Assignment 11

Post Date: 16 Jan 2013 Due Date: 23 Jan 2013, 14:30
You are permitted and encouraged to work in groups of two.

Problem 1: Cyclic Rotation

4 Points
Show how to determine in linear time whether a pattern s is a cyclic rotation of a pattern s^{\prime}. (For example "arc" and "car" are cyclic rotations of each other.)

Problem 2: Simultaneous Search

6 Points
Construct a deterministic finite automaton that reads any text once and is in an accepting state whenever it just finishes reading the occurrence of one of the patterns

$$
01011,00101, \text { or } 10
$$

over the alphabet $\Sigma=\{0,1\}$. Your automaton may have more than one accepting state.

Problem 3: Period

6 Points

Show that a prefix u of a pattern w is a period of w if and only if there is a prefix v of w such that $w=u v$.

Problem 4: Weak Good Suffix Rule

Consider the algorithm of Boyer and Moore with the weak good suffix rule in which we do not require that the mismatched character should differ, i.e. for a pattern $s[0, \ldots, m-1]$ and for $0 \leq j<m$ we set

$$
\left.S[j]=\min \left(\begin{array}{ccccc}
\left\{\begin{array}{c}
0<\sigma \leq j
\end{array}\right. & ; s[j+1-\sigma, \ldots, m-1-\sigma] & =s[j+1, \ldots, m-1] \\
\left\{\begin{array}{c}
\sigma>j
\end{array} ;\right. & s[0, \ldots, m-1-\sigma] & = & s[\sigma, \ldots, m-1]
\end{array}\right\}\right)
$$

as the array of shortest admissible shifts. Show that in this case the worst-case run-time of the algorithm of Boyer and Moore is not linear even if the pattern does not occur in the text.

