
University of Konstanz Design and Analysis of Algorithms

Department of Computer & Information Science WS 2010/2011

Prof. Dr. Ulrik Brandes / Dr. Sabine Cornelsen / Melanie Badent / Natalie Indlekofer

Contents

7.2 Finite Automaton Matcher 1

7.3 The Knuth-Morris-Pratt Matcher 6

7.4 Suffix-Trees 9
7.4.1 Trie . 10
7.4.2 Suffix Tree . 11
7.4.3 Ukkonen’s Online Algorithm . 12

7.4.3.1 Making Rules 1 and 3 Implicit . 14
7.4.3.2 Suffix Links . 16

7.5 The Algorithm of Boyer & Moore 20
7.5.1 Bad Character Rule . 20
7.5.2 Good Suffix Rule . 21
7.5.3 Preprocessing . 22

7.5.3.1 Preprocessing for the Bad Character Rule 22
7.5.3.2 Preprocessing for the Good Suffix Rule 23

Exact string matching considers the problem of finding all occurrences of a pattern
P [1, . . . ,m] in a text T [1, . . . , n], n � m, i.e., to find all valid shifts (all occurrences of P
in T with shift s), i.e., all s, 0 ≤ s ≤ n−m such that

P [1 . . .m] = T [s+ 1, . . . , s+m].

Throughout these lecture notes, we assume that T [j, . . . , i] denotes the empty string if
j > i.

7.2 Finite Automaton Matcher

The Finite-Automaton-Matcher was first described by Aho et al. (1974). The idea of
the algorithm is to use the information obtained from the last characters in the already
read text. E.g., in

T : c b a c b c
P : c b c

1

the naive string matcher will move ahead by only one, even though we already have the
information to decide that moving forward by one or two will not lead to a match. The
Finite-Automaton-Matcher constructs a finite automaton AP for the pattern P such
that

• AP reads the text T once.

• P occurs with shift s in T if and only if AP is in an accepting state after reading
T [s+m].

Definition 1. A finite automaton is a tuple A = (Q,Σ, q0, δ, F) with

Q: finite set of states,
Σ: finite alphabet,
F ⊆ Q: set of accepting states,
q0 ∈ Q: start state,
δ : Q× Σ −→ Q: transition function.

The transition function δ extends to Q× Σ∗ by setting

δ(q, ε) = q and δ(q, wa) = δ(δ(q, w), a).

(Σ∗ is the set of words (strings) over Σ and ε is the empty word.) A accepts all words
w ∈ Σ∗ with δ(q0, w) ∈ F .

Example 1. The finite automaton with Σ = {a, b}, Q = {0, 1}, q0 = 0, F = {1}, and

δ :

(0, a) 7→ 1
(0, b)
(1, a)
(1, b)

 7→ 0 0 1a
a, b

b

accepts all words ending with an odd number of a’s.

The string matching automaton AP for P [1, . . . ,m] is defined as follows.

Q = {0, . . . ,m}, q0 = 0, F = {m}

and

P [q + 1]
q m0 1 2

P [2]P [1] P [3] P [q] P [m]

q′?

T [i] = a 6= P [q + 1]

2

δ should be defined such that q′ = δ(q0, T [1, . . . , i]) is the length of the largest prefix of P
that is a suffix of the so far read text, i.e.

T [1, , i− 1, i] known part of T
P [1, . . . , q′]

Definition 2.

• x ∈ Σ∗ is a suffix of w ∈ Σ∗, if w = yx for some y ∈ Σ∗.

• x ∈ Σ∗ is a prefix of w ∈ Σ∗, if w = xy for some y ∈ Σ∗.

Example 2. The suffixes of “eggplant” are

ε, t, nt, ant, lant, gplant, ggplant, eggplant.

A prefix of eggplant is, e.g., egg.

Definition 3. Let

sufP : Σ∗ −→ {0, . . . ,m}
w 7−→ max{k; P [1, . . . , k] is a suffix of w}

Example 3. If P = ab, then

sufP (aca) = 1, sufP (aab) = 2, and sufP (acb) = 0.

We now want to define δ such that

δ(q0, T [1, . . . , i]) = sufP (T [1, . . . , i]), i = 0, . . . , n. (1)

From Eq. 1 it follows then especially that

δ(q0, T [1, . . . , i]) = m⇐⇒ P occurs with shift i−m in T.

The definition of the transition function must not depend on the text but only on the
pattern. Assume there is a δ fulfilling Eq. 1. Let q = sufP (T [1, . . . , i−1]) = δ(q0, T [1, . . . , i−
1]), a = T [i] and q′ = δ(q, a). Then both, P [1, , q]a and P [1, . . . , q′] are suffixes of
T [1, . . . , i]:

P [1, . . . , q′]
T [1, , i− 1, i]

P [1, , q]a

This motivates us to define

δ(q, a) := sufP (P [1, . . . , q]a).

3

Example 4. P = ararat,Σ = {a, r, t},

0 1 2
ra a 3 4 5 6r a

t, rtt, r
t

t, rt

a

r

aaat, r

The text T = arararat traverses AP along 0, 1, 2, 3, 4, 5, 4, 5, 6.

It remains to show that the definition of δ indeed yields Eq. 1.

Lemma 1. δ(q0, T [1, . . . , i]) = sufP (T [1, . . . , i]), i = 0, . . . , n.

Proof. We prove the lemma by induction on i. For i = 0 we have

δ(q0, ε) = q0 = 0 = sufP (ε).

For i > 0, we have

δ(q0, T [1, . . . , i]) Def. extension of δ= δ(δ(q0, T [1, . . . , i− 1]), T [i])
inductive hypothesis

= δ(sufP (T [1, . . . , i− 1])︸ ︷︷ ︸
=:q

, T [i])

Def. of δ= sufP (P [1, . . . , q]T [i])︸ ︷︷ ︸
=:q′

It remains to show that
q′ = sufP (T [1, . . . , i])︸ ︷︷ ︸

=:q′′

.

q′ ≤ q′′: P [1, . . . , q] is a suffix of T [1, . . . , i−1] and P [1, . . . , q′] is a suffix of P [1, . . . , q]T [i]:

T [1, , i− 1, i]
P [1, , q]T [i]

P [1, . . . , q′]

Hence, P [1, . . . , q′] is a suffix of T [1, . . . , i]. Since q′′ is maximum with the property
that P [1, . . . , q′′] is a suffix of T [1, . . . , i] it follows that q′ ≤ q′′.

4

q′′ ≤ q′: Assume that q′′ > q′. Since q′ is maximum with the property that P [1, . . . , q′] is
a suffix of P [1, . . . , q]T [i] it follows that P [1, . . . , q′′] is a suffix of T [1, . . . , i] but not
a suffix of P [1, . . . , q]T [i]. Hence, q′′ > q + 1 and we have the following situation.

T [1, , i− 1, i]
P [1, , q′′]

P [1, , q]T [i]
P [1, . . . , q′]

But then P [1, . . . , q′′ − 1] would be a larger suffix of T [1, . . . , i − 1] than P [1, . . . , q]
contradicting the maximality of q.

We summarize this section with the pseudocode of a straight-forward implementation
of the Finite-Automaton-Matcher.

Algorithm 1: Naive-Transition-Function

Input : pattern P [1, . . . ,m], alphabet Σ
Output: transition function δ of AP
for q ← 0 . . .m do

for a ∈ Σ do
k ← min{m, q + 1};
while P [1, . . . , k] not suffix of P [1, . . . , q]a do

k ← k − 1;
δ(q, a)← k;

Algorithm 2: Finite-Automaton-Matcher

Input : text T [1, . . . , n], transition function δ of AP , length m of the pattern P
Output: all valid shifts

q ← 0;
for i← 1, . . . , n do

q ← δ(q, T [i]);
if q = m then

output i−m;

The run time of this implementation is in

O(m3|Σ|︸ ︷︷ ︸
Naive-Transition-Function

+ n︸︷︷︸
Finite-Automaton-Matcher

).

Note that the time to compute the transition function can be improved to O(m|Σ|).

5

7.3 The Knuth-Morris-Pratt Matcher

In this section we discuss the linear time string matching algorithm of Knuth et al. (1977).
A description of the algorithm can also be found in (Cormen et al., 2001, Section 32.4) or
(Schöning, 2001, Section 10.3).

Recall that the finite automaton matcher had to compute (m + 1)|Σ| entries of the
transition function δ

δ(q, a) := max{k; P [1, . . . , k] is a suffix of P [1, . . . , q]a} = sufP (P [1, . . . , q]a)

for q = 0, . . . ,m, a ∈ Σ. The Knuth-Morris-Pratt algorithm computes instead a failure
function

π(q) := max{k < q; P [1, . . . , k] is a suffix of P [1, . . . , q]} = sufP (P [2, . . . , q]),

q = 1, . . . ,m that depends only on P . The failure function indicates how much the shift
of P can be at least augmented if there had been a mismatch and we have the following
properties.

Lemma 2. Let a ∈ Σ and 0 ≤ q ≤ m such that q = m or P [q + 1] 6= a. 1 ≤ q ≤ m. Then

(1) π(q) + 1 ≥ δ(q, a), and

(2) δ(q, a) = δ(π(q), a).

Proof. Let q′ := δ(q, a).

(1) If q′ = 0, then trivially π(q) + 1 ≥ q′. If q′ 6= 0, then P [1, . . . , q′ − 1] is a suffix of
P [1, . . . , q]. Since P [1, . . . , q′] is a suffix of P [1, . . . , q]a and P [q + 1] 6= a it follows
that P [1, . . . , q′ − 1] is even a suffix of P [2, . . . , q]. Hence, q′ − 1 ≤ π(q).

(2) By the definition of π it follows that P [1, . . . , π(q)] is a suffix of P [1, . . . , q]. Further,
π(q) + 1 ≥ q′ by Item (1) of this lemma and we have the following situation

P [1, , q] a
P [1, , π(q)] a
P [1, . . . , q′ − 1, q′].

It follows that P [1, . . . , q′] is a suffix of P [1, . . . , π(q)]a. Moreover, if there was a
larger prefix of P that is a suffix of P [1, . . . , π(q)]a, then this would also be a suffix
of P [1, . . . , q]a – contradicting the maximality of q′. Hence, δ(π(q), a) = q′.

Example 5.
a r a r a t

q 1 2 3 4 5 6
π(q) 0 0 1 2 3 0

0 1 2 3 4 5 6

6

The Knuth-Morris-Pratt matcher uses the failure function to simulate the finite au-
tomaton matcher.

Algorithm 3: Knuth-Morris-Pratt-Matcher

Input : text T [1, . . . , n], pattern P [1, . . . ,m]
Output: Shifts s with which P occurs in T

π ← Failure-Function(P);1

q ← 0;2

for i← 1, . . . , n do3

while q > 0 and P [q + 1] 6= T [i] do4

q ← π(q);5

if P [q + 1] = T [i] then6

q ← q + 1;7

if q = m then8

output i−m;9

q ← π(m);10

Line 10 is necessary, since otherwise we would ask for P [m+ 1] in the next step. Note
that Lines 4–7 replace the transition function δ, i.e. let q0 = 0 and let qi, i = 1, . . . , n be
the value of q after Line 7 in the ith iteration of the for-loop of Algorithm 3. Then we have
the following lemma.

Lemma 3.
qi = δ(qi−1, T [i]), i = 1, . . . , n

Proof. Let i = 1, . . . , n. Consider the number k of times that q is decreased in Line 10 in
the i−1st iteration or in Line 5 in the ith iteration. Note that q is only decreased if q < m
or P [q + 1] 6= T [i] and it is decreased by replacing q by π(q). Let now q = πk(qi−1) be the
value after the last of the k decreases. Then we have that

qi =
{
q + 1 if T [i] = P [q + 1]

0 if q = 0 and T [i] 6= P [1].

In both cases it follows that

qi = δ(q, T [i]) = δ(πk(qi−1), T [i]).

Lemma 2(2) applied to a = T [i] and inductively to q = πj(qi−1), 0 < j < k implies that

δ(πk(qi−1), T [i]) = · · · = δ(π(qi−1), T [i]) = δ(qi−1, T [i])

which concludes the proof.

7

Corollary 4.

qi = δ(q0, T [1, . . . , i]) Lemma 1= sufP (T [1, . . . , i]), i = 1, . . . , n.

Example 6. The table illustrates the behavior of the Knuth-Morris-Pratt Matcher.

i 1 2 3 4 5 6 7 8 9 10 11 12
T a r a r a a r a r a t a
P a r a r a t q = 5, i = 6

a r a r q = 3, i = 6
a r q = 1, i = 6

a q = 0, i = 6
a r q = 1, i = 7
a r a q = 2, i = 8
a r a r q = 3, i = 9
a r a r a q = 4, i = 10
a r a r a t q = 5, i = 11, output shift 5

a q = 0, i = 12

To compute the failure function, we apply the Knuth-Morris-Pratt-Matcher to
T = P [2, . . . , n]. Then we have

qi = sufP (P [2, . . . , i]) = π(i)

after Line 7. Observe that in Line 5 we only need π(q), q < i during the step in which we
compute π(i).

Algorithm 4: Failure-Function

Input : pattern P [1, . . . ,m]
Output: failure function π

π(1)← 0;1

q ← 0;2

for i← 2, . . . ,m do3

while q > 0 and P [q + 1] 6= P [i] do4

q ← π(q);5

if P [q + 1] = P [i] then6

q ← q + 1;7

π(i)← q;8

return π;9

Theorem 5. The Knuth-Morris-Pratt-Matcher finds all occurrences of a pattern
P [1, . . . ,m] in a text T [1, . . . , n], n ≥ m in O(n) time.

8

q

m

in

match

Figure 1: Typical behavior of q in Line 4 of the Knuth-Morris-Pratt-Matcher.

Proof. Consider the variation of q during a run of the Knuth-Morris-Pratt-Matcher.

• In the beginning q = 0.

• In Line 5 q is decreased by at least one.

• In Line 7 q is increased by one.

Hence, starting from q = 0, the value of q is totally increased by at most n and it is never
negative. Thus, q can be decreased at most n times (see Fig. 1). Hence, the total run time
of the Knuth-Morris-Pratt-Matcher after having computed the failure function is in
O(n).

Since the computation of the failure function corresponds to applying the Knuth-
Morris-Pratt-Matcher to T = P [2, . . . ,m] it follows that the failure function can be
computed in O(m) ⊆ O(n) time.

7.4 Suffix-Trees

In this section, we introduce suffix-trees and we discuss the algorithm of Ukkonen (1995)
for constructing a suffix tree in linear time. A description of the algorithm can also be
found in (Gusfield, 1997, Chapter 6).

The idea of a suffix tree is to represent the text in a tree such that the occurrence of
several patterns can be recognized efficiently. Note that

P occurs in T
⇐⇒

P is a prefix of a suffix of T

Hence, the idea is to represent the set of all suffixes of the text T in a tree.

9

r

a

a

r

a

t

t

t

t

t

r
a

r

a

t

(a) Trie

r

a

a

r

a

$

$

$

$

$

r
a

r

a

$

5

3

1

4

2

0
(b) Suffix Trie for T = arara

r

a

a

r

a

r
a

r

a

(c) impl. Suffix Trie for T = arara

Figure 2: a) Trie for the non-empty suffixes of “ararat”. b) Suffix Trie for T = arara. The
labels of the leaves indicate the shift with which the corresponding suffix occurs in T .

7.4.1 Trie

(originates from “information retrieval”)

Definition 4. A trie is a rooted tree such that

• edges are labeled with characters from a finite alphabet Σ

• edges to different children of a vertex have different labels.

Let σ1, . . . , σk be the labels of the edges on the path from the root to a vertex v then v
represents the string v := σ1 . . . σk.

A trie is a trie for M ⊂ Σ∗ if M is the set of strings represented by the leaves.

Example 7. Fig. 2(a) indicates a trie for the set of all non-empty suffixes of the word
ararat.

Note that M ⊂ Σ∗ can only be represented by the leaves of a trie if no string in M is a
prefix of another string in M . This problem can be solved by choosing a sentinel character
$ /∈ Σ and adding it at the end of each string. An implicit trie for M is a trie for the set
of all strings in M that are not prefixes of other strings in M .

Example 8. Fig. 2(b) indicates a trie with sentinel character $ and Fig. 2(c) indicates an
implicit trie for the set of all suffixes of the word arara.

Definition 5. An implicit suffix trie for a text T is an implicit trie for the set of all
non-empty suffixes of T . A suffix trie sTrie(T) for a text T is an implicit suffix trie for T$.

Note the following relation to string matching.

10

A pattern P occurs in a text T
⇐⇒

P is represented by a vertex v of the (implicit) suffix trie for T .

Moreover

A pattern P occurs with shift s in a text T
⇐⇒

P is represented by a vertex v of sTrie(T) and
there is a leaf w in the subtree rooted at v with s = n− |w| +1︸︷︷︸

for $

.

Example 9. Fig. 2(c) indicates the implicit suffix trie and Fig. 2(b) the suffix trie for T =
arara. The leaves of the suffix trie indicate that the pattern “ra” occurs in T with shift 1
and 3.

Remark 6. In the worst case the size of a suffix trie for a text T [1, . . . , n] is in Θ(n2).

Proof. A suffix trie for a text of length n represents n+ 1 strings of length at most n+ 1.
Hence, the size of a suffix trie is in O(n2). On the other hand does the implicit suffix trie
for T = a

n
2 b

n
2 have

(
n
2 + 1

)2 vertices.
a

a

b

b

b

b
b

b
b

b

7.4.2 Suffix Tree

Definition 6. The (implicit) suffix tree (sT(T)) sTree(T) for T ∈ Σ∗ is constructed from
the (implicit) suffix trie by contracting all directed paths consisting of vertices of degree= 2
only as follows.

Let vj , . . . , vk be a maximal directed path in the (implicit) suffix trie such that deg(vi) =
2, i = j + 1, . . . , k − 1 and let the label of (vi−1, vi) be T [i], i = j + 1, . . . , k. Then the path
vj , . . . , vk is replaced by the single edge (vj , vk) labeled (j + 1, k).

Example 10. Fig. 3 indicates the (implicit) suffix tree for T = arara.

Note that the size of sTree(T [1, . . . , n]) and sT(T [1, . . . , n]), respectively, is in O(n).
Further note that a substring P of T is not necessarily represented by a vertex of the
(implicit) suffix tree for T , but by a vertex v and a prefix of the label of an outgoing edge
of v.

11

(6, 6)

(6, 6)

(6, 6)

(6, 6)

(4, 6)

(2, 3)

(1, 1)

(2, 3)

(4, 6)

v

w
0

2

4

1

3

5

(a) Suffix Tree for T = arara

(1, 5)
(2, 5)

w

r

(b) impl. Suffix Tree for T = arara

Figure 3: In b) the labels of the leaves indicate the shift with which the corresponding
suffix occurs in T . The location of the pattern “arar” is ((v, w), (4, 4)) in the suffix tree
and ((r, w)(1, 4)) in the implicit suffix tree.

Definition 7. Let P 6= ε be a pattern that occurs in a text T . Let (v, w) be an edge of the
(implicit) suffix tree and let k ≤ `. We say that ((v, w), (k, `)) is the location of the pattern
P if

• the label of (v, w) is (k, `′) for an `′ ≥ ` and

• P = vT [k, . . . , `].

If P = w, then we also say that w is the location of P .

The location of ε is the root r. We denote the location of ε also by ((r, r), (0, 0)) and
assume that the (implicit) suffix tree contains the loop (r, r) labeled (0, 0).

Example 11. The location of arar is ((v, w), (4, 4)) in the suffix tree of arara (Fig. 3(a))
and ((r, w), (1, 4)) in the implicit suffix tree of arara (Fig. 3(b)).

A naive method for constructing a suffix tree adds suffixes in descending size to an
initially empty tree. This algorithm has a run time that is quadratic in the length of the
text – provided the alphabet has constant size.

7.4.3 Ukkonen’s Online Algorithm

The algorithm of Ukkonen constructs a suffix tree in linear time – provided the alphabet
has constant size. Starting from the empty string, Ukkonen’s algorithm (UKK) constructs
implicit suffix trees for all prefixes of T , i.e.,

sT(T [1]), . . . , sT(T [1, . . . , i])︸ ︷︷ ︸bTi

, . . . , sT(T), sT(T$) = sTree(T).

12

In Phase i+ 1, the implicit suffix tree T̂i+1 is constructed from T̂i as follows.

Algorithm 5: Ukkonen’s Online Algorithm (High level description)

for j ← 1, . . . i+ 1 do // Step j of Phase i+ 11

Find the location of T [j, . . . , i];2

Represent T [j, . . . , i+ 1] (according to the three extension rules);3

Let loc = ((v, w), (k, `)) be the location of T [j, . . . , i]. There are the following three
extension rules.

(1) If loc is a leaf, i.e. if w is a leaf and ` = i, then label(v, w)← (k, i+ 1).

(k, i = `)
w

v
 (k, i + 1)

w

v

(2) If loc is not a leaf and no path starting from loc is labeled T [i+ 1], then add a new
edge starting from loc labeled (i+ 1, i+ 1), i.e.

(a) if label(v, w) = (k, `′), `′ > ` and T [i+ 1] 6= T [`+ 1], then delete the edge (v, w)
and add two new vertices u, u′ and three new edges (v, u), (u,w), and (u, u′)
with labels (k, `), (`+ 1, `′), and (i+ 1, i+ 1), respectively.

(k, `′ > `)

w

v

(k, `)

w

v

u′
(i + 1, i + 1)u

(` + 1, `′)

(b) if label(v, w) = (k, `), w is not a leaf and T [i+ 1] 6= T [k′] for each edge starting
from w and labeled (k′, `′), then add a new leaf u′ and a new edge (w, u′) labeled
(i+ 1, i+ 1).

(k, `)
w

v

(k, `)

w

v

u′
(i + 1, i + 1)

(3) If loc is not a leaf and some path starting from loc is labeled T [i+1], then do nothing.

Example 12. Let T = acca.

Table 1 shows how to compute T̂4 from T̂3 :
wv

r

(2, 3)
cc

(1, 3)
acc

.

13

j T [j, . . . , 3] location rule T̂

1 acc ((r, v), (1, 3)) 1 wv

r

(2, 3)
cc

(1, 4)
acca

2 cc ((r, w), (2, 3)) 1 wv

r

(2, 4)
cca

(1, 4)
acca

3 c ((r, w), (2, 2)) T [4] = a 6= c = T [3] 2 wv

r

(1, 4)
acca

u

u′

(2, 2),c

(3, 4),ca(4, 4),a

4 ε ((r, r), (0, 0)) T [4] = a = T [1] 3 wv

r

(1, 4)
acca

u

u′

(2, 2),c

(3, 4),ca(4, 4),a

Table 1: Phase 4 of Computing the suffix tree for acca

7.4.3.1 Making Rules 1 and 3 Implicit

First we make the following observation.

Once a leaf always a leaf.

None of the three rules appends an edge to a leaf. So if we create a leaf in one step of
the algorithm, it will remain a leaf during all later phases of the algorithm. The only cases
where we create new leaves is an application of Rule 2. Further, we also know something
about the labels of the edges to the leaves.

An edge to a leaf of T̂i is labeled (., i).

Indeed, the label of the only edge (r, w) of T̂1 is (1, 1) and w represents T [1]. So assume
that any edge to a leaf of T̂i is labeled (., i) and that a leaf w of T̂i represents the string
T [jw, . . . , i]. Let now w be a leaf of T̂i+1. Then w had already been a leaf of T̂i or w was
created by an application of Rule 2 in Phase i + 1. In the first case (., i) was replaced
by (., i + 1) in Step jw of Phase i + 1 and in the latter case the new edge was labeled
(i+ 1, i+ 1).

Hence, in order to make Rule 1 implicit, we label the edges to the new leaves by (i+1,∞)
instead of (i + 1, i + 1), where ∞ represents a global variable referring to the number of
the current phase. To make Rules 1+3 completely implicit, we make another observation.

14

Lemma 7. During a fixed phase of the algorithm of Ukkonen any application of Rule 1
occurs before any application of Rule 2 or 3 and any application of Rule 2 occurs before
any application of Rule 3.

Proof. Assume that Rule 2 or 3 is applied in Step j of Phase i + 1, i.e., when inserting
T [j, . . . , i+ 1]. That means especially that the location of T [j, . . . , i] was not a leaf before
inserting T [j, . . . , i+1]. Hence, there is a ` < i such that T [j, . . . , i] is a suffix of T [1, . . . , `].
Moreover, if Rule 3 was applied, then there is a ` < i such that T [j, . . . , i] is a suffix of
T [1, . . . , `] and T [`+ 1] = T [i+ 1].

T [1, , `, `+ 1,. . . , j, . . . , i, i+ 1, . . .]
T [j, , i]T [i+ 1]

T [j′, . . . , i]T [i+ 1]

Let now j′ > j. Then T [j′, . . . , i] is again a suffix of T [1, . . . , `]. Hence, the location of
T [j′, . . . , i] is not a leaf since it is also the location of T [j′ + ` − i, . . . , `] which is a prefix
of T [j′ + `− i, . . . , i]. Hence, we will again apply Rule 1 or 3. If we had applied Rule 3 at
Step j, then we have again that T [`+ 1] = T [i+ 1] and we will again apply Rule 3.

Let ji be the number of leaves of T̂i. Since in Phase i+ 1 Rule 1 is applied to exactly
the leaves of T̂i and each application of Rule 2 creates a new leaf, we have that the last
application of Rule 1 in Phase i + 1 is in Step ji and the last application of Rule 2 in
Phase i+ 1 (if any) is in Step ji+1. So, in Phase i+ 1, we have the following situation:

. ji ji+1 ji+1 + 1
Rule 1 Rule 2 Rule 3

Note that it is possible that ji = ji+1 meaning that Rule 2 is not applied in Phase i.
Summarizing, we can refine Algorithm 5 as follows.

15

Algorithm 6: Ukkonen’s Online Algorithm
Input : text T [1, . . . , n]
Output: suffix tree T̂ of T

Extend T by T [n+ 1] = $;1

Initialize T̂ with a single edge labeled (1,∞);2

j ← 2;3

for i← 1, . . . , n do4

Rule3=false;5

while j ≤ i+ 1 and Rule3 = false do // Step j of Phase i+ 16

loc ← location(T [j, . . . , i]);7

if there is a path starting from loc labeled T [i+ 1] then8

Rule3← true;9

else10

apply Rule 2;11

j ← j + 1;12

Example 13. Fig. 4 illustrates Algorithm 6 applied to T = pucupcupu.

Note that each application of Rule 2 creates a new leaf. The suffix tree of a text with n
characters has exactly n+ 1 leaves and one leaf is created during the initialization. Hence
Rule 2 is applied exactly n times. Each phase finds at most once an application of Rule 3.
Hence, at most 2n locations have to be computed. In the next section, we will see how all
these locations can be computed in totally linear time.

7.4.3.2 Suffix Links

Definition 8. Let v be an internal vertex (i.e. v is not the root nor a leaf) of an implicit
suffix tree T̂ and let v = xσ, x ∈ Σ, σ ∈ Σ∗. The vertex s(v) of T̂ with s(v) = σ is called
the suffix link of v.

Example 14. Fig. 5 shows the suffix tree for T = pucupcupu with suffix links.

Note that the suffix link of an internal vertex always exists: An internal vertex of v an
implicit suffix tree has always more than one child. Let v = xσ, x ∈ Σ, σ ∈ Σ∗. Then there
is also more than one extension of the location of σ. Hence, the location of σ is a vertex.
The following lemma indicates, how to efficiently construct the suffix links.

Lemma 8. Let u be an inner vertex that was created in Step j of Phase i+ 1 and let w be
the location computed in Step j + 1 of the same phase. Then s(u) = w.

16

. . . j
i + 1

. . .
1 2 3 4 5 6 7 8 9 10

p 1 p
u 2 u
c 3 c
u 4 u 3

p 5 up p 3

c 6 pc c 3

u 7 cu 3

p 8 cup 3

u 9 cupu upu pu 3

$ 10 pu$ u$ $

(a) Substrings to which Rule 2 or a first Rule 3 per phase (�3) is applied

(1,∞)
(2,∞) (3,∞)

p u c

(b) after Phase 3

(1,∞)
(2, 2) (3,∞)

(5,∞)

(3,∞)

p u

p

c

c

(c) after Phase 5

(1, 1)

(6,∞) (2,∞)

(2, 2) (3,∞)
(5,∞)

(3,∞)

p

u

u

p

c

c
c

(d) after Phase 6

(1, 1)

(6,∞) (2,∞)

(2, 2) (3, 5)

(5, 5)

(9,∞) (6,∞)

(3,∞) (9,∞) (6,∞)

p

u

u

u

u
p

c

c

c
c

c

(e) after Phase 9

(1, 1)

(6,∞) (2, 2)

(10,∞)(3,∞)

(2, 2)
(10,∞)

(3, 5)

(5, 5)

(9,∞) (6,∞)

(3,∞)
(10,∞)

(9,∞) (6,∞)

p

u

$ u

u
$

u
p $

c

c c

c
c

c

(f) after Phase 10

(1, 1)

(6, 10) (2, 2)

(10, 10)(3, 10)

(2, 2)
(10, 10)

(3, 5)

(5, 5)

(9, 10) (6, 10)

(3, 10)
(10, 10)

(9, 10) (6, 10)

p

u

$ u$

u
$

u$
p $

cup

cupcupu$ cupu$

cupu$
cupu$ 9

2581

3670

4

(g) Suffix Tree

Figure 4: Construction of the suffix tree for T = pucupcupu. In 4(g) the labels of the
leaves indicate the shift of the corresponding suffix.

17

(1, 1)

(6, 10) (2, 2)

(10, 10)(3, 10)

(2, 2)
(10, 10)

(3, 5)

(5, 5)

(9, 10) (6, 10)

(3, 10)
(10, 10)

(9, 10) (6, 10)

p

u

$ u$

u
$

u$
p $

cup

cupcupu$ cupu$

cupu$
cupu$

Figure 5: The suffix tree for T = pucupcupu. Dashed red edges indicate suffix links.

Proof. Observe that if an inner vertex u is created for T [j, . . . , i+ 1], then u = T [j, . . . , i].
The location computed in Step j + 1 is the location of T [j + 1, . . . , i] which is indeed u
without the first character. It remains to show that the location of T [j+ 1, . . . , i] is indeed
a vertex after Step j + 1.

(k, `)

w

v

u′
(i + 1,∞)u

(` + 1, `′)

r

T [j, . . . , i]

r

T [j + 1, . . . , i]

{ T [j + 1, . . . , i]a

T [i + 1] . . .

T [1, , `,

a6=T [i+1]︷ ︸︸ ︷
`+ 1, . . .]

T [j, , i]
T [j + 1, . . . , i]

Note that since u is an inner vertex it follows that there is a T [i+ 1] 6= a ∈ Σ such that
T [j, . . . , i]a occurs in T [1, . . . , i]. Hence, the substring T [j + 1, . . . , i]a of T [j, . . . , i]a does
also occur in T [1, . . . , i]. Thus, there is a path starting from the location of T [j + 1, . . . , i]
which is not labeled T [i + 1]. Hence, either the location of T [j + 1, . . . , i] was already
a vertex when it was found or a vertex at the location of T [j + 1, . . . , i] was created in
Step j + 1 of Phase i+ 1 when appending the edge with label (i+ 1,∞).

Note that if a vertex was newly created this was not the last step of a phase: The last
step of a phase is due to Rule 3 which does not create new vertices or because a new leaf
is appended to the root which does not create new inner vertices.

Let P and Q be two substrings of a text T such that the concatenation PQ does also
occur in T . Let loc be the location of P in sT(T). Then we denote by “loc plus Q” the
location of PQ in sT(T), i.e., the location that is reach from loc by following the path
labeled Q.

18

Algorithm 7: Location

Input : i, j with 2 ≤ j ≤ i+ 1 ≤ n+ 1
Output: location of T [j, . . . , i]
Data : location loc = ((v, w), (k, `)) of the previous step

if first step of a phase then1

if j = i+ 1 then //T [j, . . . , i] = ε2

loc ← root;3

else // loc = location(T [j, . . . , i− 1])4

loc ← loc plus T [i];5

else // loc = location(T [j − 1, . . . , i])6

if v 6= root then7

loc ← s(v) plus T [k, . . . , `];8

else //T [j, . . . , i] = T [k + 1, . . . , `]9

loc ← root plus T [j, . . . , i];10

return loc;11

We compute the suffix links in constant time per link according to Lemma 8 as follows.
Let ((v, w), (k, `)) be the location of T [j− 1, . . . , i] after Step j− 1 of Phase i+ 1. If a new
inner vertex was created in Step j − 1 of Phase i+ 1 it is w. In that case, we set s(w) to
be the location of T [j, . . . , i] after Step j of Phase i + 1. Note that the suffix link of w is
not needed to compute the location in the next step.

Further note that since we know that there is a path in T̂ starting from s(v) and
labeled T [k, . . . , `] (or starting from the root and labeled T [k + 1, . . . , `], respectively) we
can compute these paths in time linear in the number of traversed vertices of T̂ by just
comparing the first and last character of the label of an edge instead of all characters in
between.

Theorem 9. The algorithm of Ukkonen computes a suffix tree in linear time if the size of
the alphabet is constant.

Proof. It remains to show that all locations can be computed in linear time. Let r be the
root of the suffix tree. As a potential function, we consider

depth(v) := number of edges on the rv − path

of the current location. First note that for any inner vertex v we have

19

depth(v) ≤ depth(s(v)) + 1 :

Let v be an inner vertex and let v′ 6= r be a vertex on the rv-path.
Then s(v′) is on the rs(v)-path. Moreover, two distinct vertices on
a directed path have distinct suffix links. Hence, the rs(v)-path
contains at least as many vertices as the rv-path without the root.

v′

v s(v)

s(v′)

r

v

w

T [j, . . . , i]

s(v)

r

T [j − 1, . . . , i]

(k, `) T [k, . . . , `]

It follows that in each step the depth of the current
location is first decreased by at most two (going possibly
from the current location w to v and from v to s(v)) and
then potentially increased by following the path labeled
T [i], T [k, . . . , `], or T [k + 1, . . . , `]. Since in the totally
2n steps the depth is totally decreased by at most 4n
and it never exceeds n, it can be incremented at most
5n times. Hence, the total time needed to traverse the
paths labeled T [k, . . . , `] or T [k+ 1, . . . , `], respectively,
within all steps is linear in the length of the text.

We conclude this section with a comparison of how to organize the children of a vertex
in the suffix tree.

memory space access time
arrays O(n|Σ|) O(1)
lists O(n) O(|Σ|)
balanced search trees O(n) O(log |Σ|)
hashing O(n) O(n), depending on collisions, expect. O(1)

7.5 The Algorithm of Boyer & Moore

The algorithm of Boyer and Moore (1977) has a sublinear expected run time and is very
good in practice (especially for natural language texts). The idea is to start comparing
the pattern with the text from the last character of the pattern. If the character of the
text that is compared to the rightmost character of P does not occur in P , then m − 1
characters of the text do not have to be examined at all.

7.5.1 Bad Character Rule

Consider the following example.

T : o l yxxxyy
P : s−→robotica l l y increase shift s by 9 - 4

robot i ca l l y increase shift s by 1
robot i ca l l y

20

In the first case the rightmost mismatch is at j = m − 2 and the rightmost occurrence of
T [s + j] = o in P is at position 4. Hence the shift s can be augmented by j − 4. In the
second case the rightmost occurrence of the mismatching text character y in P is to the
right of the mismatching pattern character. Hence the shift is only augmented by one. (In
fact the pattern would allow a shift by j = 10, since y does not occur in P to the left of
j but this would require a more involved and time consuming data structure, as described
in this section. See also Sect. 7.5.3.1.)

Let rP (a) be the rightmost occurrence of a character a in P , i.e.,

rP : Σ −→ {1, . . . ,m}
a 7−→

{
0 if a does not occur in P

max{j; P [j] = a} otherwise

If the rightmost mismatch occurs at position j of P

augment the shift s by max(1, j − rP (T [s+ j]).

7.5.2 Good Suffix Rule

Consider the following example.

T : db l exxab l e
P : s−→leblendab l e increase shift by 11 - 5

l eb l endab l e increase shift by 11 - 2
l eblendable

In the first row there is a mismatch at j = m − 3 = 8 and P [3, . . . , 5] is the rightmost
substring of P [1, . . . ,m−1] that matches P [j+1, . . . ,m]. Hence the shift can be increased by
m− 5. In the second row there is a mismatch at j = m− 4, no substring of P [1, . . . ,m− 1]
matches P [j + 1, . . . ,m] and P [1, 2] is the largest prefix of P that matches a suffix of
P [j + 1, . . . ,m]. Hence, the shift can be augmented by m− 2.

We define sP (j) to be the length of the largest prefix of P such that

• P [j + 1, . . . ,m] is a suffix of P [1, . . . , sP (j)] and P [j] 6= P [sP (j)−m+ j]

. , sP (j) . . . j j + 1, . . . ,m
6 a //////////// a ////////////

or

• P [1, . . . , sP (j)] is a suffix of P [j + 1, . . . ,m].

1, . . . , sP (j) , j j + 1, ,m

/////// ///////

21

If the rightmost mismatch occurs at position j of P we can

augment the shift s by m− sP (j).

The algorithm of Boyer and Moore combines the bad character rule and the good suffix
rule and works as follows.

Algorithm 8: Algorithm of Boyer & Moore
Input : text T [1, . . . , n], pattern P [1, . . . ,m] with functions rP , sP .
Output: Shifts s with which P occurs in T

s← 0;1

while s ≤ n−m do2

j ← m;3

while j > 0 and P [j] = T [s+ j] do4

j ← j − 1;5

if j > 0 then6

s← s+ max(m− sP (j), j − rP (T [s+ j]));7

else8

output shift s;9

s← s+m− sP (1);10

One can show that the run time of the algorithm of Boyer & Moore is linear if the pattern
does not occur in the text (Cole, 1994). The expected run time is sublinear even if only the
bad character rule is applied. The algorithm of Boyer and Moore works especially good for
large alphabets. Note that the worst case run time of the algorithm of Boyer & Moore in
general, i.e., if P might occur in T , is in Θ(m(n−m+ 1)) (e.g. T = an, P = am). There
are some modifications (Galil, 1979) such that the run time of the algorithm is in general
linear. See also (Gusfield, 1997, Section 3.2).

7.5.3 Preprocessing

In this section, we show how the functions rP and sP can be computed efficiently.

7.5.3.1 Preprocessing for the Bad Character Rule

The function rP can be computed in O(m+ |Σ|) time using an array (see Algorithm 9 for
details).

By storing all occurrences of a character in P from right to left in a list instead of
storing only the rightmost one, the increase of the shift is potentially higher since we can
always shift to the rightmost occurrence of a character to the left of the mismatch. In the
worst case the run time of the algorithm of Boyer & Moore is at most doubled.

22

i 1 2 3 4 5 6 7
P [i] a b b a b a b

π(i) 0 0 0 1 2 1 2
spref
P (i) 2 2 2 2 2 0 0
π′(i) 0 2 1 0 3 0

smatch
P (i) 0 0 0 5 2 3 6

Table 2: Example of the indices used for the preprocessing of the good suffix rule.

Algorithm 9: Bad Character Preprocessing
Input : pattern P , alphabet Σ
Output: function rP

for a ∈ Σ do1

rP (a)← 0;2

for j ← 1, . . . ,m do3

rP (P [j])← j;4

7.5.3.2 Preprocessing for the Good Suffix Rule

We split the computation of sP into two parts. With max ∅ := 0 we define

smatch
P (j) = max{1 ≤ k < m; P [j + 1, . . . ,m] suffix of P [1, . . . , k] and

(k −m+ j = 0 or P [j] 6= P [k −m+ j])}

and
spref
P (j) = max{0 ≤ k < m; P [1, . . . , k] suffix of P [j + 1, . . . ,m]}︸ ︷︷ ︸

sufP (P [j+1,...,m])

for j = 1, . . . ,m. Then
sP (j) = max(smatch

P (j), spref
P (j)).

We first show how to compute spref
P . Let π be the failure function of the Knuth-Morris-Pratt

Matcher. Note that

spref
P (j) = πi(m) if and only if πi(m) ≤ m− j < πi−1(m).

1, . . . , πi(m) j j + 1, ,m

/////// ///////

Hence, we can compute spref
P in O(m) time as follows.

23

Algorithm 10: Good Suffix Preprocessing – The Prefix Case
Input : pattern P , alphabet Σ
Output: function spref

P

Data : failure function π

π ← Failure-Function(P);1

j ← 1;2

k ← m;3

while k > 0 do4

k ← π(k);5

while k ≤ m− j do6

spref
P (j)← k;7

j ← j + 1;8

To construct smatch
P , we consider the length π′(q) of the longest common suffix of P [1, . . . , q]

and P , i.e.,

π′ : {1, . . . ,m− 1} −→ {0, . . . ,m− 1}
q 7−→ max{k; P [m− k + 1, . . . ,m] suffix of P [1, . . . , q]}

Then, we have for k = π′(q)
k︷ ︸︸ ︷ k︷ ︸︸ ︷

. . . q − k q − k + 1, . . . , q . . . m− k m− k + 1, . . . ,m
6 a /////////////// a ///////////////

Hence, we have

smatch
P (j) = q if q maximum with j = m− π′(q)

If there is no such q then smatch
P (j) = 0. We can compute π′ in O(m) time as follows.

Assume, we have already computed π′(m− 1), . . . , π′(i+ 1). We maintain the first and the
last index of the leftmost non-empty copy P [`, . . . , r] of a suffix of P that had so far been
computed, i.e.,

` = min{q − π′(q) + 1; π′(q) > 0 and i < q < m}
and

r = min{i < q < m; π′(q) > 0 and ` = q − π′(q) + 1}
Initially, we set ` = m+ 1. To compute π′(i), we distinguish three cases.

(1) If i ≥ ` then P [i] is contained in the non-empty suffix P [`, . . . , r] of P at position
i′ = m− r + i. Let q ← i− `+ 1 be the length of the string P [`, . . . , i].

24

(a) If π′(i′) < q then π′(i) = π′(i′):
π′(r)︷ ︸︸ ︷ π′(r)︷ ︸︸ ︷

. `, , i, , r, i′,m

////////////////// //////////////////︸ ︷︷ ︸
q

︸ ︷︷ ︸
q︸ ︷︷ ︸

π′(i′)

︸ ︷︷ ︸
π′(i′)

︸ ︷︷ ︸
π′(i′)

(b) If π′(i′) ≥ q then P [`, . . . , i] is a suffix of P that can potentially be enlarged to
the left of ` which is checked by comparing the corresponding characters from
right to left starting from P [`− 1] and P [m− π′(r)] until a mismatch occurs.

(2) If i < ` we directly compare the corresponding characters from right to left starting
from P [i] and P [m] until a mismatch occurs.

Algorithm 11 summarizes how to compute π′ and smatch
P in O(m) time.

References

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974). The Design and Analysis of
Computer Algorithms. Addison-Wesley.

Boyer, R. S. and Moore, J. S. (1977). A fast string searching algorithm. Communications
of the ACM, 20(10):762–772.

Cole, R. (1994). Tight bounds on the complexity of the Boyer-Moore pattern matching
algorithm. SIAM Journal on Computing, 23(5):1075–1091.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, S. (2001). Introduction to
Algorithms. MIT Press.

Galil, Z. (1979). On improving the worst case running time of the Boyer-Moore string
searching algorithm. Communications of the ACM, 22(9):505–508.

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences. Cambridge University
Press.

Knuth, D. E., Morris, Jr., J. H., and Pratt, V. (1977). Fast pattern matching in strings.
SIAM Journal on Computing, 6(2):323 – 350.

Schöning, U. (2001). Algorithmik. Spektrum Akademischer Verlag.

Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14(3):249–260.

25

Algorithm 11: Good Suffix Preprocessing – The Matching Case
Input : pattern P
Output: function smatch

P

Data : lengths π′(q) of the longest common suffix of P and P [1, . . . , q]
after the step of the for-loop for computing π′(i− 1) we have

` = min{q − π′(q) + 1; π′(q) > 0 and i < q < m} and
r = min{i < q < m; π′(q) > 0 and ` = q − π′(q) + 1}

.

H Computing π′1

`← m;2

for i← m− 1, . . . , 1 do3

if i ≥ ` then4

i′ ← m− r + i;5

q ← i− `+ 1;6

if π′(i′) < q then7

π′(i)← π′(i′);8

else9

q ← 0;10

if i− q < ` then11

while q < i and P [m− q] = P [i− q] do12

q ← q + 1;13

π′(i)← q;14

if π′(i) > 0 then15

r ← i;16

`← r − π′(`) + 1;17

H Computing smatch
P18

for j ← 1, . . . ,m do19

smatch
P (j)← 0;20

for q ← 1, . . . ,m− 1 do21

smatch
P (m− π′(q))← q;22

26

