
University of Konstanz Design and Analysis of Algorithms

Department of Computer & Information Science WS 2010/2011

Prof. Dr. Ulrik Brandes / Dr. Sabine Cornelsen / Melanie Badent / Natalie Indlekofer

Contents
6.2.3 The Push-Relabel Algorithm of Goldberg & Tarjan 1

6.2.3.1 Proof of Correctness . 8
6.2.3.2 Run Time Analysis . 9
6.2.3.3 Some Vertex Selection Rules . 12
6.2.3.4 Highest-Level Implementation . 13
6.2.3.5 Literature . 15

6.2.3 The Push-Relabel Algorithm of Goldberg & Tarjan

So far a flow in a flow network

(D = (V,E ⊂ V × V), s, t ∈ V, c : E → R+
0)

was a function
f : E → R+

0

fulfilling the capacity constraints (f ≤ c) and the flow conservation (incoming flow =
outgoing flow – for all vertices except for the source s and the sink t). The maximum
value of a flow (amount of flow reaching the sink from the source) was determined by
iteratively augmenting flow on an s− t-path (method of Ford & Fulkerson). The algorithm
of Edmonds & Karp chooses in each step a shortest augmenting path and yields a run time
in O(|E|2|V |).

Example 1.

v1 v3

v2 v4

ts

12|12

10|14

6|72|4
1|10

1|5

8|13

11|16

4|9
4|4

14|20

arc label f |c.

w(f) = 8 + 11− 1 = 4 + 14 = 18

augmenting path, e.g., 〈s, v2, v3, t〉

Instead of pushing flow over an entire augmenting path, the algorithm of Goldberg and
Tarjan (1988) pushes flow only along single edges – making decisions locally. Vertices may
have an overflow during the execution of the algorithm. For an easier notation, we use the
following definition of flow. Idea:

f |c

f |c

−f |0
and

f1|c1

f2|c2

f1 − f2|c1

f2 − f1|c2

1

as well as

0|0

0|0
and 0|0 .

Definition 1. Let V be a finite set, s, t ∈ V and c : V × V → R+
0 . The function

f : V × V → R

is a flow (Fluss) in (V, s, t, c) if

(1) f(v, w) ≤ c(v, w) for all v, w ∈ V (capacity constraint – Kapazitätsbedingung)

(2) f(v, w) = −f(w, v) for all v, w ∈ V (skew symmetry – Antisymmetrie)

(3)
∑

u∈V f(u, v) = 0 for all v ∈ V \ {s, t} (flow conservation – Flusserhaltung)

The value (Wert) of a flow is

w(f) :=
∑

v∈V
f(s, v) =

∑

v∈V
f(v, t).

Example 2.

v1 v3

v2 v4

ts

12|12

10|14

6|71|4−1|10
−7|5

7|13

11|16 4|9

4|4

14|20

arc label f |c.

w(f) = 7 + 11 = 4 + 14 = 18

plus all loops and arcs between all other pairs of vertices with f = c = 0

−4|0

−14|0−11|0
−12|0

−4|0
−6|0

−10|0

Remark 1. The above definition of flow corresponds to the previous definition.

• Let f be a flow in (D = (V,E), s, t ∈ V, c : E → R+
o). For u, v ∈ V let

c′(u, v) =

{
c(u, v) if (u, v) ∈ E

0 else

f ′(u, v) =

f(u, v) if (u, v) ∈ E, (v, u) /∈ E
−f(v, u) if (u, v) /∈ E, (v, u) ∈ E

f(u, v)− f(v, u) if (u, v), (v, u) ∈ E
0 else

Then f ′ is a flow in (V, s, t, c′) and w(f) = w(f ′).

2

• Let f : V × V → R be a flow in (V, s, t ∈ V, c : V × V → R+
0). Let

E = {(u, v) ∈ V × V ; c(u, v) > 0, u 6= v}

and for (u, v) ∈ E let
f ′(u, v) = max(f(u, v), 0).

Then f ′ is a flow in (D = (V,E), s, t, c|E) with w(f ′) = w(f).

Definition 2. Let V be a finite set, s, t ∈ V and c : V × V → R+
0 . The function

f : V × V → R is a preflow (Präfluss) in (V, s, t, c) if f fulfills the capacity and skew sym-
metry constraints and

(3’) ef (v) :=
∑

u∈V f(u, v) ≥ 0 for all v ∈ V \ {s}. (flow excess – Flussüberschuss)

The residual capacity (Restkapazität) of a pair (u, v) ∈ V × V with respect to a preflow f
is

∆f (u, v) = c(u, v)− f(u, v).

Example 3.

v1 v3

v2 v4

ts

12|12

10|14

6|71|4−1|10
−13|5

13|13

16|16 4|9

4|4

14|20

arc label f |c.

plus all loops and arcs between all other pairs of vertices with f = c = 0

−4|0

−14|0−16|0
−12|0

−4|0
−6|0

−10|0

(5)

(6)

vertex label (ef)

(0)

(0)

(18)(−18)

Remark 2. If ∆f (u, v) > 0 and ef (u) > 0 then the preflow f can be augmented on the
pair (u, v) ∈ V × V by min(∆f (u, v), ef (v)).

E.g., in Ex. 3 an amount of 4 could be pushed from v2 to v3 or to v4. An amount of 6
could be pushed from v2 back to s.

Definition 3. Let f be a preflow in (V, s, t, c).

• A pair (v, w) ∈ V × V with ∆f (v, w) > 0 is a residual arc (Residualkante) with
respect to f .

• Df = (V,Ef) with Ef = {(v, w) ∈ V × V ; ∆f (v, w) > 0} is the residual network
(Residualgraph) of D induced by f .

3

Example 4. The residual network induced by the preflow in Ex. 3.

v1 v3

v2 v4

ts

4

1311

18

5 6

arc label ∆f .
4

1416

12

4
6

10

The idea of the algorithm is to push flow excess to the sink along “estimated” shortest
paths in the residual network or – if this is not possible – back to the source, again along
“estimated” shortest paths in the residual network. To decide on which edge we should
push flow next, we consider the vertices on platforms with increasing height. Flow may
only be pushed from a higher platform to a lower one.

Definition 4. The height function

h : V → N0

is compatible with a preflow f in (V, s, t, c) if

(1) h(s) = |V |, h(t) = 0, and

(2) h(v) ≤ h(w) + 1 for (v, w) ∈ Ef .

That means, if the height is compatible with a preflow f then the height cannot decrease
by more than one on a residual arc. (It might, however, increase, remain the same or
decrease by one.) This means especially that an arc with positive flow can never go uphill
by more than one.

For a preflow f in (V, s, t, c) let df (v, w) be the length of a shortest v − w-path in Df .

Lemma 3. Let h be a height function that is compatible with a preflow f in (V, s, t, c).
Then

(1) df (v, w) ≥ h(v)− h(w) for v, w ∈ V ,

(2) df (v, s) ≥ h(v)− |V | for v ∈ V ,

(3) df (v, t) ≥ h(v) for v ∈ V , and

(4) df (s, t) ≥ |V |.

Proof. Let P : v = v0, . . . , v` = w be a shortest v − w-path in Df . Then

h(w) = h(v`) ≥ h(v`−1)− 1 ≥ · · · ≥ h(v0)− ` = h(v)− df (v, u).

This proves the first statement. The other three follow immediately.

4

Corollary 4. If a flow has a compatible height function it is maximum.

Proof. By the fourth condition of the previous lemma it follows that there is no s− t-path
in the residual network. Hence, if f is a flow, then there is no augmenting path with respect
to f and, thus, f is a maximum flow.

A vertex v ∈ V is called active if v /∈ {s, t} and ef (v) > 0. The idea of the algorithm
is to change a preflow f and a compatible height function h until f becomes a flow, i.e.,
until there are no more active vertices. The pseudocode of the algorithm can be found in
Algorithm 1. An illustration of the algorithm is given in Fig. 1+2.

Algorithm 1: Goldberg & Tarjan

Input : finite set V , s, t ∈ V , c : V × V → R+
0

Output: maximum flow f : V × V → R in (V, s, t, c)
Data : height function h : V → N0, compatible with f

∆f (v, w) = c(v, w)− f(v, w), v, w ∈ V
ef (v) =

∑
u∈V f(u, v), v ∈ V

}
to be updated

after each change of f.

Goldberg-Tarjan(V, s, t, c)
for v, w ∈ V do

f(v, w)← 0;

for v ∈ V \ {s} do
f(s, v)← c(s, v); f(v, s)← −f(s, v);
h(v)← 0;

h(s)← |V |;
while there is a v ∈ V \ {s, t} with ef (v) > 0 do

if there is a (v, w) ∈ Ef with h(v) > h(w) then
Push(v, w);

else
Relabel(v);

return f ;

Push(v, w)
∆← min{ef (v),∆f (v, w)};
f(v, w)← f(v, w) + ∆; f(w, v)← −f(v, w);

Relabel(v)
h(v)← min{h(w) + 1; ∆f (v, w) > 0};

5

v1 v3

v2 v4

ts

0|12

0|14

0|70|4
0|10

−13|5

13|13

16|16

0|9
0|4

0|20

arc label f |c.
vertex label (ef |h)

(13, 0) (0, 0)

(16, 0) (0, 0)

(0, 0)(29, 6)

active vertices: v1, v2

(a) After initialization

v1 v3

v2 v4

ts

6|12

0|14

0|7
−10|4

10|10
−13|5

13|13

16|16

0|9
0|4

0|20

arc label f |c.
vertex label (ef |h)

(23, 0) (0, 0)

(0, 1) (6, 0)

(0, 0)(29, 6)

active vertices: v2, v3

(b) R(v1), P (v1, v2), P (v1, v3)

v1 v3

v2 v4

ts

6|12

14|14

0|7
−1|4

1|10
−13|5

13|13

16|16

0|9
0|4

0|20

arc label f |c.
vertex label (ef |h)

(0, 2) (14, 0)

(9, 1) (6, 0)

(0, 0)(29, 6)

active vertices: v3, v4, v1

(c) R(v2), P (v2, v4), R(v2), P (v2, v1)

v1 v3

v2 v4

ts

6|12

14|14

0|7
−1|4

1|10
−13|5

13|13

16|16

0|9
0|4

6|20

arc label f |c.
vertex label (ef |h)

(0, 2) (14, 0)

(9, 1) (0, 1)

(6, 0)(29, 6)

active vertices: v4, v1

(d) R(v3), P (v3, t)

v1 v3

v2 v4

ts

6|12

11|14

7|7
−1|4

1|10
−13|5

13|13

16|16

0|9
4|4

6|20

arc label f |c.
vertex label (ef |h)

(3, 2) (0, 3)

(9, 1) (7, 1)

(10, 0)(29, 6)

active vertices: v1, v3, v2

(e) R(v4), P (v4, t), R(v4), P (v4, v3), R(v4), P (v4, v2)

v1 v3

v2 v4

ts

12|12

11|14

7|7
−4|4

4|10
−13|5

13|13

16|16

0|9
4|4

6|20

arc label f |c.
vertex label (ef |h)

(6, 2) (0, 3)

(0, 3) (13, 1)

(10, 0)(29, 6)

active vertices: v3, v2

(f) R(v1), P (v1, v3), R(v1), P (v1, v2)

v1 v3

v2 v4

ts

12|12

11|14

7|7
−4|4

4|10
−13|5

13|13

16|16

0|9
4|4

19|20

arc label f |c.
vertex label (ef |h)

(6, 2) (0, 3)

(0, 3) (0, 1)

(23, 0)(29, 6)

active vertices: v2

(g) P (v3, t)

Figure 1: Illustration of the algorithm of Goldberg & Tarjan. First part: pushing flow to
the sink. Arcs with zero capacity are implicit. R = Relabel, P = Push.

6

v1 v3

v2 v4

ts

12|12

11|14

7|7
2|4

−2|10
−13|5

13|13

16|16

0|9
4|4

19|20

arc label f |c.
vertex label (ef |h)

(0, 4) (0, 3)

(6, 3) (0, 1)

(23, 0)(29, 6)

active vertices: v1

(a) R(v2), P (v2, v1)

v1 v3

v2 v4

ts

12|12

11|14

7|7
−4|4

4|10
−13|5

13|13

16|16

0|9
4|4

19|20

arc label f |c.
vertex label (ef |h)

(6, 4) (0, 3)

(0, 5) (0, 1)

(23, 0)(29, 6)

active vertices: v2

(b) R(v1), P (v1, v3)

v1 v3

v2 v4

ts

12|12

14|14

7|7
−1|4

1|10
−13|5

13|13

16|16

0|9
4|4

19|20

arc label f |c.
vertex label (ef |h)

(0, 6) (3, 3)

(3, 5) (0, 1)

(23, 0)(29, 6)

active vertices: v4, v1

(c) P (v2, v4), R(v2), P (v2, v1)

v1 v3

v2 v4

ts

12|12

11|14

7|7
−1|4

1|10
−13|5

13|13

16|16

0|9
4|4

19|20

arc label f |c.
vertex label (ef |h)

(3, 6) (0, 7)

(3, 5) (0, 1)

(23, 0)(29, 6)

active vertices: v1, v2

(d) R(v4), P (v4, v2)

v1 v3

v2 v4

ts

12|12

11|14

7|7
−1|4

1|10
−13|5

13|13

13|16

0|9
4|4

19|20

arc label f |c.
vertex label (ef |h)

(3, 6) (0, 7)

(0, 7) (0, 1)

(23, 0)(26, 6)

active vertices: v2

(e) R(v1), P (v1, s)

v1 v3

v2 v4

ts

12|12

11|14

7|7
−1|4

1|10
−10|5

10|13

13|16

0|9
4|4

19|20

arc label f |c.
vertex label (ef |h)

(0, 7) (0, 7)

(0, 7) (0, 1)

(23, 0)(23, 6)

(f) R(v2), P (v2, s)

Figure 2: Illustration of the algorithm of Goldberg & Tarjan. Second part: pushing flow
back to the source. Arcs with zero capacity are implicit. R = Relabel, P = Push.

7

6.2.3.1 Proof of Correctness

Note that Relabel(v) is well defined if

v active =⇒ {w ∈ V ; ∆f (v, w) > 0} 6= ∅

This is guaranteed by the following lemma.

Lemma 5. Let f be a preflow in (V, s, t, c). Then there is a v − s-path in Df for each
v ∈ V with ef (v) > 0.

Proof. Let v ∈ V with ef (v) > 0 and let

Sv = {w ∈ V ; there is a v − w-path in Df}.

Assume s /∈ Sv. Then ef (w) ≥ 0 for all w ∈ Sv. Hence, since v ∈ Sv and ef (v) > 0 we
have on one hand ∑

w∈Sv

ef (w) > 0.

On the other hand, we have

∑

w∈Sv

ef (w) =
∑

u∈V
w∈Sv

f(u,w)

=
∑

u∈V \Sv
w∈Sv

f(u,w)︸ ︷︷ ︸
≤0

(see (!) below)

+
∑

u,w∈Sv

f(u,w)

︸ ︷︷ ︸
=0

(by skew symmetry)

≤ 0

Hence the assumption was wrong and, thus, s ∈ Sv. It remains to show (!): Let u ∈ V \Sv
and w ∈ Sv. Then (w, u) /∈ Ef . Hence

0 = ∆f (w, u) = c(w, u)︸ ︷︷ ︸
≥0

−f(w, u)︸ ︷︷ ︸
=f(u,w)

≥ f(u,w).

To show that during the algorithm of Goldberg & Tarjan indeed f is a preflow and h
is a compatible height function, we need the following lemma.

Lemma 6. Each operation Relabel(v) increases the height of v. Thus, the height of a
vertex never decreases.

Proof. Relabel(v) is only executed if h(w) ≥ h(v) for all w ∈ V with ∆f (v, w) > 0. Since
h(v)← h(w) + 1 for some w ∈ V with ∆f (v, w) > 0 it follows that Relabel(v) increases
h(v) by at least 1.

8

Lemma 7. During the algorithm of Goldberg & Tarjan

(1) f is a preflow and

(2) h is a height function that is compatible with f .

Proof. Clearly, at any time during the algorithm of Goldberg & Tarjan, f is a preflow and
h is a height function. We show by induction on the number of operations that h is always
compatible with f .

After the Initialization: h(s) = |V |, h(t) = 0, and for each (v, w) ∈ Ef we have

h(v) = 0 ≤ 1 ≤ h(w) + 1.

After a Push(v, w): The only possibly new edge in Ef is (w, v). By construction, we
have

h(w) < h(v) < h(v) + 1.

After a Relabel(v): The vertices s and t are not relabeled. Hence, h(s) = |V | and
h(t) = 0 remain true. Further, if there is a w ∈ E with

• (v, w) ∈ Ef then h(v) ≤ h(w) + 1 by construction.

• (w, v) ∈ Ef then we had by the inductive hypothesis that h(w) ≤ h(v) + 1
before the operation Relabel(v). Since the operation Relabel(v) increases
the height of v it follows that we now have even h(w) ≤ h(v).

Corollary 8. If the algorithm of Goldberg & Tarjan terminates, it constructs a maximum
flow.

Proof. If the algorithm terminates, only the source and the sink may have positive flow
excess. Hence, f is a flow. Since h is compatible with f , it follows that f is maximum.

6.2.3.2 Run Time Analysis

Let E = {(v, w) ∈ V × V ; c(v, w) > 0; v 6= w}, n = |V |, and m = |E|. Since the algorithm
operates only in the connected component of D = (V,E) that contains s we assume that
D is connected and that, hence, m ≥ n− 1.

Lemma 9. Let the height function h be compatible with a preflow f . Then

h(v) ≤ 2n− 1 for all v ∈ V.

Proof. Recall that df (v, s) ≥ h(v)− h(s). Hence

h(v) ≤ df (v, s) + h(s) ≤ n− 1 + n.

9

Corollary 10. For each v ∈ V there are at most 2n− 1 operations Relabel(v). Hence,
the total number of Relabel-operations is in O(n2).

We distinguish two types of Push-operations.

Definition 5. An operation Push(v, w) is saturating if thereafter ∆f (v, w) = 0 and non-
saturating otherwise.

Lemma 11. For each (v, w) ∈ V × V an operation Push(v, w) can be at most n times
saturating.

Proof. Let (v, w) ∈ V × V, v 6= w. Let hi be the height function before the ith
Push. Let j < k such that the jth and the kth Push operation is a saturating
operation Push(v, w). Note that (v, w) is no more a resid-
ual arc after a saturating operation Push(v, w) and it
can only become a residual arc again after an operation
Push(v, w). Hence, there is a j < ` < k such that the `th
Push-operation is an operation Push(w, v). Hence,

hk(v) = 1 + hk(w) ≥ 1 + h`(w) = h`(v) + 2 ≥ hj(v) + 2

Further
1 ≤ hi(v) ≤ 2n− 1

for all i such that the ith Push operation is an opera-
tion Push(v, w). Hence there are at most n saturating
Push(v, w). hj(w)

hj(v) jth Push

h`(v)

...

h`(w)`th Push

...

hk(w)

hk(v)
kth Push

2 ≤

Corollary 12. There are at most 2mn saturating Push-operations.

Proof. For each of the m arcs (v, w) ∈ E both, (v, w) and (w, v) can be a residual arc.
Hence, there are at most 2mn saturating Push operations.

Lemma 13. There are at most 4n2m non-saturating Push-operations.

Proof. Consider the potential function

φ :=
∑

v active

h(v)

after the following operations.

Initialization: φ = 0.

Relabel(v): All operations Relabel(v) together increase φ by the maximal height of v,
i.e., by at most 2n− 1.

10

saturating Push(v, w): One operation Push(v, w) increases φ by at most h(w), i.e., by
at most 2n− 1.

non-saturating Push(v, w): v has been deactivated and w might have been activated.
Hence, φ decreases by at least h(v)− h(w) = 1.

Hence, the total increase of φ is at most

(2n− 1)(n− 2) + (2n− 1)2nm
m≥n−1≥0
≤ 4n2m.

Since φ is never negative it follows that the total decrease of φ is at most its total increase.
Hence, the total number of non-saturating Push-operations is at most 4n2m.

Theorem 14. The algorithm of Goldberg & Tarjan terminates after O(n2m) operations
Push and Relabel.

Choice of Operation Push / Relabel. Store for v ∈ V the possible neighbors

{w ∈ V ; c(v, w) > 0 or c(w, v) > 0}

of v in Df as a list N(v). Further, let the last element of N(v) be the dummy vertex nil.
Let p(v) be a pointer to the next element in N(v) that has to be considered. p(v) is used
and updated as follows.

Initialization: p(v)← nil

Push(v, w) or Relabel(v)? Perform the following operation.

(1) While (p(v) 6= nil and (∆f (v, p(v)) = 0 or h(v) ≤ h(p(v)))) move p(v) to the
next vertex in N(v).

(2) If p(v) 6= nil then Push(v, p(v)).

(3) Else Relabel(v) and move p(v) to the first vertex of N(v).

Lemma 15. If p(v) = nil then there is no w ∈ V for which Push(v, w) can be performed.

Proof. First, note that h(v) is not increased during a scan of N(v). Consider the cases in
which p(v) is moved from w.

h(w) ≥ h(v): No operation Push(v, w) can be performed before h(v) isn’t increased.

∆f (v, w) = 0: An operation Push(w, v) has to be executed before the next operation
Push(w, v) can be performed. At that time we will have h(w) > h(v). Hence,
an operation Push(v, w) can only be performed after h(v) is increased.

11

Corollary 16. The algorithm of Goldberg & Tarjan can be implemented to run in

O(n(n+m) + #non-saturating Push) ⊆ O(n2m) time

(plus the time needed to choose an active vertex).

Proof. Recall that there are O(n2) Relabel operations and O(nm) saturating Push oper-
ations. Let v ∈ V . Before each traversal of the list N(v) there is an operation Relabel(v).
Recall that an operation Relabel(v) is performed at most 2n− 1 times. Hence the total
time needed to update p(v) is bounded by

(2n− 1)
∑

v∈V
|N(v)|

︸ ︷︷ ︸
≤2m

(Handshaking Lemma)

∈ O(nm).

In each step of the algorithm of Goldberg & Tarjan there is a freedom of choosing
a suitable active vertex (and a suitable incident residual arc). By an intelligent choice
the upper bound for the number of non-saturating Push and, hence, the run time of the
algorithm of Goldberg & Tarjan can be improved.

6.2.3.3 Some Vertex Selection Rules

FIFO. Organize the active vertices in a queue. Apply all possible Push-operations on a
vertex before considering the next one. Run time in O(n3) – Shiloach and Vishkin (1982).
(O(nm log(n2/m)) – Goldberg and Tarjan (1988) – with dynamic trees and pushing flow
over more than one edge at once.)

Excess-Scaling. Choose v with “high enough” flow excess and among them with mini-
mum height. Run time in O(nm+ n2 log max(u,v)∈E c(u, v)) – Ahuja and Orlin (1989).

Highest-Level. Choose among all active vertices one with the maximum height. Run
time in O(n2m1/2) – Cheriyan and Maheshwari (1989). See next section.

6.2.3.4 Highest-Level Implementation

In the following, we show how to implement the algorithm of Goldberg & Tarjan with the
highest-level vertex selection rule. We store the active vertices in buckets bi, i = 0, . . . , 2n−1
with

v ∈ bi ⇐⇒ v active and h(v) = i.

Let
H = max{h(v); v active}.

The following updates on the data structure have to be performed after

12

Initialization: H ← 0 and bH ← {v ∈ V \ {s, t}; c(s, v) > 0}.

Relabel(v): Move v to bh(v) and set H ← h(v).

Push(v, w): (1) If w /∈ {s, t} and ef (w) was 0 before the last Push then add w to bH−1.

(2) If ef (v) = 0 then remove v from bH .

(3) While bH = ∅ and H > 0 do H ← H − 1.

Note that if w 6= s then H has to be decreased by at most one: If w 6= t then
w ∈ bH−1 and if w = t then H = 1. However, if w = s then H might have to be
decreased by more than one.

Lemma 17. The algorithm of Goldberg & Tarjan with the highest-level selection rule can
be implemented to run in O(n(n+m) + #non-saturating Push) time.

Proof. By Corollary 16, it remains to examine the additional cost for choosing in each
step an active vertex with the maximum height. This is in the order of the number of the
performed operations Push or Relabel plus the time needed to update H. Note that H
is only increased by Relabel operations. For each v ∈ V all operations Relabel increase
H by at most 2n − 1. Hence, the total increase of H and thus, its total decrease is in
O(n2).

Lemma 18. The number of non-saturating Push in the algorithm of Goldberg & Tarjan
with the highest-level selection rule is in O(n2m1/2).

Proof. Consider the phases of the algorithm between two consecutive changes of the max-
imal height H.

R |PPPPR |PPP |PPR |PP |P R = Relabel, P = Push

Hence, a phase ends after

• each Relabel (H increases).

• a Push deactivating the last active vertex of height H (H decreases).

There are at most 4n2 phases: H is increased by at most (n− 2)(2n− 1) ≤ 2n2 by
Relabel operations. Hence, H can also only be decreased at most 2n2 times.

A phase is cheap if it contains at most m1/2 non-saturating Push and expensive oth-
erwise. Clearly, the total number of non-saturating Push operations in cheap phases is in
O(n2m1/2). It remains to show that the total number of non-saturating Push operations
in expensive phases is also in O(n2m1/2). Let

D(v) = {w ∈ V ; h(w) ≤ h(v)}.

13

0

2n− 1

H

not active active

D(v) = {u; h(u) ≤ h(v)}

D(w)

VH = {u ∈ V ; h(u) = H}v

w

t

 bH

Figure 3: Illustration of the proof of Lemma 18.

We consider the potential function

φ =
∑

v active

|D(v)|

after the following operations (see Fig. 3 for an illustration).

Initialization: h(s) = n and h(v) = 0, v 6= s. Hence, D(v) = V \ {s} for v 6= s and

φ = | {v ∈ V \ {s, t}; c(s, v) > 0}︸ ︷︷ ︸
={v∈V ; v active}

| · |V \ {s}| < n2.

Relabel(v): Only |D(v)| might increase. Hence, φ increases by at most n.

saturating Push(v, w): Only w might become a new active vertex. Hence, φ increases
by at most n.

non-saturating Push(v, w): v is deactivated and w might be activated. Since D(v) is
the disjoint union of D(w) and VH := {u ∈ V ; h(u) = H} it follows that φ decreases
by at least |VH |. Further, each non-saturating Push deactivates a vertex in VH . A
vertex that was deactivated within one phase will not be activated before the end of
the same phase. Hence, the number of non-saturating Push in a phase is at most
|bH | ≤ |VH |. Thus, in an expensive phase |VH | > m1/2.

Summarizing, starting from less than n2, the potential function φ increases by at most
2n3 + 2mn2. Hence, there are at most

n2(1 + 2m+ 2n)

m1/2

m≥n−1∈ O(n2m1/2)

non-saturating Push in expensive phases.

14

Theorem 19. The algorithm of Goldberg & Tarjan with the highest-level selection rule
can be implemented to run in O(n2m1/2) time.

6.2.3.5 Literature

Among others, the algorithm of Goldberg & Tarjan and its analysis is also described in
Cormen et al. (2001). The proof in these lecture notes is mainly based on Kleinberg and
Tardos (2004). The proof of Theorem 18 is according to Cheriyan and Mehlhorn (1999).
For further reading on network flows, please consider Ahuja et al. (1993).

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows. Prentice Hall.

Ahuja, R. K. and Orlin, J. B. (1989). A fast and simple algorithm for the maximum flow
problem. Operations Research, 37:748–759.

Cheriyan, J. and Maheshwari, S. N. (1989). Analysis of preflow push algorithms for maxi-
mum network flow. SIAM Journal on Computing, 18:1057–1086.

Cheriyan, J. and Mehlhorn, K. (1999). An analysis of the highest-level selection rule in the
preflow-push max-flow algorithm. Information Processing Letters, 69:239–242.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, S. (2001). Introduction to
Algorithms. MIT Press.

Goldberg, A. V. and Tarjan, R. E. (1988). A new approach to the maximum flow problem.
Journal of the Association for Computing Mashinery, 35:921–940. (also STOC’86).

Kleinberg, J. and Tardos, É. (2004). Algorithm Design. Addison-Wesley.

Shiloach, Y. and Vishkin, U. (1982). An O(n2 log n) parallel max-flow algorithm. Journal
of Algorithms, 3:128–146.

15

