Assignment 11

Issue date: 03 July 2014 Due date: 10 July 2014, 11:00 It is explicitly recommended to solve exercises in groups of two.

Exercise 1: Cores

(a) A simple undirected graph $G=(V, E)$ is k-colorable, if there exists a mapping $f: V \rightarrow\{1, \ldots, k\}$, such that $f(v) \neq f(w)$ for all $\{v, w\} \in E$, i.e. adjacent nodes are colored differently.

The smallest $k \in \mathbb{N}$ for which G is k-colorable is called its chromatic number $\chi(G)$. Prove that $\chi(G) \leq \operatorname{core}(G)+1$.
(b) Let $G=(V, E, f)$ be a simple, undirected, weighted graph with f : $E \rightarrow \mathbb{R}_{0}^{+}$. A subgraph $C_{t}(G) \subseteq G$ is called weighted t-core, if it is inclusion-maximal and it holds that

$$
\sum_{w \in N_{C_{t}(G)}(v)} f(\{v, w\}) \geq t \quad \text { for all } v \in C_{t}(G) .
$$

Show that the weighted t-core of a graph is unique and provide a simple algorithm for calculation.

In lecture you studied the concept of core structure in graphs. A k-core is defined as:

Let $G=(V, E)$ be any undirected graph and let $k \in\{1, \ldots, n-1\}$ be a natural number. A subset $U \subseteq V$ is said to be an k-core if and only if $\delta(G[U]) \geq k$.

Now, consider a complementary concept of the core structure called Plexes. A k-plex of a graph is defined as:

Let $G=(V, E)$ be any undirected graph and let $k \in\{1, \ldots, n-1\}$ be a natural number. A subset $U \subseteq V$ is said to be a k-plex if and only if $\delta(G[U]) \geq|U|-k$.

Prove:
(a) If V is a k-plex with $k<\frac{n+2}{2}$, then $\operatorname{diameter}(G) \leq 2$ and, if additionally $n \geq 4, G$ is 2 -edge-connected.
(b) If V is a k-plex with $k \geq \frac{n+2}{2}$, then $\operatorname{diameter}(G) \leq 2 k-n+2$.

Recall:

- diameter (G) is the length of the longest shortest path of a graph G.
- A graph G is k-edge-connected if it remains connected whenever fewer than k edges are removed.

Please submit your answers electronically to teaching assistant Habiba (habiba@uni-konstanz.de).

