UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE PD Dr. Sven Kosub

Ausgabe: 2 Nov 2011 **Abgabe:** 9 Nov 2010

Problem 1: Congestion model

Suppose you are given the congestion model $(\{a, b\}, \{\{a\}, \{b\}\}, (c_a, c_b))$ with cost functions $c_a(x) = 1$ and $c_b(x) = x^r$ for r > 1, i.e., a traffic network connecting a starting and a destination via two parallel pathways $\{a\}$ and $\{b\}$ each consisting of a single road a or b.

- (a) A user distribution x is said to be at Wardrop equilibrium if $c_s(x) \leq c_{s'}(x)$ for all $s, s' \in S$ such that x(s) > 0. Determine a user distribution at Wardrop equilibrium for the above congestion model. What is the social cost of the user distribution?
- (b) A user distribution x^* is said to be a social optimum if $C(x^*) \leq C(x)$ for all user distributions x. Determine a social optimum. What is the social cost of the social optimum?
- (c) Let x^* be a social optimum and let x be a user distribution at Wardrop equilibrium. The coordination ratio γ^* is the infimum of all γ such that $C(x) \leq \gamma \cdot C(x^*)$. Determine the coordination ratio for the above congestion model.

Problem 2: Phase space

Consider the following simulation: We have an interdependence graph G = (V, E) consisting of vertex set $V =_{def} \{0, 1, 2, 3\}$ and edge set $E =_{def} K_{1,3} = \{\{0, 1\}, \{0, 2\}, \{0, 3\}\}$. Suppose that there is a function f_i assigned to each vertex i as follows:

$$\begin{array}{rll} f_0(x_0, x_1, x_2, x_3) &=_{\mathrm{def}} & x_0 \oplus x_1 \oplus x_2 \oplus x_3, \\ f_1(x_0, x_1) &=_{\mathrm{def}} & x_0 \oplus x_1, \\ f_2(x_0, x_2) &=_{\mathrm{def}} & x_0 \oplus x_2, \\ f_3(x_0, x_3) &=_{\mathrm{def}} & x_0 \oplus x_3, \end{array}$$

where \oplus denotes addition modulo 2.

Describe the phase space for the sequential update schedule $\pi = (1, 2, 3, 0)$.

Problem 3: Update order

We consider sequential simulation behaviors on a circuit $Circ_n$ of size n. Prove that there are at most $2^n - 2$ different phase spaces.

Hint: Find an appropriate recursive formula and use induction.

Assignment 1

10 Points

10 Points

WS 2011/12

Network Dynamics

10 Points