Assignment 10

Post Date: 9 Jan 2013 Due Date: 16 Jan 2013, 14:30
You are permitted and encouraged to work in groups of two.

Problem 1: Height of a Fibonacci Heap

4 Points
Prove or disprove that the height of a tree of a Fibonacci Heap with n vertices is in $\mathcal{O}(\log n)$.

Problem 2: Fibonacci Heaps and MST

8 Points
Solve the Minimum Spanning Tree Problem in Assignment 5.1 using the Algorithm of Prim with a Fibonacci Heap. Give for each step the necessary heap operations and show how the heap looks like.

Problem 3: Ranks in a Fibonacci Heap

8 Points
Consider the sequences $\left(F_{k}\right)_{k \in \mathbb{N}_{0}}$ and $\left(S_{k}\right)_{k \in \mathbb{N}_{0}}$, recursively defined by

$$
F_{0}=0, \quad F_{1}=1, \quad \text { and } \quad F_{k+2}=F_{k+1}+F_{k} \quad \text { for all } \quad k \in \mathbb{N}_{0}
$$

and

$$
S_{0}=1, \quad S_{1}=2, \quad \text { and } \quad S_{k}=1+1+\sum_{i=0}^{k-2} S_{i} \quad \text { for all } \quad k \in \mathbb{N} \backslash\{1\} .
$$

$\left(F_{k}\right)_{k \in \mathbb{N}_{0}}$ is the so-called Fibonacci sequence, and for all $k \in \mathbb{N}_{0}, S_{k}$ is a lower bound for the number of vertices in a subtree of a Fibonacci heap (see the lecture) with root of rank k.
(a) Prove by induction on k that $S_{k}=F_{k+2}$ for all $k \in \mathbb{N}_{0}$.
(b) Prove by induction on k that $F_{k}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{k}-\left(\frac{1-\sqrt{5}}{2}\right)^{k}\right)$ for all $k \in \mathbb{N}_{0}$.
(c) Conclude that $F_{k+2} \geq\left(\frac{1+\sqrt{5}}{2}\right)^{k}$ for all $k \in \mathbb{N}_{0}$.
(d) Show that the maximum rank of a root of a Fibonacci heap with n vertices is less than $1.5 \cdot \log n$.

