UNIVERSITY OF KONSTANZ Design and Analysis of Algorithms DEPARTMENT OF COMPUTER & INFORMATION SCIENCE WS 2012/2013 Prof. Dr. Ulrik Brandes / Dr. Sven Kosub / Dr. Sabine Cornelsen and Natalie Indlekofer

Assignment 4

Post Date: 14 Nov 2012 **Due Date:** 21 Nov 2012, 14:30 You are permitted and encouraged to work in groups of two.

Problem 1: Sequence of Operations

Consider sequences of operations MAKESET, FIND with path compression, and weighted UNI-ON where all UNION operations are performed before the first FIND operation.

- (a) Show that the amortized cost for n operations is in $\mathcal{O}(n)$.
- (b) Does (a) hold if FIND is still with path compression but UNION is unweighted?
- (c) Does (a) hold if UNION is still weighted but FIND is without path compression?

Problem 2: Union-Find with Path Compression

- (a) Give a pseudocode for FIND with path compression similar to the pseudocode of FIND without path compression from the lecture.
- (b) Consider FIND with the following alternative path compression: After traversing the path from a vertex to its root, we update the parent pointer of each vertex along the path to point to its grandparent. Consider, e.g., subpath

$$i \to j \to k \to l \to \cdots$$

Performing FIND(i) with alternative path compression results in k being predecessor of i and l being predecessor of j. Direct successors of the root keep the root as predecessor.

Go through the proof of the *Theorem of Hopcroft & Ullman* and find the inferences that require FIND to be implemented with path compression. Is the proof still correct if the alternative path compression is used?

6 Points

4 Points

Problem 3: Equivalence of Finite Automata

Let \mathcal{A}_1 and \mathcal{A}_2 be finite automata with sets of states Q_1 and Q_2 , respectively.

Determine for each state $p \in Q_1$ the set $Q_p := \{q \in Q_2; q \equiv p\}$. Decide whether \mathcal{A}_1 and \mathcal{A}_2 are equivalent.

Problem 4: Prüfer Sequence

4 Points

(a) Determine for the following tree the Prüfer sequence.

(b) Construct from the Prüfer sequence (4, 9, 4, 6, 6, 5, 1) the corresponding tree.

6 Points