Assignment 9

Post Date: 19 Dec 2012 Due Date: 9 Jan 2013, 14:30
You are permitted and encouraged to work in groups of two.

Throughout these assignments, we denote by boundary function the function

$$
B(j)= \begin{cases}-1, & j=0 \\ |\partial(P[1, \ldots, j])|=\operatorname{suf}_{P}(P[2, \ldots, j]), & j=1, \ldots, m\end{cases}
$$

assigning to the length of a prefix of a pattern $P[1, \ldots, m]$ the length of its proper boundary.

Problem 1: Knuth-Morris-Pratt and Boyer-Moore

8 Points
(a) Compute the boundary function for the pattern

$$
P=\text { ababbabbababbababbabb. }
$$

(b) Compute the bad character function and the good suffix function for the alphabet $\Sigma=\{0,1,2,3\}$ and the pattern

$$
P=0101101201 .
$$

Problem 2: Transition Function

8 Points
Let δ be the transition function of a pattern $P[1, \ldots, m]$.
(a) Show that $\delta(q, a)=\delta(B[q], a)$ for any $a \in \Sigma$ and $0<q \leq m$ with $q=m$ or $P[q+1] \neq a$.
(b) Give an $\mathcal{O}(m|\Sigma|)$-time algorithm for computing the transition function δ corresponding to a given pattern P of length m.

Problem 3: Repetition Factor

4 Points
Let P be a pattern of length m. For a $q=1, \ldots, m$ let

$$
\rho(q)=\max \left\{r ; P[1, \ldots, q]=x^{r} \text { for some } x \in \Sigma^{*}\right\} .
$$

Prove or disprove that $\rho(q)>1$ if and only if there is an $i>0$ with $B^{i}(q)>0$ and

$$
q-B^{i}(q)=\frac{B^{i}(q)}{\rho\left(B^{i}(q)\right)}
$$

