How to compute Boyer-Moore shifts

The good-suffix rule

For string s we define the set R(s) of all boundaries as
R(s) =qaer {8’ | 8 is a boundary of s }.
Now, the conditions that an admissible shift o has to satisfy can be expressed as follows:

c<j A Sj41---Sm—1 € R($j+1,g . Smfl) AN S 7é Sj—o (].)
c>7 N Sp..-Sm_1-c € R(S0...Sm—1) (2)

Define the array S containing the shortest admissible shift for each 0 < j < m as
S[j] =det min {o | (0,) fulfills condition (1) or fulfills condition (2) }.

This rule for computing S is called good-suffiz rule. The computation of S according to the good-suffix
rule can be done as decribed in the following algorithm:

Algorithm: COMPUTESHIFTS

Input: string s with |s| = m
Output: array S containing shortest admissible shifts (according to the good-suffix rule)
1.

FOR i :=0TO m
2. S[i] :=m

/* computing shifts according to condition (1) */

3. H[0]:=—1
4. H[1]:=0
5. FOR j:=2TOm
6. WHILE k > 0 AND sy,——1 7# Sm—j
7. c=j—k—-1
8. Sim —k — 1] := min{S[m — k —1],0}
9. k.= H[k]
10. Hlj]:=k+1
11. k=k+1
/* computing shifts according to condition (2) */
12. B := COMPUTEBOUNDARIES(s) /* from KNUTH-MORRIS-PRATT algorithm */
13, j:=0

14. i:= B[m)]
15. WHILE ¢ > 0

16. WHILE j <m —1

17. S[y] == min{S[j],m — i}
18. ji=j+1

19. i := Bli]

20. j=0

The bad-character rule

How can we beneficially integrate the motivating idea that has led to the right-to-left approach? We
define another rule called bad-character rule. Consider a mismatch at (i,j) caused by symbol t;,; = .
There are two possible cases:

1. There is an 0 < r < j — 1 such that s, = x. Then, define 0 =g4¢¢ j — 7.

2. For all 0 <r < j—11it holds s, # x. Then, define o =q4¢¢ j + 1.

It is easily seen that we can combine the good suffiz rule and the bad character rule by taking the maximum
of the shifts for each j.

