
How to compute Boyer-Moore shifts

The good-suffix rule

For string s we define the set R(s) of all boundaries as

R(s) =def

{
s′

∣∣ s′ is a boundary of s
}
.

Now, the conditions that an admissible shift σ has to satisfy can be expressed as follows:

σ ≤ j ∧ sj+1 . . . sm−1 ∈ R(sj+1−σ . . . sm−1) ∧ sj 6= sj−σ (1)
σ > j ∧ s0 . . . sm−1−σ ∈ R(s0 . . . sm−1) (2)

Define the array S containing the shortest admissible shift for each 0 ≤ j ≤ m as

S[j] =def min
{
σ

∣∣ (σ, j) fulfills condition (1) or fulfills condition (2)
}
.

This rule for computing S is called good-suffix rule. The computation of S according to the good-suffix
rule can be done as decribed in the following algorithm:

Algorithm: ComputeShifts
Input: string s with |s| = m
Output: array S containing shortest admissible shifts (according to the good-suffix rule)

1. FOR i := 0 TO m
2. S[i] := m

/* computing shifts according to condition (1) */

3. H[0] := −1
4. H[1] := 0
5. FOR j := 2 TO m
6. WHILE k ≥ 0 AND sm−k−1 6= sm−j
7. σ := j − k − 1
8. S[m− k − 1] := min{S[m− k − 1], σ}
9. k := H[k]

10. H[j] := k + 1
11. k := k + 1

/* computing shifts according to condition (2) */

12. B := ComputeBoundaries(s) /* from Knuth-Morris-Pratt algorithm */
13. j := 0
14. i := B[m]
15. WHILE i ≥ 0
16. WHILE j < m− i
17. S[j] := min{S[j],m− i}
18. j := j + 1
19. i := B[i]
20. j := 0

1



The bad-character rule

How can we beneficially integrate the motivating idea that has led to the right-to-left approach? We
define another rule called bad-character rule. Consider a mismatch at (i, j) caused by symbol ti+j = x.
There are two possible cases:

1. There is an 0 ≤ r ≤ j − 1 such that sr = x. Then, define σ =def j − r.

2. For all 0 ≤ r ≤ j − 1 it holds sr 6= x. Then, define σ =def j + 1.

It is easily seen that we can combine the good suffix rule and the bad character rule by taking the maximum
of the shifts for each j.

2


