Assignment 8

Post Date: 12 Dec 2012 Due Date: 19 Dec 2012, 14:30
You are permitted and encouraged to work in groups of two.

Problem 1: FIFO Vertex Selection Rule

8 Points
Show that the run time of the algorithm of Goldberg \& Tarjan applied to a flow network with n vertices is in $\mathcal{O}\left(n^{3}\right)$ if it is implemented by using the FIFO vertex selection rule as follows: First all vertices that are activated during the initialization are appended to a queue. While the queue is not empty the algorithm removes the first vertex v from the queue, performs PuSH-operations from v and appends newly active vertices to the queue. The algorithm examines v until it is not active any more or a RELABEL-operation is performed. In the latter case v is appended again to the queue.

Hint: Partition the vertex examinations into phases. The first phase consists of examinations of vertices that become active during the initialization. The $(i+1)$ st phase consists of examinations of vertices that were appended to the queue during the i th phase. Use the potential function

$$
\Phi=\max _{v \text { active }} h(v)
$$

to show that there are at most $\mathcal{O}\left(n^{2}\right)$ phases.

Problem 2: Naive String Matching
 6 Points

(a) Suppose that all characters in the pattern are different. Show how to accelerate the naive string-matching algorithm such that it runs in $\mathcal{O}(n)$ time on an n-character text.
(b) Find a text and a pattern such that the naive string-matching algorithm needs $\Theta((n-m+1) \cdot m)$ time even if the pattern does not occur in the text.
(c) Suppose that pattern P and text T are randomly chosen strings of length m and n, respectively, from the d-ary alphabet $\Sigma=\{0,1, \ldots, d-1\}$, where $d \geq 2$. Show that the expected number of character-to-character comparisons in every step made by the naive string-matching algorithm is

$$
\frac{1-d^{-m}}{1-d^{-1}} \leq 2
$$

Now, a pattern can contain also wildcards $*$. A wildcard $*$ can stand for arbitrarily many (also zero) characters.
(a) Modify the algorithms Naive-Transition-Function and Finite-Automaton-Matcher such that they also work for patterns that may contain wildcards. Explain your approach.
(b) Give the string-matching automaton for the pattern $P=a b a * b a b$ and the input alphabet $\Sigma=\{a, b, c\}$. Does this automaton find all occurrences of pattern P in a text?

