Assignment 1

Post Date: 24 Oct 2012 Due Date: 31 Oct 2012, 14:30
You are permitted and encouraged to work in groups of two.

Problem 1: Growth of Functions

Rank the functions

$$
n \log n,\binom{2 n}{4}, 2^{n}, 4 n^{4}, n^{n}, 16^{\log _{2} n}, \log (n!)
$$

by increasing order of growth, i.e., find an order f_{1}, \ldots, f_{7} with $f_{1} \in \mathcal{O}\left(f_{2}\right), \ldots, f_{6} \in \mathcal{O}\left(f_{7}\right)$, and proof the correctness of your ranking.

Problem 2: Recurrence Equations

4 Points
Give a Θ-bound for the following recurrences:
(a) $T_{1}(n)=2 \cdot T_{1}\left(\frac{n}{2}\right)+\sqrt{n}, \quad T_{1}(1)=1$
(b) $T_{2}(n)=T_{2}(n-1)+2(n-1), \quad T_{2}(1)=1$

Problem 3: Threshold

Give the greatest $a \in \mathbb{N}$ such that Algorithm A with running time

$$
T_{A}(n)=a \cdot T_{A}\left(\frac{n}{4}\right)+n^{2}
$$

is asymptotically faster than Algorithm B with running time

$$
T_{B}(n)=7 \cdot T_{B}\left(\frac{n}{2}\right)+n^{2}
$$

Let be given n points in the plane. You may assume for simplicity that no two points have the same x-coordinate. Develop a divide-and-conquer algorithm that finds a pair of points with the smallest Euclidean distance between them. Analyze the running time of your algorithm that should be in $\mathcal{O}(n \log n)$.

Hint: It may be helpful to think first about the 1D version of the problem. How can the merge step be realized in 2D?

