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Case Study: Transportation

Networks 1

1.1 The Braess Paradox

Introduced in 1968 by Dietrich Braess. Exemplifies that a new best alternative for each
individual can make the overall situation worse.

Definition 1.1 A (non-atomic) congestion model is a tuple (A,F, (Si)i∈A,W ) such that

(i) A = {1, . . . , k} is a finite, non-empty set of traveller (agent) types.

(ii) F is a finite, non-empty set of roads (facilities).

(iii) Si ⊆ P(F ) is a non-empty set of pathways (strategies) for i ∈ A.

(iv) for each f ∈ F,wf : [0, 1] → R+ is a cost function, i.e., if a fraction x ∈ [0, 1] of
travellers choose road f ∈ F then each traveller costs wf(x).

Consider the following congestion model (traffic scenario):

S t

v2

v1

a

b

c

d

• roads: F = {a, b, c, d}

• pathways: S = {{a, c}, {b, d}}

• cost functions:
wa(x) = x wb(x) = 1
wc(x) = 1 wd(x) = x

Note that A = {1}, i.e., only one type of travellers.

A traffic assignment (strategy distribution) is a mapping

x : S1 ∪ . . . ∪ Sk → [0, 1] s.t.
∑
s∈Si

for some i

x(s) = 1.

version v1.0 as of April 27, 2012



2 Chapter 1. Case Study: Transportation Networks

Given a traffic assignment x:

• congestion µf(x) of f ∈ F is defined by

µf(x) =def

k∑
i=1

∑
s∈Si
f∈s

x(s)

• individual (private) cost cs(x) of travellers of type i ∈ A using pathway s ∈ Si is
defined by

cs(x) =def

∑
f∈s

wf

(
µf(x)

)
• social cost C(x) is defined by

C(x) =def

k∑
i=1

∑
s∈Si

cs(x) · x(s)

In our traffic scenario, consider traffic assignment

x({a, c}) = x({b, d}) = 1/2

• congestion:

µa(x) = µb(x) = µc(x) = µd(x) = 1/2

• individual cost:

c{a,c}(x) = 1/2 + 1 = 3/2

c{b,d}(x) = 1 + 1/2 = 3/2

• social cost:

C(x) = 3/2 · 1/2 + 3/2 · 1/2 = 3/2

• traffic assignment incurs minimum social cost.

(A traffic assignment x∗ is called social optimum if C(x∗) ≤ C(x) for all traffic
assignments x.)

Network Dynamics – Lecture Notes



1.1. The Braess Paradox 3

Definition 1.2 Let (a, F, S, w) be a congestion model.
A traffic assignment x is called Wardrop equilibrium if, and only if for all i ∈ A and for
all s, s′ ∈ Si such that x(s) > 0.

cs(x) ≤ cs′(x)

Note that the following is equivalent:

(1) x is a Wardrop equilibrium

(2) x is a (non-atomic) Nash equilibrium, i.e., for all i ∈ A, ε > 0 and for all s, s′ ∈ Si,
it holds that

cs(x) ≤cs′(x̃), where for s′′ ∈ Si

x̃(s′′) =


x(s)− ε s′′ = s

x(s′) + ε s′′ = s′

x(s′′) otherwise

In our scenario, x({a, c} = x({b, d}) = 1
2 is a Wardrop equilibrium.

Now, we introduce a new road between v1, v2 at cost 0!

S t

v2

v1

a

b

c

d

e

• roads: F = {a, b, c, d, e}

• pathways:
S = {{a, c}, {a, e, d}, {b, d}}

• cost functions:
ca(x) = x cb(x) = 1
cc(x) = 1 cd(x) = x
ce(x) = 0

Wardrop equilibrium: x
(
{a, c}

)
= x

(
{b, d}

)
= 0, x

(
{a, e, d}

)
= 1

(any deviation to another pathway incurs cost 2)

Social cost: C(x) = 1 · 1 + 0 · 1 + 1 · 1 = 2
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4 Chapter 1. Case Study: Transportation Networks

1.2 A Cell-based Model

• large-scale computer simulation to analyze traffic flow of a resolution level of indi-
vidual travellers, e.g., TRANSIMS of LANL → El Paso TRANSIMS Case Study

• Components:

(1) a population

(2) a location-based activity plan for each person

(3) a network description of all transportation pathways

• Information acquisition:

(1) extensive surveys

(2) extensive surveys

(3) complete description of roadway, walkways, public transportation etc.

• Simulation modules:

(1) Router: maps each activity plan to a path through network inclusive several
modes of transportation

(2) Micro-simulator: executes travel plans in accordance with interdependent travel
plans; typically on a 1-second time scale respecting driving rules, road signalling,
fellow travellers, . . .

• Simultation methodology:

Compare travel times obtained by simulation with surveys; if too high, reroute
a decreasing fraction of travellers and iterate simulation.

• Micro-simulator is defined as a local state dynamic:

(1) Road-network representation:

- consists of nodes and links: nodes are, e.g., intersection, lane merging
points; links connect nodes

- each lane is discretized into cells

- each cell has up to four neighbors (front, left, back, right):

cell i

b f

l

r

- a cell can hold at most one vehicle

Network Dynamics – Lecture Notes



1.3. Simulation by Synchronous Updates 5

- link connectivity is specified, e.g., as

(2) vehicle dynamics:

- discrete velocities: 0,1,2,3,4,5,. . . measured in cells per update time step
(e.g., cell length 7.5 m, i.e., 5 corresponds to 5·7.5 m/s = 37.5 m/s = 135 km/h)

(3) Update hierarchy:

- Φ1 lane change decision

- Φ2 lane change execution

- Φ3 acceleration / deceleration

- Φ4 movement

- overall computation is given by Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1

1.3 Simulation by Synchronous Updates

We focus on velocity (Φ3) / position (Φ4) updates on a circuit (passing forbidden)

Formal specification is as follows:

• X = {0, 1, . . . , n− 1} set of cells

• D = {�, 0, 1, . . . , vmax} set of possible states for each cell

• E = Circn =
(
X, {(i, i+1 modn) | i ∈ X}

)
is the network

• Dn is the set of possible configurations

version v1.0 as of April 27, 2012



6 Chapter 1. Case Study: Transportation Networks

Local state dynamic for acceleration (for i ∈ X):

fi : Dn → D : (x0, . . . , xn−1) 7→

{
� if xi = �

min(xi+1, vmax,
a

(i) otherwise

where
a

(i) is free space in front of cell i.

Local state dynamic for movement (for i ∈ X):

gi : Dn → D : (x0, . . . , xn−1) 7→


� if xi > 0

δ(i) if xi = � and xi − δ(i) = δ(i)

xi otherwise

where δ(i)− 1 is free space behind cell i.

Example: n = 5, vmax = 1

Circ5

0 1 2 3 4

Time States Type

t=0 0 0 0 � � position
0 0 1 � � velocity

t=1 0 0 � 1 � position
0 1 � 1 � velocity

t=2 0 � 1 � 1 position
1 � 1 � 0 velocity

t= 3 � 1 � 1 0 position
� 1 � 0 1 velocity

t=4 1 � 1 0 � position

t=5 � 1 0 � 1 position

t=6 1 0 � 1 � position

t=7 0 � 1 � 1 position
... ︸ ︷︷ ︸

equal to t=2

Amount of resources:

• O(n) state accesses (time) per update

• space is double of the size of simulation (i.e., O(n) additional space)

Network Dynamics – Lecture Notes



1.4. Simulation by Sequential Updates 7

1.4 Simulation by Sequential Updates

Situation: vehicles waiting for green light

B2F (→)

signal

F2B (←)

signal

Sync

signal

Observation:

• synchronous schedules show sequential semantics

• synchronous schedules not necessary

• (quasi-)sequential schedules save space

Front-to-back schedule:

In each update step, only vmax + 1 cells are updated, i.e., a constant number

α : t 7→ {n−tmodn, . . . , n−t−vmax modn}

Simulation proceeds in phases:

• a phase is complete if each cell has been updated vmax + 1 times

• a phase “corresponds” to one step in the synchronous case

version v1.0 as of April 27, 2012



8 Chapter 1. Case Study: Transportation Networks

Example: n = 5, vmax = 1, front-to-back schedule

Time States Type

t=0 0 0 0 � � position
↓ ↓

t=1 0 0 0 � � velocity
↓ ↓

0 0 0 � � position
↓ ↓

t=2 0 0 1 � � velocity
↓ ↓

0 0 � 1 � position
↓ ↓

t=3 0 � 1 1 � position
↓ ↓

t=4 � 1 1 1 � position
↓ ↓

t=5 � 1 1 1 � position

↓ ↓
t=6 � 1 1 � 1 position

...

Amount of resources:

• each update needs vmax +1 state accesses, i.e., n · (vmax +1)2 = O(n) time
per phase

• each update needs vmax + 1 additional variables, i.e., vmax + 1 = O(1)
additional space

Fundamental question (for the theory of computer simulation)

Which (quasi-)sequential update schedules are“optimal”with respect
to adequacy and cost?

Network Dynamics – Lecture Notes



1.5. Update Order Dependencies 9

1.5 Update Order Dependencies

How many different simulation behaviors can be expected for different schedules?

We are given the following (simplified, idealized) simulation:

3 2

0 1
fi : {0, 1}4 → {0.1} : (x0, x1, x2, x3) 7→ xi−1 (4) ∧ xi ∧ xi−1 (4)

Graph ∼= interdependence graph

We only consider sequential updates represented by permutations π : {0, 1, 2, 3} → {0, 1, 2, 3},
i.e., in time step t ∈ N+, actor π(mod(t− 1, 4)) updates in state.

Examples:

1. π1 =

(
0 1 2 3
0 1 3 2

)
, i.e., update sequence is 0, 1, 2, 3, 0, 1, 2, 3, . . .

We consider phases consisting of 4 time steps:

0011

0111

1011

1101

1111

0000

0101

1010

1000

0001

0010

0100

0110 1110

1100

1001

2. π2 =

(
0 1 2 3
0 3 1 2

)

0111

1101

1111

0000

0101

1010 1000

0001

0010

0100

0110

1110

1100

1001

1011

0011

(phase space = complete information on simulation behavior)

version v1.0 as of April 27, 2012



10 Chapter 1. Case Study: Transportation Networks

When do permutations induce the same phase space?

Example: π1 =

(
0 1 2 3
0 1 2 3

)
, π2 =

(
0 1 2 3
0 2 1 3

)
x0 x1 x2 x3

y0 x1 x2 x3

y0 y0 ∧ x1 ∧ x2 x2 x3

y0 y0 ∧ x1 ∧ x2 x2 x2 ∧ x3 ∧ y0

y0 y0 ∧ x1 ∧ x2 y2 x2 ∧ x3 ∧ y0

x0 x1 x2 x3

y0 x1 x2 x3

y0 x1 x2 x2 ∧ x3 ∧ y0

y0 y0 ∧ x1 ∧ x2 x2 x2 ∧ x3 ∧ y0

y0 y0 ∧ x1 ∧ x2 y2 x2 ∧ x3 ∧ y0

Observation: Given a graph G = (V,E), two permutations π, π′ : V → V induce the same
phase space if there is a k such that

{
π(k), π(k+1)

}
6∈ E and π(i) = π′(i) for i 6∈ {k, k+1}.

Example: For π : {0, 1, 2, 3} → {0, 1, 2, 3} and Circ4, this is true for:

• (0, 2, 1, 3) , (2, 0, 1, 3) , (2, 0, 3, 1) , (0, 2, 3, 1)

• (1, 3, 0, 2) , (3, 1, 0, 2) , (3, 1, 2, 0) , (1, 3, 2, 0)

• (0, 1, 3, 2) , (0, 3, 1, 2)

• (2, 1, 3, 0) , (2, 3, 1, 0)

• (1, 0, 2, 3) , (1, 2, 0, 3)

• (3, 0, 2, 1) , (3, 2, 0, 1)

That is, ≤ 24− 16 + 6 = 14 permutations do not possess the above property,
i.e., there are at most 14 different sequential simulation behaviors.

Network Dynamics – Lecture Notes



Networks 2

2.1 Networks in a Static Perspective

2.1.1 Population

An actor x is any variable with values ranging in a set D called attribute type. If x takes
on a value z ∈ D, then z is called state of x.

Definition 2.1 .

1. A population X = {x1, . . . , xn} is a finite set of actors x1, . . . xn with attribute types
D1, . . . Dn.

2. A population X = {x1, . . . , xn} with attribute types D1 . . . , Dn is said to be homoge-
neous of attribute type D if D = D1 = · · · = Dn.

In the following we restrict ourselves to homogeneous populations. Therefore we omit the
word “homogeneous.”

Let X = {x1, . . . xn} be a population with attribute type D. A configuration (assignment,
interpretation) is a mapping I : X → D, i.e. a configuration I assigns a state I(x) ∈ D
to each actor x ∈ X. As an alternative notation we also refer to a tuple (z1, . . . , zn) ∈ Dn

such that zi = I(xi) as a configuration.

2.1.2 Structure

The fundamental relation in network analysis is the dyad. A dyad relates two actors of a
population. We use graph theory to describe dyadic structures of populations.

Definition 2.2 Let X = {x1, . . . , xn} be a population of attribute type D.

1. A structure is a set E ⊆ X ×X.

2. The elements of X ×X are called dyads.

3. The elements of a structure E are called edges.

Structures can be directed, undirected, or mixed. They are allowed to have annotations
(weights) with certain attribute types. That is, a structure E may be equipped with a
weight function w : E → A where A is the attribute type.

version v1.0 as of April 27, 2012



12 Chapter 2. Networks

2.1.3 Constraint

Constraints limit the set of possible configurations of populations.

Definition 2.3 Let X = {x1, . . . , xn} be a population of attribute type D. A constraint
on X is any relation R ⊆ Dn.

A configuration I : X → D is said to be admissible with respect to constraint R if and
only if (I(x1), . . . , I(xn)) ∈ R.

Example: We discuss constraints for some populations and structures.

Let X = {1, 2, 3, 4} be a population of type D = {0, 1}. Let E = Circ4 be a
cycle containing the four actors. Define R to be the following constraint:

R =def { (0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1) }

Then, constraint R corresponds to the set of solution of the following set of
equations:

4 3

1 2 x1 = x4 ⊕ x1 ⊕ x2
x2 = x1 ⊕ x2 ⊕ x3
x3 = x2 ⊕ x3 ⊕ x4
x4 = x3 ⊕ x4 ⊕ x1

Here, ⊕ denotes XOR. Clearly, x1 does not directly depend on x3 and x2 does
not directly depend on x4. All other dependencies between the variable are rep-
resented by an edge in the structure. Therefore, we call E the interdependence
structure for R.

2.1.4 System

Definition 2.4 Let D be an attribute type.
A (homogeneous) system S is a triple (X,E,R) such that X is a population of attribute
type D, E is a structure on X, and R is a constraint on X.

Example:

The triple
(
{1, 2, 3, 4},Circ4,

{
(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)

})
as in

the example above is a system.

A state of S is any admissible configuration I : X → D.

Network Dynamics – Lecture Notes



2.2. Networks in a Dynamical Perspective 13

2.2 Networks in a Dynamical Perspective

2.2.1 Process

Let [a, b] =def N ∩ {x | a ≤ x ≤ b} for a, b ∈ N.
We allow b to be ∞ and define [a,∞] =def N | {0, . . . , a− 1}.

Definition 2.5 Let h ∈ N ∪ {∞}.
A process P is any finite or infinite sequence (Si)i∈[0,h] of systems Si; h is called observa-
tional horizon of process P .

We also denote a process by P = (Xi, Ei, Ri)i∈[0,h] when referring to the components of
the systems.

Basically, we can identify three (non-excluding) important subtypes of processes:

• A process of type (Xi, ∅, ∅)i∈[0,h] is called a population process.
}

network modelling
• A process of type (Xi, Ei, ∅)i∈[0,h] is called a structure process.

• A process of type (X,E,Ri)i∈[0,h] is called a state process. −→ network dynamics

In this course the focus is solely on state processes.

2.2.2 Trajectory

Systems running through a process can take several paths of state changes depending, e.g.,
on initial or environmental conditions. Such paths are called trajectories.

Definition 2.6 Let P = (X,E,Ri)i∈[0,h] be any state process with a population of size
||X|| = n.
A trajectory is a finite or infinite sequence (Ij)j∈[0,h] of admissible configurations, i.e.,
(Ij(x1), . . . , Ij(xn)) ∈ Rj for all j ∈ [0, h].

The set of possible trajectories of a process (X,E,Ri)i∈[0,h] is
h

×
i=0

Ri and can thus be, in

the case h =∞, uncountable in general, even for a binary attribute type.

version v1.0 as of April 27, 2012



14 Chapter 2. Networks

2.2.3 Global State Dynamic

A global (deterministic) state dynamic is a mechanism for selecting trajectories of a state
process.

Definition 2.7 Let P = (X,E,Ri)i∈[0,h] be a state process of attribute type D and a
population of size n.

1. A global state dynamic is a mapping F : Dn × [1, h]→ Dn.

2. A global state dynamic F is said to be compatible with P if F(R0, t) ⊆ Rt for all
t ∈ [1, h].

Example:

Let P1 = (X,E,R1
i )i∈[0,h] and P2 = (X,E,R2

i )i∈[0,h] be state processes of
type D = {0, 1}, population X = {1, 2, 3}, structure E = K3, h = ∞, and
constraints R1

i = D3, R2
i =

{
(z1, z2, z3) ∈ D3 | 1 ≤ z1+z2+z3 ≤ 2

}
. Consider

the following global state dynamics:

F1 : (z1, z2, z3, t) 7→ (1− z1, 1− z2, 1− z3)

F2 : (z1, z2, z3, t) 7→


(1− z1, z2, z3) if t− 1 ≡ 0 (3)

(z1, 1− z2, z3) if t− 1 ≡ 1 (3)

(z1, z2, 1− z3) if t− 1 ≡ 2 (3)

Then,

• F1, F2 are global state dynamics.

• F1 is compatible with P1 and P2.

• F2 is compatible with P1,
but incompatible with P2

(
F2 (1, 0, 0, 1) = (0, 0, 0) 6∈ R2

1

)
.

2.2.4 Local State Dynamic

Definition 2.8 Let P1 = (X,E,Ri)i∈[0,h] be a state process of attribute type D and pop-
ulation size n.

(1) A local transition on X is a mapping f : Dn → D

(2) An update schedule on X is a mapping α : [1, h]→ P(X)

(3) A local state dynamic an X is a pair (F, α)
such that F = {f1, . . . , fn} is a set of local transitions on X, where fi is associated
with actor xi ∈ X, and α is an update schedule on X.

Network Dynamics – Lecture Notes



2.2. Networks in a Dynamical Perspective 15

Example: Consider again P1 and the following LSD:

F = {f1, f2, f3}; for i ∈{1, 2, 3}, z1, z2, z3 ∈ {0, 1} define:

fi : {z1, z2, z3} 7→

{
zi if z1 + z2 + z3 = 1

1− zi otherwise

α1 : N+ → P(X) : t 7→ {1, 2, 3} synchronous update schedule

α2 : N+ → P(X) : t 7→


{2} if t−1 ≡ 0 (3)

{1} if t−1 ≡ 1 (3)

{3} if t−1 ≡ 2 (3)

sequential update schedule

(As a sequence: 2 1 3 2 1 3 2 1 3 . . . )

An LSD induces a GSD.

Definition 2.9 Let P = (X,E,Ri)i∈[0,h] be a state process of attribute type D and popu-
lation size n. Let (F, α) be a local state dynamic on X.

(1) For each actor xi ∈ X and for each subset U ⊆ X of actors, activity function ϕi[U ]
is defined for configuration ~z = (z1, . . . , zn) ∈ Dn by

ϕi[U ](~z) =def

{
fi(z1, . . . , zn) if xi ∈ U
zi if xi 6∈ U

(2) For each set U ⊆ X, the global transition (function) FF [U ] : Dn → Dn is defined
for configuration ~z = (z1, . . . , zn) by

FF [U ](~z) =def

(
ϕ1[U ](~z), . . . , ϕn[U ](~z)

)
(3) The global state dynamic F(F,α) : Dn × [1, h] → Dn induced by the local state

dynamic (F, α) is defined for t ∈ [1, h] by

F(F,α) ( · , t) =def

(
t∏

k=1

FF [α(k)]

)
(·) ,

i.e., by the composition of global transitions specified by the update schedule.

Note that f · g is the function defined by f · g : x 7→ g(f(x)).

The following shall elucidate that in detail:(
3∏

k=1

FF [α(k)]

)
(~z) = FF [α(3)] · FF [α(2)] · FF [α(1)](~z)

= FF [α(3)]
(
FF [α(2)]

(
FF [α(1)](~z)

))
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Example continued: Let U! = {1, 2}, U2 = {1, 2, 3}. Then it holds:

ϕ1[U1] = f1 ϕ2[U1] = f2 ϕ3[U1] = id3

ϕ1[U2] = f1 ϕ2[U2] = f2 ϕ3[U2] = f3

The global transition function is as follows:
FF [U1] (z1, z2, z3) =

(
f1(z1, z2, z3), f2(z1, z2, z3), z3

)
, e.g.,

FF [U1] (1, 1, 1) = (0, 0, 1) FF [U1] (1, 0, 1) = (0, 1, 1) FF [U1] (0, 0, 1) = (0, 0, 1)

FF [U2] (1, 1, 1) = (0, 0, 0) FF [U2] (0, 0, 0) = (1, 1, 1)

The GSD induced by (F, α1) and (F, α2) are as follows:

~z
t→ a1(t) 1 2 3 4 5

{1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3}
000 111 000 111 000 111
001 001 001 001 001 001
010 010 010 010 010 010
011 100 100 100 100 100
100 100 100 100 100 100
101 010 010 010 010 010
110 001 001 001 001 001
111 000 111 000 111 000

~z
t→ a2(t) 1 2 3 4 5

2 1 3 2 1

000 010 010 010 010 010
001 001 001 001 001 001
010 010 010 010 010 010
011 001 001 001 001 001
100 100 100 100 100 100
101 111 011 010 010 010
110 100 100 100 100 100
111 101 001 001 001 001

That is,

• F(F,α2) (~z, t) = F(F,α2) (~z, 3) for t ≥ 3

• each trajectory of (F, α2) reaches a fixed point

• F(F,α1) generates oscillations

• each permutation on {1,2,3} has the same effect as permutation (2,1,3)
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Let P = (X,E,R)i∈[0,∞] be a state process of attribute type D and population size
n,R = Dn.

Let (F, α) be an LSD on X such that the induced GSD is compatible with P (i.e.,
α : N+ → P(X)).

Then, (X,E) is the interdependence graph of F if, and only if for all fi ∈ F ,

NE(xi) = {xj | xi depends on xj in fi} \ {xi}

where,

• NE(xi) = {xj | {xi, xj} ∈ E} is the neighborhood of xi

• xi depends on xj in fi ⇐⇒def xj is not fictive in fi;
a variable xj is fictive in fi if, and only if

for all z1, . . . , zj−1, zz+1, . . . , zn) ∈ D, zj , z′j ∈ D,

fi(z1, . . . , zj−1, zj , zz+1, . . . , zn) = fi(z1, . . . , zj−1, z
′
j , zj+1, . . . , zn)

Example: Trytophan operon, D = {0, 1}

f1 : (x1, . . . , x9) 7→ x3 ∧ x5 ∧ x6
f2 : (x1, . . . , x9) 7→ x1 ∧ x7
f3 : (x1, . . . , x9) 7→ x2 ∧ x3 ∧ x8 ∧ x9
f4 : (x1, . . . , x9) 7→ x3 ∧ x5 ∧ x6
f5 : (x1, . . . , x9) 7→ x4 ∧ x7
fi : (x1, . . . , x9) 7→ xi for i ∈ {6, . . . , 9}

x9

x8

x2

x7

x1

x3

x6

x4

x5
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interdependence graph:

x9

x8

x2

x7

x1

x3

x6

x4

x5

Let F be a class of functions (over domain D).
Let G be a class of (undirected) graphs.
Let S be a class of schedules.

An (F ,G,S) ensemble is the set of all LSD (F, α) such that

• F ≤ F

• α ∈ S

• (X,E) ∈ G where (X,E) is the interdependence graph of F

Example:

Synchronous tryptophan operon belongs to the (BF,Planar,Sync) ensemble.

3.1 Structure Frameworks

We are interested in graph classes which are closed under the following operations:

- isomorphisms

- vertex deletion

- edge deletion

- edge contraction

Network Dynamics – Lecture Notes
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3.1.1 Closure Properties

Let G = (V,E) be an undirected graph.

1. Isomorphisms:

Let G′ = (V ′, E′) be another undirected graph. Then,

G ' G′ ⇔def there is a bijective mapping ϕ : V → V ′

such that for all u, v ∈ V ,

{u, v} ∈ E ←→ {ϕ(u), ϕ(x)} ∈ E′

Example:

3 2

0 1G

'

C B

A

D

G′

ϕ :

0 7→ A

1 7→ B

2 7→ C

3 7→ D

3 2

0 1G

6'

C B

A

D

G′

degG′(D) = 3!

Two graphs are isomorphic if, and only if they can be drawn by the same picture.

2. Edge deletion:

Let e ∈ E be an edge. Then, the graph G−e obtained by deleting edge e in G is the graph
G′ = (V ′, E′) such that

V ′ =def V

E′ =def E \ {e}

Example:

G

−→

G−e

y

x

e
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3. Vertex deletion:

Let v ∈ V be a vertex. Then, the graph G−v obtained by deleting vertex v in G is the
graph G′ = (V ′, E′) such that

V ′ =def V \ {v}
E′ =def E \ {e | e = {u, v} ∈ E for some u ∈ V }

Example:

G

−→

G−x

x

4. Edge contraction:

Let e = {x, y} ∈ E be an edge. Then, the graph G/e obtained by contracting edge e in G
is the graph G′ = (V ′, E′) such that

V ′ =def (V \ {x, y}) ∪ {ve} where ve 6∈ V ∪ E
E′ =def

{
{v, w} | {v, w} ∈ E, {v, w} ∩ {x, y} = ∅

}
∪
{
{ve, w} | {x,w} ∈ E | {e} or {y, w} ∈ E | {e}

}
Example:

G

−→

G/e

y

x

e
ve

Let X be any graph and let {Vx | x ∈ V (X)} be partition of V into (non-empty) connected
subgraphs such that for all x, y ∈ V (X)

{x, y} ∈ E(X) ⇔ there is an edge in G connecting some vertex
from Vx and some vertex from Vy.
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Example:

V4

V5

V2 V3

V0 V1
G

4 5

2 3

0 1
X

Then, we say that G = MX (more precisely, G ∈MX). A set Vx is called branch set .

Proposition 3.1 Let G,X be graphs. Then,

G = MX ⇔ there exist graphs G0, . . . , Gr and edges ei ∈ E(Gi) such
that G0 = G,Gr ' X, and for all 0 ≤ i < r, Gi+1 = Gi/ei.

Proof: Induction on d = ||V (G)|| − ||V (X) ≥ 0.

• base of induction: Let d = 0. That is, ||V (G)|| = ||V (X)||.

⇒ Suppose G = MX. That is, ||Vx|| = 1 for all x ∈ V (X), and G ' X.
Choose r = 0. Then, G0 = G ' X.

⇐ Suppose G0, . . . , Gr, edges ei ∈ E(Gi) such that G0 = G,Gr ' X,
Gi+1 = Gi/ei. Since ||V (Gi/ei)|| = ||V (Gi)|| − 1, we have r = 0.
So, G0 = G ' X. Hence, G = MX.

• induction step: Let d > 0. Let G,X be graphs such that ||V (G)|| = ||V (X)||

⇒ Suppose G = MX. Let x ∈ V (X) be a vertex such that ||Vx|| ≥ 2. Then,
there are u, v ∈ Vx such that e = {u, v} ∈ E(G). Consider G/e. It holds, that
G/e = MX.
By induction hypothesis, there are G0, . . . , Gr, edges ei ∈ E(Gi) such that
G0 = G/e, Gr ' X, Gi+1 = Gi/ei. Set G′0 = G, G′i = Gi−1 for i > 0, e0 = e.

⇐ Suppose G0, . . . , Gr, edges ei ∈ E(Gi) s.t. G0 = G, Gr ' X, Gi+1 = Gi/ei.
By induction hypothesis, G/eo = G1 = MX. Assume ve0 ∈ Vx for x ∈ V (X).
Then, replace ve0 by u, v such that e0 = {u, v}.
Hence,G = MX..
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A graph X is said to be a minor of a graph Y (i.e., X 4 Y ) if and only if
there is a G ⊆ Y such that G = MX.

A class G of graphs is closed under taking minors if and only if
for all graphs G,G′ : G ∈ G ∧G′ 4 G⇒ G′ ∈ G.

Proposition 3.2 The minor relation 4 is a partial order.

Proof:

(1.) Reflexivity: X 4 X

(2.) Transitivity: X 4 Y, Y 4 Z, X 4 Z

(3.) Antisymmetry: Suppose: X 4 Y, Y 4 X.
Thus, ||V (X)|| = ||V (Y )||. Hence, X = MY and X ' Y ..

3.1.2 Forbidden Minors

Let X be any graph. We define

Forb4(X) =def {G | G 64 X}

For any set X of graphs, we define

Forb4(X ) =def

⋂
X∈X

Forb4(X)

X is called the set of forbidden minors (or obstruction set).

Examples:

• Forb4(K3) is the class of all forests

• Forb4(K2 ⊕K2) is the class of all graphs where all degrees are incident:

− stars K1,n

− triangles K3

}
⊕ isolated vertices

• Forb4(K3, K2⊕K2) is the class of all graphs having a vertex cover of size 1 [Cattell
& Dinveen 1994]. For G = (V,E), a subset U ⊆ V is a vertex cover of G if, and only
if {u, v} ∩ U 6= ∅ for all edges {u, v} ∈ E.

• Forb4(K3,3, K
5) is the class of all planar graphs [Kuratowski 1930, Wagner 1937].
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• Forb4(K4) is the class of all series-parallel graphs.

• Forb4(K2,3, K
4) is the class of all outerplanar graphs.

Proposition 3.3 For each set X , Forb4(X ) is closed under taking minors.

Proof: Let G,G′ be graphs such that G ∈ Forb4(X ) and G′ 4 G.
Assume G′ 6∈ Forb4(X ). That is, there is an X ∈ X such that X 4 G′.
Thus, X 4 G by transitivity of 4. Hence, G 6∈ Forb4(X ).  Hence, G′ ∈ Forb4(X )

Proposition 3.4 Let G be a class of graphs closed under taking minors.
Then, there is a set X such that G = Forb4(X ).

Proof: Define X =def G. We have to show G = Forb4(G).

⊇ Let G ∈ Forb4(G). Assume that G 6∈ G, i.e., G ∈ G. Since G 6∈ Forb4(G), we obtain
G 6∈ Forb4(G).  Hence, G ∈ G.

⊆ Let G ∈ G. Assume that G 6∈ Forb4(G), i.e., there is an H ∈ G such that H 4 G.
Since G is closed under taking minor, H ∈ G.  Hence, G ∈ Forb4(G)..

Theorem 3.5 (Robertson & Seymour 1986-2004) Let G be any class of graphs.
Then, G is closed under taking minors ⇐⇒ there exists a finite set {X1, . . . , Xr} of graphs
such that G = Forb4(X1, . . . , Xr).

Example: (Warning!)

• class of graphs having vertex cover of size 6 need 260 forbidden minors.

• class of graphs having pathwidth 3 need ∼60,000,000 forbidden minors.

Proposition 3.6 If X 4 Y then Forb4(X) ⊆ Forb4(Y ).

Proof: Let G ∈ Forb4(X).
Assume G 6∈ Forb4(Y ), i.e., Y 4 G. Since X 4 Y , X 4 G by transitivity of 4.
Thus, G 6∈ Forb4(X).  Hence, G ∈ Forb4(Y )
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3.1.3 Bounded Treewidth

Let G = (V,E) be a graph, let T be a tree, and let V = {Vt}t∈V (T ) be a family of vertex
sets Vt ⊆ V (G).
(T,V) is a tree decomposition of G if, and only if:

(1) V
⋃

t∈V (T )

Vt.

(2) for all e ∈ E there is a t ∈ V (T ) such that e ⊆ Vt.

(3) for all t1, t2, t3 ∈ V (T ) such that t2 lies on a path from t1 to t3 in T , it holds that
Vt1 ∩ Vt3 ⊆ Vt2 .

The width of a tree decomposition (T,V) is defined to be

max
{
||Vt|| − 1 | t ∈ V (T )

}
.

Treewidth tw(G) of a graph G is defined to be the minimum width of a tree decomposition
of G.

Exmaple:

Given G = (V,E) and tree T consisting of a vertex. Then,
(
T, {V }

)
is a tree

decomposition of G; width is n−1 (for ||V || = n).

A class G of graphs has bounded treewidth ⇐⇒def (∃k ∈ N) (∀G ∈ G) [tw(G) ≤ k].

Theorem 3.7 (Robertson & Seymour 1986) Let X be a graph.
Then, X is planar ⇐⇒ Forb4(X) has bounded treewidth.

3.1.4 Bounded Degree

A class G of graphs has bounded degree ⇐⇒def (∃k ∈ N) (∀G ∈ G) [4(G) ≤ k].

Note that classes of bounded degree need not be closed under taking minors.

Proposition 3.8 Let X be a graph.
Then, X has a vertex cover of size one ⇐⇒ Forb4(X) has bounded degree.

Proof:

⇒ Suppose X has vertex cover of size one. Then, X consists of some star K1,k and
some isolated vertices u1, . . . , ur.
Assume Forb4(X) does not have bounded degree. Thus, there is G ∈ Forb4(X)
such that 4(G) ≥ k + r, i.e., G contains a subgraph K1,k+r.
Hence, X 4 K1,k+r 4 G.  Therefore, Forb4(X) has bounded degree.
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⇐ Suppose X does not have any vertex cover of size one. That is, X contains a K3 or
a K2 ⊕K2 as subgraphs.
Consider two classes:

(i) Let X contain a K3, i.e., K3 4 X. As Forb4(K3) does not have bounded
degree (it contains all trees), Forb4(X) ⊇ Forb4(K3) does not have bounded
degree.

(ii) Let X contain a K2 ⊕K2, i.e., K2 ⊕K2 4 X. As Forb4(K2 ⊕K2) contain for
all k ∈ N the star K1,k, Forb4(X) ⊇ Forb4(K2⊕K2) contains all stars as well.
Hence, Forb4(X) does not have bounded degree..

3.2 Transition Frameworks

We are interested in function classes closed under composition.

3.2.1 Closure Properties

Let D be an attribute type.
An n-ary D-function f is a mapping f : Dn → D.
Let F be any set of D-functions.

(1) F is closed under introduction of fictive variables if and only if for all n ∈ N and all
n-ary f ∈ F , the function

ϕ : Dn+1 → D : (x1, . . . , xn, xn+1) 7→ f (x1, . . . , xn)

belongs to F .

(2) F is closed under permutations of variables if and only if for all n ∈ N and all n-ary
f ∈ F , and permutation π ∈ S, the function

ϕ : Dn → D : (x1, . . . , xn) 7→ f
(
xπ−1(1), . . . , xπ−1(n)

)
belongs to F .

(3) F is closed under identification of variables if and only if for all n ∈ N and all n-ary
f ∈ F , the function

ϕ : Dn−1 → D : (x1, . . . , xn−1) 7→ f (x1, . . . , xn−1, xn−1)

belongs to F .
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(4) F is closed under substitution if and only if for all n,m ∈ N, n-ary f ∈ F , m-ary
g ∈ F , the function

ϕ : Dn+m−1 → D : (x1, . . . , xn−1, xn, . . . , xn+m−1)

7→ f
(
x1, . . . , xn−1, g (xn, . . . , xn+m−1)

)
belongs to F .

For a class F , define [F ] to be the minimal class containing F ∪{id} which is closed under
all operations above; [F ] is called a clone.

Example: Suppose we are given a boolean gate (of fan-in 3)

D(x1, x2, x3) =def (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

x3
x2
x1

yD

Which functions can be expressed using D and constant 1?

• not: x 7→ x

D(x, x, x) ≡ (x ∧ x) ∨ (x ∧ x) ∨ (x ∧ x) ≡ x

x not(x)D

• id: x 7→ x

D
(
x, x,not(x)

)
≡ (x ∧ x) ∨ (x ∧ x) ∨ (x ∧ x) ≡ x

x
id(x)

D

D

• and: (x, y) 7→ x ∧ y (using 1!)

D
(
x,not(y), 1

)
≡ (x ∧ y) ∨ (x ∧ 0) ∨ (y ∧ 0) ≡ x ∧ y
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x

y

1

and(x, y)

D

D

what if we do not have 1?

3.2.2 Boolean Clones

Let BF denote the class of all {0, 1}-functions (boolean functions).

The 0-ary boolean functions are:

• c0 =def 0 denoted in formulas by 0

• c1 =def 1 denoted in formulas by 1

The 1-ary boolean functions (without fictive variables) are:

• id(x) = 1 ⇐⇒def x = 1 denoted in formulas by x

• not(x) = 1 ⇐⇒def x 6= 1 denoted in formulas by x,¬x

The most prominent 2-ary boolean functions (without fictive variables) are:

• and(x, y) = 1 ⇐⇒def min(x, y) = 1 denoted in formulas by ∧

• or(x, y) = 1 ⇐⇒def max(x, y) = 1 denoted in formulas by ∨

• imp(x, y) = 1 ⇐⇒def x ≤ 1 denoted in formulas by →

• eq(x, y) = 1 ⇐⇒def x = y denoted in formulas by ↔

• xor(x, y) = 1 ⇐⇒def x 6= y denoted in formulas by ⊕

The following properties are important to describe clones:

• For b ∈ ‖0, 1}, a function f is b-reproducing ⇐⇒def f(b, . . . , b) = b

Examples: ...

• A function f is monotone ⇐⇒def for all ~x, ~y ∈ {0, 1}n,
~x ≤ ~y implies f(~x) ≤ f(~y)

Examples: id, and, or are monotone;
not, imp, eq, xor are not monotone
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• A function f is selfdual ⇐⇒def for all (x1, . . . , xn) ∈ {0, 1}n,

f(x1, . . . , xn) = not
(
f
(
not(x1), . . . ,not(xn)

))
Examples: id, not are selfdual

there is no selfdual 2-ary function (without fictive variables);
(x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) denotes a selfdual function.

BF

R R

R

M M

M

M

S

S S 

S S 

S S 

S 

D

D

D

S

S S 

S 

V

V

V

V

L

L

L

LL E E

E

E

S 

S S 

S

S 

S 

S 

S 

S 

S

S 

S

N

N

I

I I

I

01

2

01

2

1

2

2

1 3 01 0

2

0

2

1

2

2

1 0

2
0

3
0

0

02

00

3 
00

2 
00

3 
02

3 
01

2 
02

2 
01

01

3 
10

2 
10

10

2 
11

3 
11

11

2 
12

3 
12

12

2
1

3
1

1

maximal classes

-irreducible

-irreducible
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Class Definiton Logical Basis

BF all boolean functions {∧,¬}
R0 {f | f is 0-reproducing} {∧,⊕}
R1 {f | f is 1-reproducing} {∨, x⊕ y ⊕ 1}
R2 R0 ∩R1 {∨, x ∧ (y ⊕ z ⊕ 1)}
M {f | f is monotone} {∧,∨, 0, 1}
M0 M ∩ R0 {∧,∨, 0}
M1 M∩R1 {∧,∨, 1}
M2 M∩R2 {∧,∨}
Sk0 {f | f is 0-separating of degree k} {→,

∧k+1
i=1 (x1 ∨ · · · ∨ xi−1 ∨ xi+1 ∨ · · · ∨ xk+1)}

S0 {f | f is 0-separating} {→}
Sk1 {f | f is 1-separating of degree k} {x ∧ y,

∨k+1
i=1 (x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xk+1)}

S1 {f | f is 1-separating} {x ∧ y}
Sk02 Sk0 ∩R2 {x ∨ (y ∧ z),

∧k+1
i=1 (x1 ∨ · · · ∨ xi−1 ∨ xi+1 ∨ · · · ∨ xk+1)}

S02 S0 ∩R2 {x ∨ (y ∧ z)}
Sk01 Sk0 ∩M {

∧k+1
i=1 (x1 ∨ · · · ∨ xi−1 ∨ xi+1 ∨ · · · ∨ xk+1), 1}

S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sk00 Sk0 ∩R2 ∩M {x ∨ (y ∧ z),

∧k+1
i=1 (x1 ∨ · · · ∨ xi−1 ∨ xi+1 ∨ · · · ∨ xk+1)}

S00 S0 ∩R2 ∩M {x ∨ (y ∧ z)}
Sk12 Sk1 ∩R2 {x ∧ (y ∨ z),

∨k+1
i=1 (x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xk+1)}

S12 S1 ∩R2 {x ∧ (y ∨ z)}
Sk11 Sk1 ∩M {

∨k+1
i=1 (x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xk+1), 0}

S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sk10 Sk1 ∩R2 ∩M {x ∧ (y ∨ z),

∨k+1
i=1 (x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xk+1), 0}

S10 S1 ∩R2 ∩M {x ∧ (y ∨ z)}
D {f | f is selfdual} {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D1 D∩R2 {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D2 D∩M {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
L {f | f is linear} {⊕, 1}
L0 L∩R1 {⊕}
L1 L∩R1 {↔}
L2 L∩R2 {x⊕ y ⊕ z}
L3 L∩D {x⊕ y ⊕ z ⊕ 1}
V {f | f is maximizing or constant} {∨, 0, 1}
V0 [{or}] ∪ [{c0}] {∨, 0}
V1 [{or}] ∪ [{c1}] {∨, 1}
V2 [{or}] {∨}
E {f | f is minimizing or constant} {∧, 0, 1}
E0 [{and}] ∪ [{c0}] {∧, 0}
E1 [{and}] ∪ [{c1}] {∧, 1}
E2 [{and}] {∧}
N [{not}] ∪ [{c0}] ∪ [{c1}] {¬, 0}
N2 [{not}] {¬}
I [{c0}] ∪ [{c1}] {0, 1}
I0 [{c0}] {0}
I1 [{c1}] {1}
I2 [∅] ∅

Table 3.1: Boolean clones.
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Examples:

D is the class if selfdual functions; E2 is the smallest class containing ∧.
It holds that E2 * D. Moreover, I1 * D; but [I1 ∪D] = I1 tD = BF.
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• A function f is linear ⇐⇒def there exist constants a0, a1, . . . , an ∈ {0, 1} such that
f(x1, . . . , xn) = a0 ⊕ a1x1 ⊕ a2x2⊕ . . .⊕ anxn
Examples: 0, 1, id, not, xor, eq are linear.

• For b ∈ {0, 1}, a tuple set T ⊆ {0, 1}n is b-separating if and only if there is an
i ∈ {1, . . . , n} such that ti = b for all (t1, . . . , tn) ∈ T .

A function f is b-separating ⇐⇒def f
−1(b) is b-separating.

A function f is b-separating of degree k ⇐⇒def every T ⊆ f−1(b) such that ||T || = k
is b-separating.

Examples: imp, or are 0-separating
and is 1-separating

Theorem 3.9 (Post 1941) The familiy of all boolean clones is a countable lattice (with
respect to set inclusion).

3.2.3 Polymorphisms

Alternative approach for general attribute types.

Let D be any attribute type and let R ⊆ Dn be an n-ary relation.

Anm-aryD-function f : Dm → D is a polymorphism ofR⇐⇒def for all tuples x1, . . . , xm ∈ R
(such that xi =

(
xi[1], . . . , xi[n]

)
,(

f(x1[1], . . . , xm[1]), . . . f(x1[n], . . . , xm[n])
)
∈ R

Let Pol(R) denote the set of all polymorphisms of R, a set Q of relations define

Pol(Q) =def

⋂
R∈Q

Pol(R)

Example:

R0 = {(0, 0), (1, 1), (0, 1)}, i.e., R0 is the standard total order on {0, 1}. Note
that x ∈ R0 ⇐⇒def x[1] ≤ x[2]. Let f ∈ Pol(R0). Then, for all x1, . . . , xm ∈ R0

is holds that

• (x1[1], . . . , xm[1]) ≤ (x1[2], . . . , xm[2])

• f(x1[1], . . . , xm[1]) ≤ f(x1[2], . . . , xm[2])

Thus, f is monotone. Hence, Pol(R0) = M .

Theorem 3.10 (Geiger 1968; Bodvarchuk, Kaluzhnin, Kotov, Romov 1969)
Let D be any finite attribute type and let F be any class of D-functions. Then, F is a
clone ⇐⇒ there exists a set Q of relations over D such that F = Pol(Q).
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3.3 Schedule Frameworks

No mathematical theory available which explains the meaning of modularity for update
schedules.

List of schedule types:

• Sync is the class of synchronous schedules, i.e., the class of mappings

α : {1, . . . , T} → {V } for T ∈ N+ ∪ {∞}, graph G = (V,E)

• Async is the class of asynchronous schedules, i.e., the class of mappings

α : {1, . . . , T} → V for T ∈ N+ ∪ {∞}, graph G = (V,E)

• Seq is the class of sequential schedules, i.e., the class of mappings

α : {1, . . . , T} → V for T ∈ N+ ∪ {∞}, graph G = (V,E),

such that α(t) = α(t+ k · ||V ||) for all k ∈ N.
Note that: sequential schedule α is fair if and only if α is surjective.

• Semi-synchronous schedule are schedules not belonging to Sync ∪ Async.

3.4 More Ensembles

(1) Random boolean networks (Kauffman networks)

• (BF,Reg−k ,Sync) ensemble where Reg−k is the class of all directed graphs with
loops an in-degree k.

• “random” means “chosen uniformly at random among all graphs on n vertices”.

(2) Canalizing ensemble

• (NCF,G,S) where NCF is the class of all “nested canalizing functions” over
D = {0, 1}:

f : {0, 1}n →{0, 1} is NCF

⇐⇒ f(x1, . . . , xn) = x∗π(1) ◦1
(
x∗π(2) ◦2

(
. . . (x∗π(n−1) ◦n−1 x∗π(n)) . . .

))
where π is a permutation, x∗ is a literal x or x, and ◦i ∈ {∧,∨}.
• local transitions of the tryptophan operon are NCF.
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(3) Hopfield networks

• (TF,G, Sync) where TF is the class of all “threshold functions” over D = {0, 1}:

f(x1, . . . , xn) =

1 if
n∑
i=1

wixi > V

0 otherwise

for appropriate V > 0, wi > 0.

(4) Contagion networks
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Phase Spaces 4

Note: 4.1 ‘Generators’, 4.2 ‘Structure’: later

4.3 Similarity

4.3.1 Functional Equivalence

Let (X,E,R)i∈[0,∞] be any process.
Let L be a set of local transitions with interdependence structure E.

We want to compare permutations π, π′ of X such that LSDs (L, π) and (L, π′) induce the
same phase space as a labelled directed graph, i.e.,

F(L,π) = F(L,π′)

Functional equivalence is based on update orders:

• let X be a population, without loss of generality (w.l.o.g.) X = {0, 1, . . . , n− 1}

• let E be an interdependence structure

• let SX denote the symmetric group of X, i.e., the set all permutations π : X → X

• for different π, π′ ∈ SX we say that π and π′ are adjacent if and only if there is a k
such that {π(k), π(k + 1)} 6∈ E and π(i) = π′(i) for i 6∈ {k, k + 1}

• the update graph U(X,E) consists of vertex set SX and edge set {(π, π′) | π and π′

are adjacent}

Example: update graph for Circ4
3 2

0 1
(X,E)

(0,1,2,3) (1,2,3,0)

(2,3,0,1) (3,0,1,2)

(2,1,3,0) (2,3,1,0)

(0,1,3,2) (0,3,1,2)

(0,2,1,3) (0,2,3,1)

(2,0,1,3) (2,0,3,1)

(3,2,1,0) (2,1,0,3)

(1,0,3,2) (0,3,2,1)

(1,2,0,3) (1,0,2,3)

(1,0,2,3) (1,2,0,3)

(1,3,2,0) (3,1,2,0)

(1,3,0,2) (3,1,0,2)
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• We define an equivalence relation on SX with respect to U = U(X,E)

π ∼U π′ =def π and π′ are connected by a path in U

• We consider equivalence class of π : [π]U =def {π′ | π ∼U π′}

S
X/∼U

=
{

[π]U | π ∈ SX
}

Proposition 4.1 Let G = (X,E) be an undirected graph and let U = U(X,E) be the
update graph. Then, there exists a bijective mapping

fG : S
X/∼U

→ Acyc(G)

where Acyc(G) is the set of all acyclic orientations of G.

Proof: We first construct a mapping f̃G : SX → Acyc(G).

Any permutation π ∈ SX induces a linear ordering ≤π on X by

i ≤π j ⇐⇒def π(i) ≤ π(j)

Any linear ordering ≤π on X induces an acyclic orientation
for each {i, j} ∈ E set

i→ j ⇐⇒def i <π j

Let f̃G map each permutation to the according orientation.
We have to prove that f̃G(π) = f̃G(π′) for π ∼U π′. It suffices to show
f̃G(π) = f̃G(π′) for adjacent π, π′ (general case by induction):

If π and π′ are adjacent, they differ in exactly two consecutive entries not
connected by an edge in E. Thus, f̃G(π) = f̃G(π′).

Define fG : S
X/∼U

→ Acyc(G) by fG
(
[π]U

)
= f̃G(π).

Observe that fG is injective (4).

It remains to show that fG is surjective. Consider an acyclic orientation of G.
For vertex i ∈ X define

rank(i) =def length of a longest directed path to i
(with respect to given acyclic orientation)

Note that rank(i) = rank(j) implies {i, j} /∈ E for i 6= j.
Define H =def {h | rank−1(h) 6= ∅} and for h ∈ H:

rnk−1(h) =def (i1, . . . , imh),
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where rank(ij) = h, ij < ik for j < k. Furthermore, consider[(
rnk−1(0), rnk−1(1), . . . , rnk−1(t)

)]
U

with t = maxH.
Then, clearly, fG maps

[(
rnk−1(0), . . . , rnk−1(t)

)]
U

to the given orientation.
Thus, fG is surjective. Hence, fG is bijective..

Example: Consider Circ4

[(0, 2, 1, 3)]U 7−→
3 2

0 1

[( 0, 2︸︷︷︸
rnk−1(0)

, 1, 3︸︷︷︸
rnk−1(1)

)]U ←− [
3 2

0 1

1 0

0 1

Proposition 4.2 Let G = (X,E) be an undirected graph and let π, π′ ∈ SX . If π ∼U π′

then for all sets L of local transition functions,

FL[π] = FL[π′](
F(L,π) = F(L,π′)

)
Proposition 4.3 For any undirected graph G = (X,E) and any set L of local transition
functions on E,

||
{
F(L,π) | π ∈ SX

}
|| ≤ ||Acyc(G)||,

and the bound is sharp.

Proof: Inequality is immediate from Proposition 1 and 2; Sharpness is exercise.

 ||
{
F(L,π) | π ∈ SX

}
|| ≤ {[π]U | π ∈ SX} (Prop. 2)

= ||S
X/∼U

||
= ||Acyc(G)|| (Prop. 1)


Example:

It hold that ||Acyc(Circn)|| = 2n−2 (only two of possible orientations of Circ4
are not acyclic).
Thus, there are at most 2n − 2 different phase spaces / LSD on Circn.
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How to compute ||Acyc(G)||?

Use chromatic polynomial: Let G = (V,E) be an undirected graph. A vertex coloring
with k colors 1, . . . , k is a mapping f : V → {1, . . . , k} such that f(u) 6= f(v) if {u, v} ∈ E.

Define PG(k) to be the number of different vertex colorings with k colors of G.

Example: Let G = kn. That is PG(k) = 0 for k < n.

Moreover, PG(n) = n!. It holds that PG(x) = xn.

Lemma 4.4 Let G,H be undirected graphs.

(1) If G is a one-vertex graph, PG(k) = k.

(2) PG⊕H(k) = PG(k) · PH(k)

(3) PG(k) = PG−e(k)− PG/e(k)

Example:

Let T be a tree with n vertices. Let u be an arbitrary leaf of T and e = {u, v}
be the edge connecting u with T . Then, it holds

PT (x) = PT−e(x)− PT/e(x)

= PT ′(x) · x− PT ′′(x)

Here, T ′ is a tree with n−1 vertices, T ′′ is a tree with n−1 vertices. Actually,
T ′ ' T ′′. We conclude

PT (x) = PT ′(x) · (x− 1)

By iteration, we obtain: PT (x) = x(x− 1)n−1.

Thus, each tree with n vertices has the same chromatic polynomial independent
of its structure. Moreover, a graph G with n vertices is a tree if and only if
PG(x) = x(x− 1)n−1.

Lemma 4.5 Let G be an undirected graph. Suppose there are graphs G1, G2 such that
G = G1 ∪G2 and G1 ∩G2 = kn. Then,

PG(x) =
PG1(x) · PG2(x)

Pkn(x)

Proof: Each vertex coloring f of G corresponds to exactly one pair (f1, f2) of colorings
of G1 and G2 which are identical on kn. So, let f1 be a k-coloring of G1.
Then, there are PG2(k)/Pkn(k) k-colorings of G2 which are identical on kn with f1.
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Example:

We want to compute the chromatic polynomial for kn. We obtain the following
recursion:

Pkn(x) = Pkn−e(x)− Pkn/e(x)

=
Pkn−1(x)2

Pkn−2(x)
− Pkn−1(x)

=
Pkn−1(x)

Pkn−2(x)

(
Pkn−1(x)− Pkn−2(x)

)
By induction we can prove that Pkn(x) = xn:

• n = 1: Pk1(x) = x = x1

• n = 2: Pk2(x) = x(x− 1) = x2

• n > 2: Pkn(x) =
xn−1

xn−2
(
xn−1 − xn−2

)
=

(
x− (n− 1) + 1

)
xn−2

((
x− (n− 1) + 1

)
− 1
)

= xn−2
(
x− (n− 2)

)(
x− (n− 1)

)
= xn

We give a different interpretation of PG(x)

Proposition 4.6 Let G = (V,E) be an undirected graph. Then, PG(k) is equal to the
numbers of pairs (f,O) where f : V → {1, . . . , k} and O is an orientation of G such that:

(i) orientation O is acyclic

(ii) if u→ v in orientation O then f(u) > f(v)

Proof: Consider a pair (f,O) satisfying (i), (ii). From (ii) it follows that f(u) 6= f(v)
for {u, v} ∈ E. Thus, f is a vertex coloring with k colors. Moreover, (ii) implies (i).
Conversely, if f is a vertex coloring with k colors then f defines a unique acyclic orientation
O by u → v if and only if f(u) > f(v). Hence, the number of allowed pairs (f,O) is the
number of vertex colorings with colors 1, . . . , k and is, thus, PG(k).

Proposition 6 suggests the following modification:
Let G = (V,E) be an undirected graph and let k ∈ {1, . . . , n} where n = ||V ||. Define
PG(k) to be the number of pairs (f,O) where f : V → {1, . . . , k} and O is an orientation
of G such that:

(i) orientation O is acyclic
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(ii) if u→ v in orientation O then f(u) > f(v) (we say that f is compatible with O)

Lemma 4.7 Let G,H be undirected graphs.

(1) If G is one-vertex graph then PG(k) = k.

(2) PG⊕H(k) = PG(k) · PH(k)

(3) PG(k) = PG−e(k) + PG/e(k) for any e ∈ E

Proof:

(1), (2): obvious

(3): Let f : V → {1, . . . , k} be a mapping and let O be an acyclic orientation of G−e
compatible with f , where e = {u, v} ∈ E. Let O1 be the orientation of G obtained
by adjoining u→ v to O, and O2 that is obtained by adjoining v → u to O.

We will show that for each pair (f,O) exactly one of O1 and O2 is an acyclic orienta-
tion compatible with f , except for PG/e(k) of the pairs, in which case both O1 and

O2 are acyclic orientations compatible with f . Thus, PG−e(k) = PG(k)− PG/e(k).

Consider the following cases:

(a) f(u) > f(v): Then, O2 is not compatible with f while O1 is compatible. More-
over, O1 is acyclic since if u → v → w1 → w2 → · · · → u were a directed cycle
in O1, we would have f(u) > f(v) ≥ f(w1) ≥ f(w2) ≥ · · · ≥ f(u), which is a
contradiction.

(b) f(u) < f(v): symmetrical to (a).

(c) f(u) = f(v): Both O1 and O2 are compatible with f . Then, at least one of
them is acyclic. If not then:

∗ O1 contains a cycle u→ v → w1 → w2 → · · · → u,

∗ O2 contains a cycle v → u→ w′1 → w′2 → · · · → v.

Hence, O contains a cycle v → w1 → w2 → · · · → u → w′1 → w′2 → · · · → u
which is not possible.

It remains to prove that O1 and O2 are acyclic for exactly PG/e(k) pairs f,O) with
f(u) = f(v). Define Φ(f,O) =def (f ′, O′) such that f ′ : V (G/e) → {1, . . . , k} (note
that f(u) = f(v)) and O′ is an acyclic orientation of G/e compatible with f ′. Let z
be the vertex obtained by identifying u and v. Define f ′ to be

f ′(w) =def

{
f(w) if w ∈ V \{u, v}
f(u) if w = z

Define O′ by w1 → w2 in O′ if and only if w1 → w2 in O. Then Φ is a bijection..
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Theorem 4.8 (Stanley 1973) For each graph G = (V,E) such that ||V || = n,
PG(k) = (−1)nPG(−k).

Proof: By induction on n:

• n = 1: PG(k) = k = (−1)1(−k)

• If G is the empty graph with n vertices.
Then, PG(k) = kn = (−1)n(−k)n.

Suppose ||E|| ≥ 1. Then, for some edge e ∈ E

PG(k) = PG−e(k) + PG/e(k)

= (−1)n PG−e(−k) + (−1)n−1 PG/e(−k)

= (−1)n
(
PG−e(−k)− PG/e(−k)

)
= (−1)n PG(−k)

.

Corollary 4.9 ||Acyc(G)|| = (−1)n PG(−1).

Proof: ||Acyc(G)|| = PG(1) = (−1)n PG(−1).

Example:

We want to compute ||Acyc(Circn)||, n ≥ 3.
First, we prove that PCircn(x) = (x−1)n+(−1)n(x−1) by induction on n ≥ 3.

• n = 3: PCirc3(x) = x(x− 1)(x− 2)

= x3 − 3x2 + 2x

= x3 − 3x2 + 3x− 1− (x− 1)

= (x− 1)3 + (−1)3(x− 1)

• n > 3: PCircn(x) = PCircn−e(x)− PCircn/e(x)

= x(x− 1)n−1 −
(
(x− 1)n−1 + (−1)n−1(x− 1)

)
= (x− 1)n(x− 1)− (−1)n−1(x− 1)

= (x− 1)n + (−1)n(x− 1)

From corollary 9, we obtain ||Acyc(Circn)||= 2n − 2:

If n is even then PCircn(1) = PCircn(−1) = 2n − 2

If n is odd then PCircn(1) = −PCircn(−1) = 2n − 2 = −
(
−2n − (−2)

)
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4.3.2 Black-Box Equivalence

Want to extend functional equivalence to arbitrary LSD, i.e., to arbitrary schedules.

Definition 4.10 . Let G = (X,E) be an undirected graph. Let α : {1, . . . , T} → P(X)
and α′ : {1, . . . , T ′} → P(X) be update schedules. Then, α ≡bb α

′ ⇐⇒def for all attribute
types D and all sets L of D-functions,

FL,α
(·,T ) = FL,α′

(·,T ′)

Clearly for all permutation π, π′ : π ∼U(X,E)π′⇐⇒ π ≡bb π
′.

We want to determine “best” simulations (according to ≡bb) for sequential updates.

Definition 4.11 . A triple (G,P, β) is called a pograph (or poset model for graphs) if
and only if G = (X,E) is an undirected graph, P = (P,≤) is a finite poset, and β : P → X
is a mapping satisfying i, j ∈ P :

(i) i 4p j −→
{
β(i), β(j)

}
∈ E

(ii)
{
β(i), β(j)

}
∈ E −→ i ≤ j ∨ j ≤ i

Example:

a b c

d
e

f

g h i

G

a e c

d b h f

a

(P,≤) β

Theorem 4.12 (Laubenbacher, Pareigis 2006) Let G = (X,E) be an undirected
graph and let α : {1, . . . , T} → X be an asynchronous schedule. Then, there exists a
finite poset P with ||P || = T , a mapping β : P → X, and a bijective and monotone
mapping γ : P → {1, . . . , T} such that

(i) (G,P, β) is a pograph

(ii) α = β ◦ γ−1
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Proof: [sketch] Construct a canonical representation of (G,α):
Define a poset (P (G,α),≤α) as follows:

• P (G,α) =def {1, . . . , T}

• ≤α is reflexive and transitive closure of precedence ≺α:

i ≺α j ⇐⇒ i ≤ j and
{
α(i), α(j)

}
∈ E

Prove that (P (G,α),≤α) is a poset.
Prove the existence of β and γ.

Example: G from above, α = (a, c, e, f, d, b, h, a), T = 8

We obtain:

a b c

d
e

f

g h i

· 1 ≺α 6 , 1 ≺α 5

· 2 ≺α 6 , 2 ≺α 4

· 3 ≺α 4 , 3 ≺α 5 , 3 ≺α 6 , 3 ≺α 7

· 5 ≺α 8

· 6 ≺α 8

Hasse diagram for
(
P (G,α),≤α

)
:

1 2 3

4 5 6 7

a e c

d b h f

a

1 3 2

5 6 7 4

8
γ : 1 7→ 1

2 7→ 3

3 7→ 2

4 7→ 5

5 7→ 4

6 7→ 7

7 7→ 6
(a,c,e,b,d,f,h)

Thus, β ◦ γ−1 = α.

Given the pograph for (G,α) we define the level-wise schedule:

- let P be a finite poset

- hP (i) is the height of i ∈ P , i.e., the maximum length of a decreasing chain with i
as its max. element

hP (i) =def max
{
r | (∃i1, . . . , ir ∈ P )

[
ir = i ∧ (∀1 ≤ t < r)[it <P it+1]

]}
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- h(P ) is the height of P :
h(P ) =def max

i∈P
hP (i)

- Given (G,P, β) define λP for i ∈ {1, . . . , T} as follows

λP (i) =def

{
β(j) | j ∈ P and hp(j) = i

}
Example: For (G,P, β) from above:

λP (1) = {a, c, e}
λP (2) = {b, d, f, h}
λP (1) = {a}

Note that λP is not asynchronous.

Lemma 4.13 (Laubenbacher, Paraeigis 2006) Let (G,P, β) be a pograph, ||P || = T .
Let γ, γ′ : P → {1, . . . , T} be bijective and monotone mappings. Then, β ◦γ−1 ≡bb β ◦γ′−1.

Proposition 4.14 Let G = (X,E) be an undirected graph and let L be a set of local
transition functions. Let U ⊆ X be an independent set, i.e., G[U ] is empty.
Then, for all α : {1, . . . , T} → P+(U) such that 2 ≤ T ≤ ||U ||, α(i) ∩ α(j) = ∅ for i 6= j,
and α(1) ∪ · · · ∪ α(T ) = U ,

FL[U ] =

T∏
i=1

FL[α(i)]

Proposition 4.15 Let G be an undirected graph. Let α be an asynchronous schedule.
Then, α ≡bb λP (G,α).

Proof: Let G = (X,E), α : {1, . . . , T} → X (permutation). W.l.o.g. X = {1, . . . , n}.
By Theorem 12, (G,P (G,α), α) is a pograph. Define γdef = idP (G,α), i.e., γ is bijective
and monotone. It holds that α ◦ γ−1 = α.
Define γ′ : P (G,α)→ {1, . . . , T} for all j ∈ P (G,α) by

γ′(j) =def ||{k | hP (G,α)(k) < hP (G,α)(j) or hP (G,α)(k) = hP (G,α)(j) ∧ α(k) ≤ α(j)}||

Then, γ′ is bijective and monotone on P (G,α).

By Proposition 13, α ◦ γ−1 ≡bb α ◦ γ′−1.

By construction of λP (G,α), each set λP (G,α)(i) is an independent set in G. Thus, by
Proposition 14, α ◦ γ′−1 ≡bb λP (G,α).

Hence, α ≡bb λP (G,α).
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Proposition 4.16 Let G be an undirected graph. Let α be an asynchronous schedule.
Then, for all schedules α′ ≡bb α it holds that ord(α′) ≥ ord(λP (G,α)).

Proof: Let G = (X,E), α : {1, . . . , T} → X, ord(α) = T . Consider attribute type
D = {1, . . . , T

(N)
}. For each i ∈ X define

fi(z1, . . . , zn) =def 1 + max
{
zj | j = i or {i, j} ∈ E

}
Define L = {f1, . . . , fn}.

Observe that the maximum component of

• F(L,λP (G,α))

(
0, . . . , 0 ; ord(λP (G,α))

)
is h
(
P (G,α)

)
= ord(λP (G,α))

• F(L,α′)

(
0, . . . , 0 ; ord(α′)

)
is ord(α′)

Hence, ord(α′) ≥ ord(λP (G,α)) (otherwise: α′ 6≡bb α).

Proposition 4.17 Let G = (X,E) be an undirected graph and let α be a schedule of order
T such that there is an edge e ∈ E with e ≤ α(i) for some i ∈ {1, . . . , T}. Then, there is
no asynchronous schedule α′ such that α′ ≡bb α on G.

Proof: We first consider a simple LSD. Let H =
(
{1, 2},

{
{1, 2}

})
be a single-edge graph.

Define fj for j ∈ {1, 2} by

fj(z1, z2) =def

{
1 if z1 = z2

0 otherwise

Then, the global transition function for L = {f1, f2} is as follows:

11

01 00 10

1
2

12

2

2

12 12

1

1

21

12
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Now suppose α is a schedule of order T such that α(i) = {1, 2} for some i ∈ {1, . . . , T}.
Then, we obtain ||F−1(L,α)(1, 1)|| ≥ 2.

(i) (1, 1) ∈ F−1(L,α)(1, 1)

(ii) Let i be minimal subject to α(i) = {1, 2}. The sequence
(
α(1), . . . , α(i− 1)

)
can be

viewed as a word over {1, 2}. Let (a, b) be the configuration that leads to (0, 0) for
schedule/word

(
α(i− 1), . . . , α(1)

)
. Clearly, (a, b) 6= (1, 1) but F(L,α)(a, b) = (1, 1).

Let β be any asynchronous schedule. Then, F−1(L,β)(1, 1) = {(1, 1)}. Thus, α 6≡bb β on H.

Consider any graph G = (X,E) with E 6= ∅ and a schedule α of order T . Let e={u, v} ∈ E
be an edge such that {u, v} ⊆ α(i) for some i ∈ {1, . . . , T}. Set fw =def 0 for w /∈ {u, v}
and simulate the LSD from above for subgraph {u, v}.
Hence, there is no asynchronous schedule equivalent to α on G.

Corollary 4.18 Let G be a graph and let α be a schedule. There is an asynchronous
schedule α′ such that α′ ≡bb α on G if and only if for i ∈ {1, . . . , ord(α)}, α(i) is an
independent set in G.

4.3.3 Dynamical Equivalence

Dynamical equivalence refers to LSD’s having isomorphic phase-spaces.

Definition 4.19 . Let D be an attribute type. Let P = (X,E,Dn)i∈[0,∞] be any state
process. Let (L1, α1) and (L2, α2) be LSD’s on X. Then, (L1, α1) and (L2, α2) are dynam-
ically equivalent if and only if there is a bijection ϕ : Dn → Dn such that for all x ∈ Dn

F(L1,α1)

(
ϕ(x)

)
= ϕ

(
F(L2,α2)(x)

)

Proposition 4.20 Let ϕ be the Euler ϕ-function.
For n ≥ 3, there are at most

(i) 1
2n

∑
d/n

ϕ(d) (2n/d − 2) + 2
n/2/4, if n is even

(ii) 1
2n

∑
d/n

ϕ(d) (2n/d − 2), if n is odd

dynamically non-equivalent permutations on Circn.
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4.4 Features

Features are relevant patterns in phase spaces.

4.4.1 Chaos

Consider the following three phase spaces for state processes over population
size 4 with attribute type D = {0, 1}.

1111

0000 0001 0010 1101 1110

0000 0001 0010 1110 1111

0000 0001 1110 0111 1010

0110

0101

0100

1011 1000 0011 1101 0010

1001

1100

1111

P :

P :

P :

1

2

3

Derrida plot:

• let dH(~x, ~y) denote the Hamming distance between configurations ~x and ~y, i.e.,
dH(~x, ~y) =def ||{i | xi /∈ yi}||

• let F : Dn → Dn be a (time-invariant) global state dynamic

• Derrida relation D = D(F) (as multi-set):

D =def

{
(h1, h2) | there are states ~x, ~y such that

dH(~x, ~y) = h1 and dH
(
F(~x),F(~y)

)
= h2

}
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• plot D as a diagram:

0 1 2 3 4

1

2

3

4
P1

0

1

1

2

2

3

3

4

4

P2

0

1

1

2

2

3

3

4

4

P3

• colored lines are interpolations of average resulting distances

Intuition: The more pairs above the diagonal, the more chaos.

Try to figure out an appropriate parameter for measuring chaos:

Use linear regression: Suppose D consists of N pairs (x1, y1), . . . , (xN , yN ); define

L(β) =def

N∑
i=1

(yi − βxi)2

L′(β) =
N∑
i=1

2(yi − βxi)2(−xi)

L′′(β) =
N∑
i=1

2x2i > 0, i.e., any zero of L′(β) is a minimum.

Thus, β =

N∑
i=1

yixi

N∑
i=1

x2i

is optimal slope

Measuring the angle gives a scaled parameter β∗:

β =∗def

(
4

π
arctanβ

)
− 1 , i.e., − 1 ≤ β∗ ≤ 1

Interpretation:
β∗ ≈ −1 : frozen behavior
β∗ ≈ 0 : critical behavior
β∗ ≈ 1 : chaotic behavior
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Slope β is a statistical measure of how different states evolve over time
(for h1 →∞, i.e., n→∞)

h2

h1

h2

h1

h2

h1

frozen behavior critical behavior chaotic behavior
distances decrease distances don’t change distances increase

Example:

• Phase space P1 shows frozen behavior: β∗ = −1

• Phase space P2 shows critical behavior: β∗ = 0

• Phase space P3 shows almost critical:
β = 0.8441358 . . .
β∗ = −0.107357 . . .

Remark:

For n <∞ we have
N∑
i=1

xiyi ≤
N∑
i=1

x2i , i.e., β∗ ≤ 0

Why? It holds
N∑
i=1

y2i ≤
N∑
i=1

x2i with equality for F being a permutation. Thus,

0 ≤
N∑
i=1

(xi − yi)2 =

N∑
i=1

(
x2i − 2xiyi + y2i

)
≤ 2

(
−

N∑
i=1

xiyi +

N∑
i=1

x2i

)
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Want to determine system parameters inducing a certain phase behavior.

Consider a random boolean network consisting of n actors with attribute type D = {0, 1}
each depending on exactly k actors of the population (multiple dependencies are allowed),
i.e., (BF, Reg−k , Sync)-ensemble.

Suppose we are given h1, h2 ∈ {0, . . . , n}. Consider randomly chosen states ~x = (x1, ..., xn)
and ~y = (y1, . . . , yn) such that dH(~x, ~y) = h1.
Define Pt(h2, h1) to be the probability that Hamming distance of the images ~x′, ~y′ of ~x, ~y
after t synchronous update steps is h2.

• t = 1: Let ~x and ~y be two states. Define the sets

A =def {i | xi = yi}
B =def {i | xi /∈ yi}

That is, ||A|| = n − h1, ||B|| = h1. Define Q(n0) to be the probability that n0 actors
depend completely on k actors from A. We obtain

Q(n0) =

(
h

n0

)[(
n− h1
n

)k]n0
[(

1−
(
n− h1
n

)k)]n−n0

These n0 actors have the same states in ~x′ and ~y′. For the remaining n−n0 actors, with
probability 1

2 states are equal in ~x′ and ~y′ and with probability 1
2 states are different in ~x′

and ~y′.

Thus, using x = h1
n , y = h2

n

P1(h2, h1) =

n∑
n0=0

Q(n0)

(
n− n0
h2

)(
1

2

)h2(1

2

)n−n0−h2

︸ ︷︷ ︸
( 1
2)
n−n0

=

n∑
n0=0

(
n− n0
h2

)(
1

2

)n−n0
(
n

n0

)[
(1− x)k

]n0
[(

1− (1− x)k
)]n−n0

=
n∑

n0=0

(
n

h2

)(
n− h2
n0

)[
(1− x)k

]h0 [1

2

(
1− (1− x)k

)]n−n0

=

(
n

h2

)[
1

2

(
1− (1− x)k

)]h2 n−h2∑
n0=0

(
n− h2
n0

)[
(1− x)k

]n0
[

1

2

(
1− (1− x)k

)]

=

(
n

h2

)[
1

2

(
1− (1− x)k

)]h2 [
(1− x)k +

1

2

(
1− (1− x)k

)]n−h2
=

(
n

h2

)(
1

2

)n (
1− (1− x)k

)h2 (
1 + (1− x)k

)n−h2
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The probability P1(h2, h1) is maximal for 2y = 1− (1− x)k:
We set z =def (1− x)k and consider f(z) =def (1− z)h2(1 + z)n−h2

Hence,

f ′(z) = h2(1− z)h2−1(−1)(1 + z)n−h2 + (1− z)h2(n− h2)(1 + z)n−h2

= (1− z)h2−1(1 + z)n−h2+1 [−h2(1 + z) + (n− h2)(1− z)]︸ ︷︷ ︸
=−h2−h2z+n−h2−nz+h2z

=n−2h2−nz

We obtain the following zeroes:

z0 = 1, z1 = −1, and z2 = 1− 2
h2
n

= 1− 2y

Zeroes z0, z1 correspond to minima; from z2 we conclude 2y = 1− (1− x)k for maximum.

• t > 1 : We use an annealed approximation:

P̃t (ht+1, h1) =

n∑
h2=0

· · ·
n∑

hk=0

P1(h2, h1) · P1(h3, h2) · · ·P (ht+1, ht)

A similar analysis yields a high concentration of P̃ for

yt =
1− (1− yt−1)k

2
(y0 = x(!) y1 = y)

where y1 is the value above (for t = 1).

We obtain the following cases for k:

• k = 1: lim
t→∞

yt = 0 since yt = yt−1

2

• k = 2: lim
t→∞

yt = 0 since y = 1−(1−y)2
2 has solution

2y = 1− (1− 2y + y2)

= 2y − y2, i.e.,

only solution 0 ≤ y ≤ 1 is 0.

• k = 3: lim
t→∞

yt = y∗ > 0 since 2y = 1− (1− y)3

= 1− (1− 3y + 3y2 − y3),

i.e., 2y = 3y − 3y2 + y3,

i.e., 0 = 1− 3y2 + y2
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interpretation:

• k ≥ 3 : random boolean networks show chaotic behavior.

• k = 2 : critical behavior

• k = 1 : frozen behavior

Analysis of the behavior for k:

2
h2
n

= 1−
(

1− h1
n

)k
= 1−

k∑
l=0

(
k

l

)(
−h1
n

)l

= 1−

(
1− k · h1

n
+

k∑
l=2

(
k

l

)(
−h1
n

)l)

= k · h1
n
−

k∑
l=2

(
k

l

)(
−h1
n

)l

That is: h2 =
k

2
· h1 −

1

2

k∑
l=2

(
k

l

)
(−h1)l

nl−1

For n approaching ∞ we obtain:

lim
n→∞

h2 =
k

2
· h1

We have three cases (for n large).

• k = 1: h2 ≈ 1
2 · h1 ,i.e., ≈ frozen behavior

• k = 2: h2 ≈ h1 ,i.e., ≈ critical behavior

• k = 3: h2 ≈ 3
2 · h1 ,i.e., ≈ chaotic behavior
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Exploring exponential-size phase spaces is intractable, e.g., for boolean domain D = {0, 1}
and n = 300 actors, there are 2300 > 1090 states (≈ 1080 atoms in the universe).

Which dynamics (networks, transitions, schedules) allow “simulation short-cuts”?

5.1 Fixed Points

Definition 5.1 . Let G = (X,E) be an undirected graph and let L = {f1, . . . , fn} be a
set of local transitions over domain D.

(1) A configuration x ∈ Dn is said to be a local fixed point (LFP) of (G,L) for
U ⊆ X ⇐⇒def FL[U ](x) = x

(2) A configuration x ∈ Dn is said to be a fixed point (FP) of (G.L) ⇐⇒def x is LFP
for X

Proposition 5.2 Let G = (X,E) be an undirected graph, L a set of local transitions over
D. Let x ∈ Dn be a configuration.

(1) If x is LFP for U ′ ⊆ X and x is LFP for U ′′ ⊆ X, then x is LFP for U ′ ∪ U ′′

(2) x is LFP for U ⊆ X ⇐⇒ x is LFP for all U ′ ⊆ U

Corollary 5.3 Let G = (X,E) be undirected graph, L a set of local transitions over D.
A configuration x ∈ Dn is FP of (G,L)⇐⇒ for all update schedules

α : {1, . . . , T} → P(X), F(L,α)(x) = x

Consider the following computational problem:

Let F be a class of functions.
Let G be a class of graphs.

Problem: FP(F ,G)
Input: undirected graph G ∈ G of size n, set L = {f1, . . . , fn} ⊆ F

of local transition funtions
Question: Is there a fixed point of (G,L)? (If the answer is “yes”, find

some?)

Remark: We do not want to check whether G ∈ G or fi ∈ F ; membership is
always guaranteed.
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5.1.1 Boolean Ensembles

Complexity depends on input representation.

Three cases for boolean function:

• FPT : local transitions given by lookup tables

• FPF : local transitions given by formulas (over bases)

• FPC : local transitions given by circuits (over bases)

Input sizes of
(
G, {f1, . . . , fn}

)
for G = (X,E):

||X||+ ||E||+
∑
i∈X
|fi|

Size |fi| for i ∈ X is as follows:

• FPT : tables with 21+di rows (di id degree of i); each row has 2 + di entries, i.e.,

|fi| = Θ
(

(2 + di) 21+di
)

alternative representation: Wolfram number = bit-vector, e.g.,
Rule 146 corresponds to (10010010)2, i.e.,

x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

• FPF : number of symbols encoding a certain basis + number of variables occurring
in the formula.

• FPC : number of wires connecting the gates of the circuit.
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Goal: Identifying “islands of tractability”

Decision problem L ⊆ Σ∗ is called

• intractable ⇐⇒def L is NP-hard, i.e., SAT ≤pm L

• tractable ⇐⇒def L is solvable in polynomial time

Remarks:

1. For sets A,B ⊆ Σ∗, A ≤pm B ⇐⇒def there is a function f computable in
polynomial time such that for all x ∈ Σ∗, x ∈ A←→ f(x) ∈ B.

2. Difference “intractable/tractable” under assumption P 6= NP

3. Observe that for F ⊆ F ′, G ⊆ G′, it holds that

FP(F ,G) ≤pm FP(F ′,G) via f = id

FP(F ,G) ≤pm FP(F ,G′) via f = id

We start with lookup-tables:

Theorem 5.4 (Dichotomy theorem for tables) Let F be a boolean clone and let G be
a class of graphs closed under taking minors.
If F contains all selfdual functions (F ⊆ D) and G contains all planar graphs
(G ⊇ Forb4

(
K3,3,K

5
)
) then FPT (F ,G) is intractable.

Otherwise, FPT (F ,G) is tractable.

Proof postponed until number of lemmas proven...

Consider following clones:

• R1, the class of 1-reproducing functions

• R0, the class of 0-reproducing functions

• M , the class of monotone functions

• L, the class of linear functions

Lemma 5.5 FPT
(
R1,Forb4(∅)

)
is solvable in polynomial time.

Proof: (1, . . . , 1) ∈ {0, 1}n is always a fixed point.

Lemma 5.6 FPT
(
R0,Forb4(∅)

)
is solvable in polynomial time.

Proof: (0, . . . , 0) ∈ {0, 1}n is always a fixed point.
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Lemma 5.7 FPT
(
M,Forb4(∅)

)
is solvable in polynomial time.

Proof: Let G = (X,E) be an undirected graph. Let L be a set of local transitions
f1, . . . , fn such that fI ∈M .
Observe that for x, y ∈ {0, 1}n: x ≤ y =⇒ FL[X](x) ≤ FL[X](y).
To find a fixed point proceed as follows:

(1) Start with configuration x(0) =def (0, . . . , 0)

(2) Iteratively compute x(k) = FL[X]
(
x(k−1)

)
(3) If x(k) = x(k−1) then x(k) is a fixed point

Since ({0, 1}n,≤) has top element (maximum), the algorithm converges, i.e., there is always
a fixed point. Complexity analysis:

• Computing x(k) takes O
(∑
i∈X
|fi|
)

steps

• number of iterations: ≤ n

Overall, algorithm runs in time O(N · logN) .

Lemma 5.8 FPT
(
L,Forb4(∅)

)
is solvable in polynomial time.

Proof: Let G = (X,E) be an undirected graph, n = ||X||. Let f1, . . . , fn ∈ L.

First, we transform f ∈ L in a formula.
Suppose f ∈ L, i.e., f(x1, . . . , xk) = a0 ⊕ a1x1 ⊕ · · · ⊕ akxk.
For each tuple (a0, a1, . . . , ak) ∈ {0, 1}k check whether

f(x1, . . . , xk) = a0 ⊕ a1x1 ⊕ · · · ⊕ akxk;

if “yes” then formula Hf is found.

Complexity analysis:

• O(k · 2k) per tuple

• 2k+1 tuple (a0, a1, . . . , ak)

Overall, complexity (in k): O
(
k · 22k

)
. Thus, Hf can be found in time O(N2).
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Now, consider system of linear equations:

xi = fi
(
xi0 , xi1 , . . . , xik

)
where k = di, i ∈ {1, . . . , n}

Use Gaußelimination to solve the system in time O(n3).

Remark:

Number of fixed points is 2r where r is rank of the system’s matrix.

To restrict graph classes, we use CSPs:

A constraint satisfaction problem (CSP) is a triple (X,D, C) such that

(i) X = {x1, . . . , xn} is a set of variables

(ii) D is the (finite) domain of variables

(iii) C is a set of constraints Rxi1 , . . . , xik with associated relations Ri1, . . . , ik, i.e., C is
a list of pairs 〈Rxi1 , . . . , xik , Ri1, . . . , ik〉

A solution or CSP(X,D, C) is an assignment I : X → D such that(
I(xi1), . . . , I(xik)

)
∈ Ri1, . . . , ik for all Rxi1 , . . . , xik ∈ C.

Example: We are given H = (x1∨x2∨x3)∧ (x1∨x2)∧ (x2∨x3∨x4). Then, CSP for H:

• X = {x1, x2, x3, x4}

• D = {0, 1}

• CH = {Rx1x2x3, Rx1x2, Rx2x3x4} with relations

– R123 =
{

(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (0, 1, 0)
}

– R12 =
{

(0, 0), (0, 1), (1, 1)
}

– R234 =
{

(0, 0, 0), (0, 0, 1), (0.1.0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)
}

Satisfying assignment I : {x1, x2, x3, x4} → {0, 1} such that

I(x1) = 1, I(x2) = 2, I(x3) = I(x4) = 0

is also a solution for (X,D, C):

(1, 1, 0) ∈ R123 , i.e., (1, 1, 0) satisfies Rx1x2x3
(1, 1) ∈ R12 , i.e., (1, 1) satisfies Rx1x2

(1, 0, 0) ∈ R234 , i.e., (1, 0, 0) satisfies Rx2x3x4

That is: H is satisfiable ⇐⇒ (X,D, C) is solvable. As a consequence: CSP is NP-hard

version v1.0 as of April 27, 2012



58 Chapter 5. Simulation

The constraint graph Γ(X, C) for (X,D, C) consists of

• vertex set X

• edge set E =def

{
{xi, xj} | xi, xj occur in some constraint of C

}
Example: CSP from above:

x3

x4 x2

x1

constraint graph

Theorem 5.9 (Freuder 1990) A solution of a CSP(X,D, C) can be found in time
O(||D||w · p

(
||X||+ |C|)

)
for some polynomial p, where w is the treewidth of the constraint

graph Γ(X, C).

Lemma 5.10 Let X be a planar graph. Then, FPT (BF, Forb4(X)) is solvable in poly-
nomial time.

Proof: We encode FP problems as CSPs:

Let G = (V,E) be an undirected graph. Let L = {f1, . . . , fn} be aset of local transition
functions. Define CSP(G,L) = (X,D, C) to be the CSP given as follows:

• X =def {x1, . . . , xn}

• D =def
⋃
i∈V

Di where

Di =def

{
(I, i)/I : N0

G(i)→ {0, 1} such that fi
(
I(i0), . . . , I(ik)

)
= I(i)

}
• C =def

{
Exixjj | {i, j} ∈ E, i,≤ j

}
where for i ≤ j

Eij =def

{(
(Ii, i), (Ij , j)

)
| Ii(k) = Ij(k) for all k ∈ N0

G(i) ∩N0
G(j)

}
.
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Example:

G = Circ4

3

4 2

1

fi(xi−1, xi, xi+1)

= xi−1 ⊕ xi ⊕ xi+1

xi−1 xi xi+1 fi
0 0 0 1
0 0 1 0 [*a]
0 1 0 0
0 1 1 1 [*b]
1 0 0 0 [*c]
1 0 1 1
1 1 0 1 [*d]
1 1 1 0

(*: local FPs)

CSP(G,L) :

• X = { x0, x1, x2, x3 }

• D = { (03, 00, 11, 0)→ (00, 01, 12, 1)→ (01, 02, 13, 2)→ (02, 03, 10, 3), [ ∗a]

(03, 10, 11, 0)→ (00, 11, 12, 1)→ (01, 12, 13, 2)→ (02, 13, 10, 3), [ ∗b]

(13, 00, 01, 0)→ (10, 01, 02, 1)→ (11, 02, 03, 2)→ (12, 03, 00, 3), [ ∗c]

(13, 10, 01, 0)→ (10, 11, 02, 1)→ (11, 12, 03, 2)→ (12, 13, 00, 3) [ ∗d] }
• C = { Ex0x1, Ex1x2, Ex2x3, Ex0x3 }

E01 = {
(
(03, 00, 11, 0), (00, 11, 12, 1)

)
,(

(03, 10, 11, 0), (10, 11, 02, 1)
)
,(

(13, 00, 01, 0), (00, 01, 12, 1)
)
,(

(13, 10, 01, 0), (10, 01, 02, 1)
)
}

(G,L) has FP 0 7→ 1 , 1 7→ 1 , 2 7→ 0 , 3 7→ 0
Define I ′(x0) =

(
(03, 10, 11), 0

)
Let n = ||V ||, m = ||E||. Then, the size of CSP(G,L) is as follows:

• |X| = n

• |D| = O
(∑
i∈V

(1 + di) · 21+di
)

• length of constraints and constraint relations:

≤ ⊂

 ∑
{i,j}∈E

(1 + di + 1 + dj) · 21+di · 21+dj


≤ ⊂

(∑
i∈V

(1 + di) · 21+di
)2

Hence, |CSP (G,L)| = O(N2), i.e., encoding f can be computed in
polynomial time (f : (G,L) 7→ CSP (G,L)).
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60 Chapter 5. Simulation

Claim. (G,L) has FP ⇔ CSP(G,L) has a solution.

⇒ Suppose I : V → {0, 1} is FP of (G,L).
Define an assignment I ′ : {x1, . . . , xn} → D by

I ′(xi) =
(
I[N0

G(i)], i
)

Let i ∈ V and let Ii denote I[N0
G(i)]. Let Exixj be any constraint of CSP(G,L) and

Eij the associated relation, i.e, {i, j} ∈ E.

Since I is FP, we have (Ii, i), (Ij , j) ∈ D.
Let k inN0

G(i) ∩N0
G(j). Then,

Ii(k) =
(
I[N0

G(i)]
)
(k)

=
(
I[N0

G(j)]
)
(k) = Ij(k),

i.e.,
(
(Ii, i), (Ij , j)

)
∈ Eij

⇐ Suppose I is a solution of CSP(G,L).
Let (Ii, i)︸ ︷︷ ︸

I(xi)

∈ D be the pair assigned to xi by I.

Define a configuration I ′ : V → {0, 1} by I ′(i) =def Ii(i)

It suffices to show I ′[N0
G(i)] = Ii for i ∈ V . (*)

Let j ∈ N0
G(i). If j = i then there is nothing to show.

Let j 6= i. Since {i, j} ∈ E, Ii(k) = Ij(k) for all k ∈ N0
G(i) ∩N0

G(j). Thus,

I ′(j) = Ij(j) = Ii(j).

Hence, (*) is true.

Finally, observe that G ∼= Γ(X, C).
Since G ∈ Forb4(X) for planar X, G has treewidth ≤ wx.
So, Γ(X, C) has treewidth ≤ wx.

Consequently, CSP(G,L) can be solved in time O
(
Nwxp(n+N2)

)
by theorem 9.

Hence, FP of (G,L) can be found in O
(
poly(N)

)
. �

We turn to intractable cases.
Reduction is from Planar 3-SAT:

Input: 3CNF H = C1 ∧ . . . ∧ Cm having variables x1, . . . , xn such that
graph representation

Γ(H) =
(
{x1, . . . , xn, C1, . . . , Cm},

{
{xi, Cj} | xi occurs in Cj

})
is a planar (bipartite) graph.

Question: Is H satisfiable?

Proposition 5.11 (Lichtenstein 1982) Planar 3-SAT is NP-complete.
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5.1. Fixed Points 61

Lemma 5.12 FPT
(
BF,Forb4(K3,3,K

5)
)

is NP-complete, even restricted to graphs hav-
ing maximum vertex-degree ≤ 3.

Proof: Let H = C1∧, . . . , Cm be a 3CNF, x1, . . . , xn variables, and Γ(H) a planar graph
representation where V

(
Γ(H)

)
= U ∪W , U = {x1, . . . , xn}, W = {C1, . . . , Cm}.

Construct the following pair (G,L):

- compute an embedding of Γ(H) in the plane (in linear time)

- replace vertices of U as follows: Let xi ∈ U and suppose Cj1, . . . , Cjr ∈ W are xi
′s

neighbors clockwise ordered. Replace xi by a cycle {xi,j1 , . . . , xi,jr} such that

Γ(H)

xi
...

Cj1

Cj2

Cj3

Cjr
−→

G

xi,jr xi,j1

xi,j2
xi,j3

Cjr

Cj1

Cj2

Cj3

...

- let G be the graph obtained from Γ(H) by all replacements.

Observations:

(i) G is planar, i.e., G ∈ Forb4(K3,3,K
5)

(ii) 4(G) ≤ 3

(iii) G can be computed in polynomial time in |H|

- Define local transitions on vertices of G:

fci
(
I(Ci),

zi1,j1︷ ︸︸ ︷
I(xi1,j1),

zi2,j2︷ ︸︸ ︷
I(xi2,j2),

zi3,j3︷ ︸︸ ︷
I(xi3,j3)

)
=def

{
1 if zi1,j1 , . . . , zi3,j3 satisfies Ci

not
(
I(Ci)

)
otherwise

fxi,j
(
I(Cj), I(xi,k0), . . . ,I(xi,kr)

)
(r<3)

=def

{
I(xij) if I(xi, k0) = . . . = I(xi, kr)

not
(
I(xij)

)
otherwise

Note: f can be computed om polynomial time, since 4(G) = 3

It holds that:

I is FP of (G,L) ⇐⇒ I(xi,j1) = . . . = I(xi,jr) for all i ∈ {1, . . . , n} and

I(Cj) = 1 for all j ∈ {1, . . . ,m}
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62 Chapter 5. Simulation

Then, H is satisfiable ⇐⇒ (G,L) has a fixed point.
Hence, Planar 3-SAT ≤nm FPT

(
BF,Forb4(K3,3,K

5)
)

Proposition 5.13 Let n ∈ N+. For each f : {0, 1}k → {0, 1}, the function
sdn(f) : {0, 1}k+n+1 → {0, 1} defined by

sdn(f)(x1, . . . , xk, y1, . . . , yn, z) =def


f(x1, . . . , xn) if y1 = . . . = yn = 0

f(x1, . . . , xn) if y1 = . . . = yn = 1

z otherwise

Proof: Exercise

Lemma 5.14 FPT
(
D,Forb4(K3,3,K

5)
)

is NP-complete.

Proof: Let G = (V,E) be a planar graph, L = {f1, . . . , fn} set of local transitions.
Construct (G,L′) as follows:

• G′ = (V ′, E′) is given by

V ′ =def V ∪ E
E′ =def E ∪

{
{i, e} | i ∈ V, e ∈ E, i ∈ e

}

G

j

i

e G′

j

i

e e

Note: G′ is planar, since G is planar.

• Define local transitions f ′ on V ′:

(i) For i ∈ V , let {i0, . . . , ik} = N0
G′(i) ∪ V, {e1, . . . , ek} = N0

G′(i) ∩ E:

f ′i (xi0 , . . . , xin , xe1 , . . . , xen) =def sdk(f) (xi0 , . . . , xik , xe1 , . . . , xek , xi)

Note: f ′i is selfdual, i.e., f ∈ D
Note: degree of i is 2k where k is degree of i in G, so f ′i can be computed in
polynomial time

(ii) For e = {i, j} ∈ E define

f ′e(xi, xj , x{i,j}) =def x{i,j}

Note: f ′e is selfdual

It holds (G,L) has FP if and only if (G′, L′) has FP → proof in script

Network Dynamics – Lecture Notes



5.1. Fixed Points 63

Proof: [Theorem 4] Let F be a boolean clone. Let G be a graph class closed under taking
minors.

If F ⊇ D and G ⊇ Forb4(K3,3,K
5) then FPT (F,G) is NP-complete (Lemma 14).

Suppose F 6⊇ D or G 6⊇ Forb4(K3,3,K
5).

Case 1: F 6⊇ D, i.e., F 6⊆ R0, R1,M,L. In each of these cases,
FPT (F,G) is tractable. (Lemma 5-8).

Case 2: G 6⊇ Forb4(K3,3,K
5). Let G = Forb4(X1, . . . , Xn).

Then, there is Xi ∈ {X1, . . . , Xn} such that Xi is planar.
Hence, G ⊆ Forb4(Xi). By Lemma 10, FPT (F ,G) is tractable..
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Mathematical Tools A

In this chapter we discuss relevant terminology and notation for sets, relations, and graphs,
some fundamental algorithms, and a few other mathematical preliminaries.

A.1 Sets and relations

We denote the set of integers by Z, the set of non-negative integers by N, and the set of
positive integers by N+. Z2 denotes the Galois field GF[2].

Sets

The empty set is denoted by ∅. For an arbitrary set A, P(A) denotes the power set of A,
i.e., the family of all subsets of A, and P+(A) denotes the set P(A)\{∅}. For an arbitrary
finite set A, its cardinality is denoted by ‖A‖. Let A and B be any sets. Then A \ B
denotes the difference of A with B, i.e., the set of all elements that are in A but not in B.
A×B denotes the cartesian product, i.e, the set of all pairs (a, b) with a ∈ A and b ∈ B.
For m ∈ N+, define Am =def A× · · · ×A︸ ︷︷ ︸

m times

. Let M be any fixed basic set. For a set

A ⊆M , its complement in the basic set M is denoted by A, i.e., A = M \A. A multiset A
is allowed to contain elements many times. The multiplicity of an element x in a multiset
A is the number of occurrences of x in A. The cardinality of a multiset A is also denoted
by ‖A‖.

Functions

Let M and M ′ be any sets, and let f : M → M ′ by any function. The domain of f
which we denote by Df is the set of all x ∈ M such that f(x) is defined. A function f
is total if the domain of f is M . For a set A ⊆ Df , let f(A) = {f(x) | x ∈ A} denote
the image of A under f . In particular, the range of f which is denoted by Rf is the set
f(Df ). For a set A ⊆ M , the restriction of a total function f to A is denoted by f [A].
The inverse of f is denoted by f−1, i.e, f−1 : M ′ → P(M) such that for all y ∈ M ′,
f−1(y) = {x ∈ M | f(x) = y}. If f−1(y) is at most a singleton then we omit the braces.
The pre-image of A under f is the set f−1(A) = {x ∈M | f(x) ∈ A}.

We use two notations for composition of functions. If f and f ′ are functions with
f : M → M ′ and f ′ : M ′ → M ′′, then (f ′ ◦ f) is the function mapping from M to
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M ′′ which is defined for all x ∈M as (f ′ ◦ f)(x) =def f ′(f(x)). In contrast, we use f · f ′
to denote f ′ ◦ f .

A function f : M → M ′ is bijective if f is surjective, i.e., Rf = M ′ and injective, i.e., for
all y ∈ Rf , f−1(y) is a singleton. Suppose M ′ = M and M is finite. In this case a bijective
function f is a permutation. Suppose M = {1, 2, . . . , n}. A cycle (i1 i2 . . . ik) of length
k of the permutation π : M → M is a sequence (i1, i2, . . . , ik) such that π(ij) = ij+1 for
1 ≤ j < k and π(ik) = i1. Each permutation allows a decomposition into cycles.

Orders

In more detail the following can be found in any textbook (e.g., [Grä78, DP90]) about
theory of orders and lattices.

Let P be any set. A partial order on P (or order, for short) is a binary relation ≤ on P
that is reflexive, antisymmetric, and transitive. The set P equipped with a partial order
≤ is said to be a partially ordered set (for short, poset). Usually, we talk about the poset
P . Where it is necessary we write (P,≤) to specify the order. A poset P is a chain if
for all x, y ∈ P it holds that x ≤ y or y ≤ x (i.e., any two elements are comparable with
respect to ≤). Such an order is also called a total order. A poset P is an antichain if for
all x, y ∈ P it holds that x ≤ y implies that x = y (i.e., no two elements are comparable
with respect to ≤).

We consider N to be ordered by standard total order on the natural numbers. If a set A
is partially ordered by ≤ then Am can be considered to be ordered by the vector-ordering,
i.e., (x1, . . . , xm) ≤ (y1, . . . , ym) if and only if for all i ∈ {1, . . . ,m}, xi ≤ yi.

An important tool for representing posets is the covering relation ≺. Let P be a poset
and let x, y ∈ P . We say that x is covered by y (or y covers x), and write x ≺ y, if x < y
and x ≤ z < y implies that x = z. The latter condition is demanding that there be no
element z of P with x < z < y. A finite poset P can be drawn in a diagram consisting of
points (representing the elements of P ) and interconnecting lines (indicating the covering
relation) as follows: To each element x in P associate a point P (x) in the picture which is
above all points P (y) associated to elements y less than x, and connect points P (x) and
P (y) by a line if and only if x ≺ y. A poset can have different representation by diagrams.

Let P and P ′ be posets. A map ϕ : P → P ′ is said to be monotone (or order-preserving)
if x ≤ y in P implies ϕ(x) ≤ ϕ(y) in P ′. We say that ϕ is an (order-)isomorphism if ϕ
is monotone, injective, and surjective. Two posets P and P ′ are isomorphic, in symbols
P ∼= P ′, if there exists an isomorphism ϕ : P → P ′. Isomorphic poset shall be considered
to be not essentially different: Two finite posets are isomorphic if and only if they can be
drawn with identical diagrams.

Words
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Sometimes we make no difference between m-tuples (x1, . . . , xm) over a finite set M and
words x1 . . . xm of length m over M . Such finite sets are called alphabets. Let Σ be a
finite alphabet. Σ∗ is the set of all finite words that can be built with letters from Σ. For
x, y ∈ Σ∗, x · y (or xy for short) denotes the concatenation of x and y. The empty word is
denoted by ε. For a word x ∈ Σ∗, |x| denotes the length of x. For n ∈ N, Σn is the set of
all words x ∈ Σ∗ such that with |x| = n. For a word x = x1 . . . xn ∈ Σ∗ any word x1 . . . xk
such that k ≤ n is called a prefix of x. We use regular expressions to describe subsets of
Σ∗ (see, e.g., [HMU01]).

A.2 Graph theory

A graph G = (V,E) consists of a set V of vertices and a set E of edges joining pairs
of vertices. The vertex set and edge set of a graph G are denoted by V (G) and E(G),
respectively. The cardinality of V is usually denoted by n, the cardinality of E by m. If
two vertices are joined by an edge, they are adjacent and we call them neighbors. Graphs
can be undirected und directed. In undirected graphs, the order in which vertices are
joined is irrelevant. An undirected edge joining vertices u, v ∈ V is denoted by {u, v}. In
directed graphs, each directed edge has an origin and a destination. An edge with origin
u ∈ V and destination v ∈ V is represented by an ordered pair (u, v). For a directed graph
G = (V,E), the underlying undirected graph is the undirected graph with vertex set V
that has an undirected edge between two vertices u, v ∈ V if (u, v) or (v, u) is in E.

Multigraphs

In both undirected and directed graphs, we may allow the edge set E to contain the same
edge several times, i.e., E can be a multiset. If an edge occurs several times in E, the
copies of that edge are called parallel edges. Graphs with parallel edges are also called
multigraphs. A graph is called simple, if each of its edges in contained in E only once, i.e.,
if the graph does not have parallel edges. An edge joining a vertex to itself, is called a
loop. A graph is called loopless if it has no loops. In general, we assume all graphs to be
loopless unless specified otherwise.

Degrees

The degree of a vertex v in an undirected graph G = (V,E), denoted by dv, is the number
of edges in E joining v. If G is a multigraph, parallel edges are counted according to their
multiplicity in E. The set of neighbors of v is denoted by N(v). N0(v) denotes the vertex
set N(v) ∪ {v}. If the graph under consideration is not clear from the context, these
notations can be augmented by specifying the graph as an index. For example, NG(v)
denotes the neighborhood of v in G.
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Subgraphs

A graph G′ = (V ′, E′) is a subgraph of the graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
Sometimes we denote this by G′ ⊆ G. It is a (vertex-)induced subgraph if E′ contains all
edges e ∈ E that join vertices in V ′. The induced subgraph of G = (V,E) with vertex set
V ′ ⊆ V is denoted by G[V ′]. The (edge-)induced subgraph with edge set E′ ⊆ E, denoted
by G[E′], is the subgraph G′ = (V ′, E′) of G, where V ′ is the set of all vertices in V that
are joined by at least one edge in E′.

Walks, paths, and cycles

A walk from x0 to xk in a graph G = (V,E) is a sequence x0, e1, x1, e2, x2, . . . , xk−1, ek, xk
alternating between vertices and edges of G, where ei = {xi−1, xi} in the undirected case
and ei = (xi−1, xi) in the directed case. The length of a walk is the number of edges on
the walk. As shorthands we use (x0, x1, . . . , xk) and (e1, e2, . . . , ek) to denote a walk. The
walk is called a path if xi 6= xj for i 6= j. A walk with x0 = xk is called a cycle if ei 6= ej
for i 6= j. A cycle is a simple cycle if xi 6= xk for 0 ≤ i < j ≤ k − 1.

Special graphs

A tree is a connected (for a definition see below) undirected graph not containing a cycle.
An undirected graph G = (V,E) is called complete if it contains all possible pairs of
vertices as edges. A complete graph with n vertices is denoted by Kn. A Kn is called a
clique. A K2 is a graph of two vertices with one edge joining them. A K3 is also called
a triangle or triad. A graph without edges is called empty. An independent set within a
graph G = (V,E) is a vertex set U ⊆ V such that G[U ] is empty. A graph G = (V,E)
is called bipartite if there are independent vertex sets V1, V2 ⊆ V such that V1 and V2 are
disjoint and V1∪V2 = V . We denote by E(V1, V2) the set of edges joining vertices from V1
with vertices from V2. If E(V1, V2) = V1 × V2 then G is called a complete bipartite graph.
Such a graph is denoted by Kn1,n2 if V1 consists of n1 vertices and V2 of n2 vertices. A
K1,n is also called a star. For two graphs G = (V,E) and G′ = (V ′, E′) we denote by
G⊕G′ the graph consisting of the disjoint union of the graphs G and G′.

Graph classes

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic, denoted by G ' G′, if there is a
bijective mapping ϕ : V → V ′ such that for all vertices u, v ∈ V the following is true: in the
case that G and G′ are directed graphs it holds that (u, v) ∈ E ⇔ (ϕ(u), ϕ(v)) ∈ E′, and in
the case that G and G′ are undirected graphs it holds that {u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ E′.
A set of graphs is called a graph class if for each graph G in the class all graphs isomorphic
to G belong to the class as well.
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A.3 Algorithmics

Most results of this work relate to algorithms. In the following we mention essential
problems and concepts which are needed more than once.

For two functions f : N→ N and g : N→ N we say that f is in O(g) if there are constant
n0, c ∈ N+ such that for all n ≥ n0, f(n) ≤ c · g(n). We say that f is in Ω(g) if g is in
O(f). We say that f is in Θ(g) if f is in O(g) ∩ Ω(g).

Connected components

An undirected graph G = (V,E) is connected if every vertex can be reached from every
other vertex, i.e., if there is a path from every vertex to every other vertex. A graph
consisting of a single vertex is also taken to be connected. Graphs that are not connected
are called disconnected. For a given undirected graph G = (V,E), a connected component
of G is an induced subgraphs G′ = (V ′, E′) that is connected and maximal, i.e., there is
no connected subgraph G′′ = (V ′′, E′′) such that V ′′ ⊃ V ′. Checking whether a graph is
connected and finding all its connected components can be done in time O(n+m) using
depth-first search or breadth-first search.

A directed graph G = (V,E) is strongly connected if there is a directed path from every
vertex to every other vertex. A strongly connected component of a directed graph G is
an induced subgraph that is strongly connected and maximal. The strongly connected
components of a directed graph can be computed in time O(n + m) using a depth-first
search.

NP-completeness

It is important to consider the running-time of an algorithm for a given problem. Usually,
one wants to give an upper bound on the running time of the algorithm for inputs of a
certain size. If the running-time of an algorithm is O(nk) for some k ∈ N and for inputs
of size n, we say that the algorithm runs in polynomial time. For graph problems, the
running-time is usually specified as a function of n and m, the number of vertices and edges
of the graph, respectively. For many problems, however, no polynomial-time algorithm
has been discovered. Although one cannot rule out the possible existence of polynomial-
time algorithms for such problems, the theory of NP-completeness provides means to give
evidence for the computational intractability of a problem.

A decision problem is in the complexity class NP if there is a nondeterministic Turing
machine that solves the problem in polynomial time. That is to say that the answer to
a problem instance is “yes” if there exists a solution in the set of all possible solutions to
the instance which is of polynomial size. Moreover, the test whether a potential solution
is an actual solution must be performed in polynomial time. Note that a decision problem
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is usually considered to consist of the set of the “yes”-instances. A decision problem is
NP-hard if every problem in NP can be reduced to it via a polynomial-time many-one
reduction. (A polynomial-time many-one reduction from a set A to a set B is a function
computable in polynomial time such that for all instances x, x ∈ A⇔ f(x) ∈ B.) Problems
that are NP-hard and belong to NP are called NP-complete. A polynomial-time algorithm
for an NP-hard problem would imply polynomial-time algorithms for all problems NP—
something that is considered very unlikely. Therefore, the NP-hardness of a problem is
considered substantial evidence for the computational difficulty of the problem.

A standard example of an NP-complete problem is 3SAT, i.e., checking whether a given
propositional formula given as a 3CNF has a satisfying assignment. To be more precise, a
kCNF is a formula H = C1 ∧ · · · ∧Cm consisting of clauses Ci each of which has the form
Ci = li1 ∨ li2 ∨ · · · ∨ lik where lij is either a positive or a negative literal. A positive literal
is some variable, say xk, and a negative literal is the negation of some variable, say xk.

The class of complements of NP sets is denoted by coNP, i.e., coNP = {A|A ∈ NP}.

For optimization problems (where the goal is to compute a feasible solution that maxi-
mizes or minimizes some objective function), we say that the problem is NP-hard if the
corresponding decision problem (checking whether a solution with objective value better
than a given value k exists) is NP-hard.

#P-completeness

A complexity class closely related to NP is the class #P which has been introduced in
[Val79a, Val79b] to provide evidence for the computational intractability of counting prob-
lems. The class #P consists of all problems of the form “compute f(x)” where f(x) is the
number of accepting paths of a nondeterministic Turing machine running in polynomial
time. Equivalently, a #P-functions counts the number of solutions to instances of an NP-
problem. We say that a function f is #P-complete if it belongs to #P and every function
g ∈ #P is polynomial-time Turing reducible to f , i.e., g can be computed by a determinis-
tic polynomial-time Turing machines which is allowed to make queries to f and answering
these queries is done within one step (see, e.g., [HMU01, HO02]). The canonical example
of a #P-complete problem is #3SAT, i.e., counting the number of satisfying assignments
of a propositional formula given as a 3CNF. One of the most prominent #P-complete
problem is counting the number of perfect matchings in a bipartite graph [Val79b]. As in
the case of NP, if there is a polynomial-time algorithm for computing some #P-complete
function from #P then there are polynomial-time algorithms for all #P-functions—which
is equally considered unlikely. In particular, such a polynomial-time algorithm would
imply that P = NP.
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