
University of Konstanz Design and Analysis of Algorithms

Department of Computer & Information Science WS 2012/2013

Prof. Dr. Ulrik Brandes / Dr. Sven Kosub / Dr. Sabine Cornelsen and Natalie Indlekofer

Assignment 8

Post Date: 12 Dec 2012 Due Date: 19 Dec 2012, 14:30
You are permitted and encouraged to work in groups of two.

Problem 1: FIFO Vertex Selection Rule 8 Points

Show that the run time of the algorithm of Goldberg & Tarjan applied to a flow network with
n vertices is in O(n3) if it is implemented by using the FIFO vertex selection rule as follows:
First all vertices that are activated during the initialization are appended to a queue. While
the queue is not empty the algorithm removes the first vertex v from the queue, performs
Push-operations from v and appends newly active vertices to the queue. The algorithm
examines v until it is not active any more or a Relabel-operation is performed. In the latter
case v is appended again to the queue.

Hint: Partition the vertex examinations into phases. The first phase consists of examinations
of vertices that become active during the initialization. The (i+ 1)st phase consists of exami-
nations of vertices that were appended to the queue during the ith phase. Use the potential
function

Φ = max
v active

h(v)

to show that there are at most O(n2) phases.

Problem 2: Naive String Matching 6 Points

(a) Suppose that all characters in the pattern are different. Show how to accelerate the
naive string-matching algorithm such that it runs in O(n) time on an n-character text.

(b) Find a text and a pattern such that the naive string-matching algorithm needs
Θ((n−m + 1) ·m) time even if the pattern does not occur in the text.

(c) Suppose that pattern P and text T are randomly chosen strings of length m and n,
respectively, from the d-ary alphabet Σ = {0, 1, . . . , d− 1}, where d ≥ 2. Show that the
expected number of character-to-character comparisons in every step made by the naive
string-matching algorithm is

1− d−m

1− d−1
≤ 2.

[please turn over]



Problem 3: Wildcards 6 Points

Now, a pattern can contain also wildcards ∗. A wildcard ∗ can stand for arbitrarily many (also
zero) characters.

(a) Modify the algorithms Naive-Transition-Function and Finite-Automaton-Matcher

such that they also work for patterns that may contain wildcards. Explain your ap-
proach.

(b) Give the string-matching automaton for the pattern P = aba∗bab and the input alphabet
Σ = {a, b, c}. Does this automaton find all occurrences of pattern P in a text?


