisfying assignment

w3 + w4 ≥ 1 since (0, 0, 1, 1) is a satisfying assignment

w2 + w3 < 1 since (0, 1, 1, 0) is not a satisfying assignment

w1 + w4 < 1 since (1, 0, 0, 1) is not a satisfying assignment

Consequently, 2 ≤ w1 + w2 + w3 + w4 < 2. A contradiction.

7.2 Equilibria in threshold models

We want to find fixed points in networks over threshold functions. In fact, we prove that
fixed points always exist in networks where local transitions belong to a larger class of
functions.

A function f : {0, 1}n → {0, 1}k is said to be monotone if and only if for all x, y ∈ {0, 1}n,
x ≤ y implies f(x) ≤ f(y). The less-than-or-equal relation is defined to be the vector-
ordering.

Proposition 7.1 Each threshold function is monotone.

Proof: Suppose x = (x1, . . . , xn) ≤ (y1, . . . , yn) = y, i.e., xi ≤ yi for all i ∈ {1, . . . , n},
and f(x) = 1. Since the weights w1, . . . , wn are non-negative, we obtain

ϑ ≤
n∑
i=1

wi · xi ≤
n∑
i=1

wi · yi.

Thus, f(y) = 1. Therefore, f is a monotone function. This proves the proposition.

Note that in the examples above, the last function is monotone, though not a threshold
function.

Proposition 7.2 Let L = {f1, . . . , fm} be a set of local transitions on an item set A
such that all fi are threshold functions. Then, FL[U ] is monotone (with respect to the
vector-ordering) for all ∅ 6= U ⊆ A.

Proof: Each component of FL[U ] is a threshold function. That is, each component of
FL[U ] is monotone. Hence, FL[U ] is monotone with respect to the vector-ordering. This
shows the proposition.

Theorem 7.3 Let L = {f1, . . . , fn} be a set of local transition functions on an item set
A. Let α be any schedule on A. Then, the global network map F(L,α) has a fixed point.
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Proof: We give an algorithm for finding a fixed point of F(L,α) that, essentially, simulates
the global network map along a specific orbit:

[1] x := (0, 0, . . . , 0)
[2] repeat

[3] y := x
[4] x := F(L,α)(y)
[5] until x = y

If the procedure terminates then a fixed point is found. To show the termination property,
observe that we construct an ascending chain

x(0) ≤ x(1) ≤ x(2) ≤ x(3) ≤ · · · ≤ x(k) ≤ . . . ,

where x(0) =def (0, 0, . . . , 0) and x(k) is the configuration assigned to x in the fourth line
of the algorithm above. Indeed, this is easily seen by induction:

• base of induction n = 1: It holds that

x(0) ≤ F(M,α)(x
(0)) = x(1)

since x(0) is a bottom element in the poset ({0, 1}n,≤) and since F(M,α) is monotone
by Proposition 7.2.

• inductive step n > 1: Using the monotonicity of F(M,α), we obtain

x(n) = F(M,α)(x
(n−1)) (line (4) of the algorithm)

≤ F(M,α)(x
(n)) (by inductive assumption and Proposition 7.2)

= x(n+1) (line (4) of the algorithm)

Since {0, 1}n is a finite set, the chain si finite. Thus, the procedure terminates. Therefore,
there a fixed point for (M,α). This proves the theorem.

Note that, in the proof above, there is a dual procedure starting at (1, 1, . . . , 1).
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8.1 Attitudes and attitude change

An attitude is a positive, negative, or mixed reaction to a person, object, or idea. Attitudes
are (often) measured using (multi-item) questionnaires known as attitude scales, e.g., Likert
scales. Note that attitude scales are based on the principle of forced choices. An opinion is
the result of selecting a value from an attribute range D. That is, we consider an opinion
oi ∈ D of actor i ∈ A is the state of i in the population A.

In the forthcoming, we consider attitude change by persuasive communication. Among
the many models developped in social psychology, a standard model is the Elaboration
Likelihood Model (ELM), a dual-process model by Petty and Cacioppo. It makes an
antagonistic distinction between two ways to persuasion depending on the so-called need
for cognition of an audience receiving a message from a source:

• central route to persuasion: actor thinks carefully about a communication and is
influenced by the strength of its arguments.

• peripheral route to persuasion: actor does not think carefully about a communication
and is influenced by superficial cues.

Models of opinion dynamics implement mechanisms of interdependent influence by persua-
sive communication affecting opinion changes, and by this presumably attitude changes,
of the actors.

8.2 The Friedkin-Johnsen model

The Friedkin-Johnsen model is an opinion dynamics model based on social influence, first
published in 1990. It is representative for the class of linear models.

In general, the model is given for a sequence of opinion vectors o(k) = (o
(k)
1 , o

(k)
2 , . . . , o

(k)
n )

for k ∈ N:

o(0) = X1B1 where

X1 ∈ Rn×k represents weighted influence of k exogenous variables

B1 ∈ Rn×k represents values of j exogenous variables
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o(k) = αkWko
(k−1) + βkXkBk where

Xk ∈ Rn×k, Bl ∈ Rn×k have the same meaning as above

Wk ∈ Rn×n represents the network of influence

αk ∈ Rn×n represents a weight on the endogenous conditions

βk ∈ Rn×n represents a weight on the exogenous conditions

So, in the general model, for each time set we have different influences of the variables and
in the networks. This makes the model almost unanalyzable.

The basic model assumes that the description is static: X1 = X2 = · · · = X, B1 = B2 = · · ·
= B, W1 = W2 = · · · = W , α1 = α2 = · · · = α, β1 = β2 = · · · = β. The basic model, in
fact, defines an iterated map on some domain D ⊆ R:

F : Dn → Dn : x 7→ αWx+ βXB

Let us consider the orbit of x(0) = XB under F :

x(0) = XB

x(1) = F (x(0)) = αWXB + βXB = (αW + βI)XB

x(2) = F (x(1)) = αW (αW + βI)XB + βXB = (α2W 2 + αβW + βI)XB

x(3) = F (x(2)) = αW (α2W 2 + αβW + βI)XB + βXB

= (α3W 3 + α2βW 2 + αβW + βI)XB

An easy inductive argument shows that for the k-th iteration F k:

x(k) = αkW kXB +

(
k−1∑
t=0

αtW t

)
βXB

We obtain the following by using results from linear algebra:

• lim
k→∞

αkW kXB = 0 if |α| < 1 and there is an m such that |W k| ≤ m · 1n×n for all

k ∈ N (note that 1n×n is the all-one n× n matrix).

•
k−1∑
t=0

αtW t = (I − αW )−1 if α−1 is not an eigenvalue of W

Overall, if all conditions are satisfied, we obtain limk→∞ x
(k) = (I − αW )−1βXB. The

opinion change process converges and reaches an equilibrium.
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8.3 The Relative Agreement model

The Relative Agreement model has been introduced in the paper

Guillaume Deffuant, Frédéric Amblard, Gérard Weisbuch, Thierry Faure: How
can extremism prevail? A study on the relative agreement interaction model.
Journal of Artificial Societies and Social Simulation, 5(4), 2002.

in order look for network parameters that allow extreme opinions to dominate eventually
within a human population. The model is representative for a physics-oriented approach to
complex networks: (a) methodologically, it employs agent-based modelling; (b) it explains
a complex phenomenon in a stylized, metaphorical fashion. Apart from the methodological
perspective, the concrete, original research motivation for the study presented lies in the
influence “green” farmers have attained in the farming population.

We consider the following formal scenario: A population of n agents is given. An agent i
is characterized by two variables:

• opinion xi ∈ [−1, 1]

• uncertainty ui ∈ [0, 1]

Thus, the actual opinion of the agents ranges in her opinion segment

Si =def [xi − ui, xi + ui],

the size of which is (xi + ui)− (xi − ui) = 2ui.

We suppose a directed model of influence where any two agents use a communication chan-
nel. Agent i locally communicates to agent j over her communication channel, possibly
causing changes in opinion and uncertainty of agent j. In this situation, agent i is the
influencer of agent j and agent j is the influenced of agent i.

The effect of a communicative influence is given by an update rule which is assumed to
be the same for all interaction pairs of agents. Figure 8.1 describes a situation of an
interaction pair (i, j).

The update rule is based on the agreement along the opinion segments of agents i and j,
i.e.,

hij − (2ui − hij) = 2(hij − ui),

in relation to the uncertainty of the influencer

2(hij − ui)
2ui

=
hij
ui
− 1.
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opinion segment of j

opinion segment of i

overlap hij

non-overlap 2ui − hij

xjxj − uj xj + uj

xi xi + uixi − ui

−1 1

1−1

Figure 8.1: The Relative Agreement model

The formal specification of the update rule is given by defining local transitions:

xj ← xj +

{
µ
(
hij
ui
− 1
)

(xi − xj) if hij ≥ ui
0 otherwise

uj ← uj +

{
µ
(
hij
ui
− 1
)

(ui − uj) if hij ≥ ui
0 otherwise

Here, µ is some decay constant, 0 < µ < 1.

Proposition 8.1 Let an interaction pair (i, j) be given. Let hij denote the overlap of the
opinion segments of the actors i and j before interaction, and let h′ij denote the overlap
of the opinion segments of the actors i and j after interaction. Then, hij ≤ h′ij.

Proof: Let (xi, ui) be the opinion/uncertainty pair of actor i, let (xj , uj) be the opin-
ion/uncertainty pair of actor j. According to our update rule, if hij ≤ ui then there are no
changes, neither in the opinions nor in the uncertainties of both actors. That is, h′ij = hij .
So, let hij > ui. Let x′j denote actor j’s opinion after interaction, and let u′j denote actor
j’s uncertainty after interction. More specifically, we have

x′j =

(
1− µ

(
hij
ui
− 1

))
xj + µ

(
hij
ui
− 1

)
xi,

u′j =

(
1− µ

(
hij
ui
− 1

))
uj + µ

(
hij
ui
− 1

)
ui.

The overlap h′ij is given by

h′ij = min(xi + ui, x
′
j + u′j)−max(xi − ui, x′j − u′j).
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Note that hij ≤ 2ui. Thus, the update rules define convex combinations. By linearity, we
easily examine the following cases:

1. Suppose xi + ui ≤ xj + uj and xi − ui ≥ xj − uj . Therefore,

xi + ui ≤ x′j + u′j ≤ xj + uj ,

xj − uj ≤ x′j − u′j ≤ xi − ui.

We obtain

hij = xi + ui − (xi − ui),
h′ij = (xi + ui)− (xi − ui) = hij

2. Suppose xi + ui ≤ xj + uj and xi − ui ≤ xj − uj . Therefore,

xi + ui ≤ x′j + u′j ≤ xj + uj ,

xi − ui ≤ x′j − u′j ≤ xj − uj .

We obtain

hij = xi + ui − (xj − uj),
h′ij = (xi + ui)− (x′j − u′j) ≥ (xi + ui)− (xj − uj) = hij

3. Suppose xi + ui ≥ xj + uj and xi − ui ≤ xj − uj . Therefore,

xj + uj ≤ x′j + u′j ≤ xi + ui,

xi − ui ≤ x′j − u′j ≤ xj − uj .

We obtain

hij = xj + uj − (xj − uj),
h′ij = (x′j + u′j)− (x′j − u′j) ≥ (xi + ui)− (xj − uj) = hij

4. Suppose xi + ui ≥ xj + uj and xi − ui ≥ xj − uj . Therefore,

xj + uj ≤ x′j + u′j ≤ xi + ui,

xj − uj ≤ x′j − u′j ≤ xi − ui.

We obtain

hij = xj + uj − (xi − ui),
h′ij = (x′j + u′j)− (xi − ui) ≥ (xj + uj)− (xi − ui) = hij
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This proves the proposition.

Proposition 8.2 Let the interaction pair (i, j) be given. For k ∈ N, let x
(k)
j be actor

j’s opinion after the k-th round of the directed interaction (i, j), and let u
(k)
j be actor j’s

uncertainty after the k-th round of the directed interaction (i, j). Then,

lim
k→∞

x
(k)
j = xi, lim

k→∞
u
(k)
j = ui.

Proof: We only prove the convergence in opinions. Since hij ≤ 2ui, we obtain as an

upper bound on the opinion x
(k)
j for k ∈ N+

x
(k)
j ≤ (1− µ)x

(k−1)
j + µxi,

and furthermore, by induction,

x
(k)
j ≤ (1− µ)kxj +

(
1− (1− µ)k

)
xi.

Hence, limk→∞ x
(k)
j ≤ xi. For the lower bound, we write

x
(k)
j = (1− µAk−1)x

(k−1)
j + µAk−1xi,

where Ak =
h
(k)
ij

ui
− 1 is the relative agreement after the k-th interaction. By Proposition

8.1, it holds that Ak ≤ Ak+1 for all k ∈ N. Thus, we can estimate

x
(k)
j ≥ (1− µA0)x

(k−1)
j + µA0xi,

and, again by induction,

x
(k)
j ≥ (1− µA0)

kxj +
(

1− (1− µA0)
k
)
xi,

Hence, limk→∞ x
(k)
j ≥ xi. This proves the proposition.

In general populations of actors, it is not clear at all whether there is any convergence to a
“stable” opinion/uncertainty pattern over several time steps. If unambiguous convergence
is reachable, there are three important cases: convergence to the opinion poles, either
positive or negative, or convergence to the middle. We are interest in studying convergence
to extreme opinions.

Extremists are people with extreme opinions, i.e., opinions close to the boundaries mea-
sured by −1 and 1. Furthermore, the model of extremists within a population is based on
two observations which are claimed to possess a certain anectodal evidence [7]:

1. “. . . people who have extreme opinions tend to be more convinced,”
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2. “. . . people who have moderate initial opinions, often express a lack of knowledge
(and uncertainty).”

A simplification of these observations can be incorporated into the Relative Agreement
model as follows. Let ue be the uncertainties of the extremists, supposed to be small
and the same for all extremists. Let u be the (identical) uncertainty of the moderate.
According to our observations, it holds that u > ue. Then, the population can be initially
decomposed into three classes corresponding to their opinion/uncertainty pairs:

1. positive extremists: xi ≈ 1, ui = ue

2. negative extremists: xi ≈ −1, ui = ue

3. moderates: xi ≈ 0, ui = u

Let pe denote the fraction of extremists, either positive or negative, in the population.
Depending on the fraction of actors belonging to these classes, an extremism bias can
be defined. Let p+ be the fraction of positive extremists, and let p− be the fraction of
negative extremists. Then, the extremism bias δ is given as

δ =
p+ − p−
p+ + p−

The simulation works in two phases:

1. For initalization, (a) choose n opinions uniformly at random from [−1, 1] and set all
n uncertainties to u, (b) for the p+ ·n most positive opinions and p− ·n most negative
opinons, the uncertainties are set to ue.

2. Iteratively choose a pair (i, j) of agents and let agent i exert influence on agent j
according to the specified update rule.

The stylized simulation results can be divided into three stable scenarios: central clus-
tering, bipolarization, single polarization. The following figures show diagram schemes
for each of the three scenarios together with parameter settings such that the described
behavior can be observed. The x-axis codes for time, i.e., number of iterations per actor,
and the y-axis codes for opinions. A trajectory of an actor’s opinion over the course of
time runs inside the region bounded by the drawn curves. Common parameters for all
figures (and the simulations) are n = 200, µ = 0.5, δ = 0, and ue = 0.1. The initial
uncertainty parameter u is increased from figure to figure.

In Figure 8.2, the initial uncertainty of the moderates is u = 0.4. It is an example
of central convergence. The majority of the moderate actors are not attracted by the
extreme opinions.

In Figure 8.3, the initial uncertainty of the moderates is u = 1.2. It is an example of
convergence to both extremes. The initially moderate actors split and become extremists.
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positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 0.4)

−1

1

0

iterations per actor

opinion x

Figure 8.2: Scheme of central convergence.

positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 1.2)

−1

1

0

iterations per actor

opinion x

Figure 8.3: Scheme of bipolarization.

In Figure 8.4, the initial uncertainty of the moderates is u = 1.4. It is an example
of convergence to one single extreme. In this case, the majority of the population is
attracted by one of the extremes. This behavior can take place even when the number of
initial extremissts is the same at both extremes, which is claimed to have been a priori
unexpected.
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positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 1.4)

−1

1

0

iterations per actor

opinion x

Figure 8.4: Scheme of single polarization.
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Mathematical tools A

In this chapter we discuss relevant terminology and notation for sets, relations, and graphs,
some fundamental algorithms, and a few other mathematical preliminaries.

A.1 Sets and relations

We denote the set of integers by Z, the set of non-negative integers by N, and the set of
positive integers by N+. Z2 denotes the Galois field GF[2].

Sets

The empty set is denoted by ∅. For an arbitrary set A, P(A) denotes the power set of A,
i.e., the family of all subsets of A, and P+(A) denotes the set P(A)\{∅}. For an arbitrary
finite set A, its cardinality is denoted by ‖A‖. Let A and B be any sets. Then A \ B
denotes the difference of A with B, i.e., the set of all elements that are in A but not in B.
A×B denotes the cartesian product, i.e, the set of all pairs (a, b) with a ∈ A and b ∈ B.
For m ∈ N+, define Am =def A× · · · ×A︸ ︷︷ ︸

m times

. Let M be any fixed basic set. For a set

A ⊆M , its complement in the basic set M is denoted by A, i.e., A = M \A. A multiset A
is allowed to contain elements many times. The multiplicity of an element x in a multiset
A is the number of occurrences of x in A. The cardinality of a multiset A is also denoted
by ‖A‖.

Functions

Let M and M ′ be any sets, and let f : M → M ′ by any function. The domain of f
which we denote by Df is the set of all x ∈ M such that f(x) is defined. A function f
is total if the domain of f is M . For a set A ⊆ Df , let f(A) = {f(x) | x ∈ A} denote
the image of A under f . In particular, the range of f which is denoted by Rf is the set
f(Df ). For a set A ⊆ M , the restriction of a total function f to A is denoted by f [A].
The inverse of f is denoted by f−1, i.e, f−1 : M ′ → P(M) such that for all y ∈ M ′,
f−1(y) = {x ∈ M | f(x) = y}. If f−1(y) is at most a singleton then we omit the braces.
The pre-image of A under f is the set f−1(A) = {x ∈M | f(x) ∈ A}.

We use two notations for composition of functions. If f and f ′ are functions with
f : M → M ′ and f ′ : M ′ → M ′′, then (f ′ ◦ f) is the function mapping from M to
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M ′′ which is defined for all x ∈M as (f ′ ◦ f)(x) =def f ′(f(x)). In contrast, we use f · f ′
to denote f ′ ◦ f .

A function f : M → M ′ is bijective if f is surjective, i.e., Rf = M ′ and injective, i.e., for
all y ∈ Rf , f−1(y) is a singleton. Suppose M ′ = M and M is finite. In this case a bijective
function f is a permutation. Suppose M = {1, 2, . . . , n}. A cycle (i1 i2 . . . ik) of length
k of the permutation π : M → M is a sequence (i1, i2, . . . , ik) such that π(ij) = ij+1 for
1 ≤ j < k and π(ik) = i1. Each permutation allows a decomposition into cycles.

Orders

In more detail the following can be found in any textbook (e.g., [17, 6]) about theory of
orders and lattices.

Let P be any set. A partial order on P (or order, for short) is a binary relation ≤ on P
that is reflexive, antisymmetric, and transitive. The set P equipped with a partial order
≤ is said to be a partially ordered set (for short, poset). Usually, we talk about the poset
P . Where it is necessary we write (P,≤) to specify the order. A poset P is a chain if
for all x, y ∈ P it holds that x ≤ y or y ≤ x (i.e., any two elements are comparable with
respect to ≤). Such an order is also called a total order. A poset P is an antichain if for
all x, y ∈ P it holds that x ≤ y implies that x = y (i.e., no two elements are comparable
with respect to ≤).

We consider N to be ordered by standard total order on the natural numbers. If a set A
is partially ordered by ≤ then Am can be considered to be ordered by the vector-ordering,
i.e., (x1, . . . , xm) ≤ (y1, . . . , ym) if and only if for all i ∈ {1, . . . ,m}, xi ≤ yi.

An important tool for representing posets is the covering relation ≺. Let P be a poset
and let x, y ∈ P . We say that x is covered by y (or y covers x), and write x ≺ y, if x < y
and x ≤ z < y implies that x = z. The latter condition is demanding that there be no
element z of P with x < z < y. A finite poset P can be drawn in a diagram consisting of
points (representing the elements of P ) and interconnecting lines (indicating the covering
relation) as follows: To each element x in P associate a point P (x) in the picture which is
above all points P (y) associated to elements y less than x, and connect points P (x) and
P (y) by a line if and only if x ≺ y. A poset can have different representation by diagrams.

Let P and P ′ be posets. A map ϕ : P → P ′ is said to be monotone (or order-preserving)
if x ≤ y in P implies ϕ(x) ≤ ϕ(y) in P ′. We say that ϕ is an (order-)isomorphism if ϕ
is monotone, injective, and surjective. Two posets P and P ′ are isomorphic, in symbols
P ∼= P ′, if there exists an isomorphism ϕ : P → P ′. Isomorphic poset shall be considered
to be not essentially different: Two finite posets are isomorphic if and only if they can be
drawn with identical diagrams.

Words
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Sometimes we make no difference between m-tuples (x1, . . . , xm) over a finite set M and
words x1 . . . xm of length m over M . Such finite sets are called alphabets. Let Σ be a
finite alphabet. Σ∗ is the set of all finite words that can be built with letters from Σ. For
x, y ∈ Σ∗, x · y (or xy for short) denotes the concatenation of x and y. The empty word is
denoted by ε. For a word x ∈ Σ∗, |x| denotes the length of x. For n ∈ N, Σn is the set of
all words x ∈ Σ∗ such that with |x| = n. For a word x = x1 . . . xn ∈ Σ∗ any word x1 . . . xk
such that k ≤ n is called a prefix of x. We use regular expressions to describe subsets of
Σ∗ (see, e.g., [23]).

A.2 Graph theory

A graph G = (V,E) consists of a set V of vertices and a set E of edges joining pairs
of vertices. The vertex set and edge set of a graph G are denoted by V (G) and E(G),
respectively. The cardinality of V is usually denoted by n, the cardinality of E by m. If
two vertices are joined by an edge, they are adjacent and we call them neighbors. Graphs
can be undirected und directed. In undirected graphs, the order in which vertices are
joined is irrelevant. An undirected edge joining vertices u, v ∈ V is denoted by {u, v}. In
directed graphs, each directed edge has an origin and a destination. An edge with origin
u ∈ V and destination v ∈ V is represented by an ordered pair (u, v). For a directed graph
G = (V,E), the underlying undirected graph is the undirected graph with vertex set V
that has an undirected edge between two vertices u, v ∈ V if (u, v) or (v, u) is in E.

Multigraphs

In both undirected and directed graphs, we may allow the edge set E to contain the same
edge several times, i.e., E can be a multiset. If an edge occurs several times in E, the
copies of that edge are called parallel edges. Graphs with parallel edges are also called
multigraphs. A graph is called simple, if each of its edges in contained in E only once, i.e.,
if the graph does not have parallel edges. An edge joining a vertex to itself, is called a
loop. A graph is called loopless if it has no loops. In general, we assume all graphs to be
loopless unless specified otherwise.

Degrees

The degree of a vertex v in an undirected graph G = (V,E), denoted by dv, is the number
of edges in E joining v. If G is a multigraph, parallel edges are counted according to their
multiplicity in E. The set of neighbors of v is denoted by N(v). N0(v) denotes the vertex
set N(v) ∪ {v}. If the graph under consideration is not clear from the context, these
notations can be augmented by specifying the graph as an index. For example, NG(v)
denotes the neighborhood of v in G.
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Subgraphs

A graph G′ = (V ′, E′) is a subgraph of the graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
Sometimes we denote this by G′ ⊆ G. It is a (vertex-)induced subgraph if E′ contains all
edges e ∈ E that join vertices in V ′. The induced subgraph of G = (V,E) with vertex set
V ′ ⊆ V is denoted by G[V ′]. The (edge-)induced subgraph with edge set E′ ⊆ E, denoted
by G[E′], is the subgraph G′ = (V ′, E′) of G, where V ′ is the set of all vertices in V that
are joined by at least one edge in E′.

Walks, paths, and cycles

A walk from x0 to xk in a graph G = (V,E) is a sequence x0, e1, x1, e2, x2, . . . , xk−1, ek, xk
alternating between vertices and edges of G, where ei = {xi−1, xi} in the undirected case
and ei = (xi−1, xi) in the directed case. The length of a walk is the number of edges on
the walk. As shorthands we use (x0, x1, . . . , xk) and (e1, e2, . . . , ek) to denote a walk. The
walk is called a path if xi 6= xj for i 6= j. A walk with x0 = xk is called a cycle if ei 6= ej
for i 6= j. A cycle is a simple cycle if xi 6= xk for 0 ≤ i < j ≤ k − 1.

Special graphs

A tree is a connected (for a definition see below) undirected graph not containing a cycle.
An undirected graph G = (V,E) is called complete if it contains all possible pairs of
vertices as edges. A complete graph with n vertices is denoted by Kn. A Kn is called a
clique. A K2 is a graph of two vertices with one edge joining them. A K3 is also called
a triangle or triad. A graph without edges is called empty. An independent set within a
graph G = (V,E) is a vertex set U ⊆ V such that G[U ] is empty. A graph G = (V,E)
is called bipartite if there are independent vertex sets V1, V2 ⊆ V such that V1 and V2 are
disjoint and V1∪V2 = V . We denote by E(V1, V2) the set of edges joining vertices from V1
with vertices from V2. If E(V1, V2) = V1 × V2 then G is called a complete bipartite graph.
Such a graph is denoted by Kn1,n2 if V1 consists of n1 vertices and V2 of n2 vertices. A
K1,n is also called a star. For two graphs G = (V,E) and G′ = (V ′, E′) we denote by
G⊕G′ the graph consisting of the disjoint union of the graphs G and G′.

Graph classes

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic, denoted by G ' G′, if there is a
bijective mapping ϕ : V → V ′ such that for all vertices u, v ∈ V the following is true: in the
case that G and G′ are directed graphs it holds that (u, v) ∈ E ⇔ (ϕ(u), ϕ(v)) ∈ E′, and in
the case that G and G′ are undirected graphs it holds that {u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ E′.
A set of graphs is called a graph class if for each graph G in the class all graphs isomorphic
to G belong to the class as well.
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A.3 Algorithmics

Most results of this work relate to algorithms. In the following we mention essential
problems and concepts which are needed more than once.

For two functions f : N→ N and g : N→ N we say that f is in O(g) if there are constant
n0, c ∈ N+ such that for all n ≥ n0, f(n) ≤ c · g(n). We say that f is in Ω(g) if g is in
O(f). We say that f is in Θ(g) if f is in O(g) ∩ Ω(g).

Connected components

An undirected graph G = (V,E) is connected if every vertex can be reached from every
other vertex, i.e., if there is a path from every vertex to every other vertex. A graph
consisting of a single vertex is also taken to be connected. Graphs that are not connected
are called disconnected. For a given undirected graph G = (V,E), a connected component
of G is an induced subgraphs G′ = (V ′, E′) that is connected and maximal, i.e., there is
no connected subgraph G′′ = (V ′′, E′′) such that V ′′ ⊃ V ′. Checking whether a graph is
connected and finding all its connected components can be done in time O(n+m) using
depth-first search or breadth-first search.

A directed graph G = (V,E) is strongly connected if there is a directed path from every
vertex to every other vertex. A strongly connected component of a directed graph G is
an induced subgraph that is strongly connected and maximal. The strongly connected
components of a directed graph can be computed in time O(n + m) using a depth-first
search.

NP-completeness

It is important to consider the running-time of an algorithm for a given problem. Usually,
one wants to give an upper bound on the running time of the algorithm for inputs of a
certain size. If the running-time of an algorithm is O(nk) for some k ∈ N and for inputs
of size n, we say that the algorithm runs in polynomial time. For graph problems, the
running-time is usually specified as a function of n and m, the number of vertices and edges
of the graph, respectively. For many problems, however, no polynomial-time algorithm
has been discovered. Although one cannot rule out the possible existence of polynomial-
time algorithms for such problems, the theory of NP-completeness provides means to give
evidence for the computational intractability of a problem.

A decision problem is in the complexity class NP if there is a nondeterministic Turing
machine that solves the problem in polynomial time. That is to say that the answer to
a problem instance is “yes” if there exists a solution in the set of all possible solutions to
the instance which is of polynomial size. Moreover, the test whether a potential solution
is an actual solution must be performed in polynomial time. Note that a decision problem
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is usually considered to consist of the set of the “yes”-instances. A decision problem is
NP-hard if every problem in NP can be reduced to it via a polynomial-time many-one
reduction. (A polynomial-time many-one reduction from a set A to a set B is a function
computable in polynomial time such that for all instances x, x ∈ A⇔ f(x) ∈ B.) Problems
that are NP-hard and belong to NP are called NP-complete. A polynomial-time algorithm
for an NP-hard problem would imply polynomial-time algorithms for all problems NP—
something that is considered very unlikely. Therefore, the NP-hardness of a problem is
considered substantial evidence for the computational difficulty of the problem.

A standard example of an NP-complete problem is 3SAT, i.e., checking whether a given
propositional formula given as a 3CNF has a satisfying assignment. To be more precise, a
kCNF is a formula H = C1 ∧ · · · ∧Cm consisting of clauses Ci each of which has the form
Ci = li1 ∨ li2 ∨ · · · ∨ lik where lij is either a positive or a negative literal. A positive literal
is some variable, say xk, and a negative literal is the negation of some variable, say xk.

The class of complements of NP sets is denoted by coNP, i.e., coNP = {A|A ∈ NP}.

For optimization problems (where the goal is to compute a feasible solution that maxi-
mizes or minimizes some objective function), we say that the problem is NP-hard if the
corresponding decision problem (checking whether a solution with objective value better
than a given value k exists) is NP-hard.

#P-completeness

A complexity class closely related to NP is the class #P which has been introduced in
[46, 47] to provide evidence for the computational intractability of counting problems.
The class #P consists of all problems of the form “compute f(x)” where f(x) is the
number of accepting paths of a nondeterministic Turing machine running in polynomial
time. Equivalently, a #P-functions counts the number of solutions to instances of an
NP-problem. We say that a function f is #P-complete if it belongs to #P and every
function g ∈ #P is polynomial-time Turing reducible to f , i.e., g can be computed by a
deterministic polynomial-time Turing machines which is allowed to make queries to f and
answering these queries is done within one step (see, e.g., [23, 21]). The canonical example
of a #P-complete problem is #3SAT, i.e., counting the number of satisfying assignments
of a propositional formula given as a 3CNF. One of the most prominent #P-complete
problem is counting the number of perfect matchings in a bipartite graph [47]. As in
the case of NP, if there is a polynomial-time algorithm for computing some #P-complete
function from #P then there are polynomial-time algorithms for all #P-functions—which
is equally considered unlikely. In particular, such a polynomial-time algorithm would
imply that P = NP.

[]
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