Assignment 2

Issue date: 01 May 2014 Due date: 08 May 2014, 11:00
It is explicitly recommended to solve exercises in groups of two.

Exercise 1: Counting graphs

$2+2$ Points

- Give the number of isomorphic graphs in each non-isomorphic graph class on 4 vertices.
- Draw one graph from each non-isomorphic graph class on 4 vertices.

Exercise 2: Degree sequences

(a) Prove that the number of vertices with odd degree is even in every simple graph $G=(V, E)$.
(b) Prove:

$$
\forall G=(V, E), \quad \exists u, v \in V: \operatorname{deg}(u)=\operatorname{deg}(v)
$$

where $G=(V, E)$ is a simple graph with $|V|=n \geq 2$.
(c) A sequence of natural numbers is called graphic if it is the degree sequence of a simple graph.
Which of the following degree sequences are graphic and which are not? Draw one example of a simple graph for each graphical sequence or explain why any of the sequence is not graphical.

- $[6,4,3,2,2,2,2]$
- $[7,5,5,3,2,2]$
- $[6,5,5,2,2,2,2]$
- $[6,4,4,2,2,2,2]$
- $[17,15,14,12,12,10,9,8,8,7,7,6,5,5,4,3,2,2,1,1]$
(d) Draw all the graphs that realize the following degree sequences:
- $[10,1,1,1,1,1,1,1,1,1,1,1,1,1,1]$
- $[4,4,4,4,4]$
- $[2,2,2,2,2,2,2,1,1]$

If there are too many realizable graphs for any of the above degree sequences, it suffices to give an informal description instead of drawing all the possible graphs.
(e) A k-regular graph is a graph in which each vertex has has degree k. Draw 2 non-isomorphic 2 -regular graphs with 6 vertices.

Please submit your answers electronically to teaching assistant Habiba (habiba@uni-konstanz.de).

