Assignment 10

Post Date: 9 Jan 2013 **Due Date:** 16 Jan 2013, 14:30 You are permitted and encouraged to work in groups of two.

Problem 1: Height of a Fibonacci Heap

Prove or disprove that the height of a tree of a Fibonacci Heap with n vertices is in $\mathcal{O}(\log n)$.

Problem 2: Fibonacci Heaps and MST

Solve the Minimum Spanning Tree Problem in Assignment 5.1 using the Algorithm of Prim with a Fibonacci Heap. Give for each step the necessary heap operations and show how the heap looks like.

Problem 3: Ranks in a Fibonacci Heap

Consider the sequences $(F_k)_{k \in \mathbb{N}_0}$ and $(S_k)_{k \in \mathbb{N}_0}$, recursively defined by

$$F_0 = 0$$
, $F_1 = 1$, and $F_{k+2} = F_{k+1} + F_k$ for all $k \in \mathbb{N}_0$,

and

$$S_0 = 1$$
, $S_1 = 2$, and $S_k = 1 + 1 + \sum_{i=0}^{k-2} S_i$ for all $k \in \mathbb{N} \setminus \{1\}$.

 $(F_k)_{k \in \mathbb{N}_0}$ is the so-called *Fibonacci sequence*, and for all $k \in \mathbb{N}_0$, S_k is a lower bound for the number of vertices in a subtree of a Fibonacci heap (see the lecture) with root of rank k.

- (a) Prove by induction on k that $S_k = F_{k+2}$ for all $k \in \mathbb{N}_0$.
- (b) Prove by induction on k that $F_k = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^k \left(\frac{1-\sqrt{5}}{2} \right)^k \right)$ for all $k \in \mathbb{N}_0$.
- (c) Conclude that $F_{k+2} \ge \left(\frac{1+\sqrt{5}}{2}\right)^k$ for all $k \in \mathbb{N}_0$.
- (d) Show that the maximum rank of a root of a Fibonacci heap with n vertices is less than $1.5 \cdot \log n$.

4 Points

8 Points

8 Points