Fachbereich Informatik und Universitat
Informationswissenschaft Konstanz

Lecture Notes
Complexity Theory
taught in Summer term 2015

by
Sven Kosub

May 28, 2015

Version v1.9

RERENI

AT

Contents

1 Basic complexity theory 1
1.1 Complexity measures 1
1.1.1 Deterministic measures 1

1.1.2 Nondeterministic measures 8

1.1.3 Type-independent measures 12

1.2 Complexity hierarchies 14
1.2.1 Deterministic space oo e 15

1.2.2 Nondeterministic space 16

1.2.3 Deterministic time L oo 17

1.2.4 Nondeterministic time oL 18

1.3 Relations between space and time complexity 18
1.3.1 Space versus time 18

1.3.2 Nondeterministic space versus deterministic space 19

1.3.3 Complementing nondeterministic space 19

1.3.4 Open problems in complexity theory 20

2 Lower bounds 23
2.1 The completeness method L. 23
2.1.1 Reducibilitieso 23

2.1.2 Complete problems 25
Bibliography 28

version v1.9 as of May 28, 2015

vi

Contents

Complexity Theory — Lecture Notes

Basic complexity theory

1.1 Complexity measures

1.1.1 Deterministic measures

We introduce a general, notational framework for complexity measures and classes.

Let 7 be an algorithm type, e.g., Turing machine, RAM, Pascal/C/Java program, etc. For
any algorithm of type 7, it must be defined when the algorithm terminates (stops, halts)
on a given input and, if the algorithm terminates, what the result (outcome/output) is.

An algorithm A of type 7 computes a mapping @4 : (X*)™ — X%

(z) = result of A on input x if A terminates on input x
PANE) =def) 1ot defined otherwise

A complexity measure for algorithms of type 7 is a mapping ®:
® : finite computation of A of type 7 on input x — r € N

A (finite) computation is a (finite) sequence of configurations (specific to the type 7). Note
that, in general, such a sequence need not be complete in the sense that it is reachable
from a defined initial configuration.

Examples: Standard complexity measures are the following:
® = 7-DTIME ® = 7-DSPACE

Here, “D” indicates that algorithms are deterministic.

A complexity function for an algorithm A of type 7 is a mapping ® 4 : (¥*)™ — N:

B a(x) = ®(computation of A on input z) if A terminates on input x
AVE)=def 1 1ot defined otherwise

A worst-case complexity function of A of type 7 is a mapping ®4 : N — N:

@A(n) —def Max <I>A(a:)
|z|=n

Resource bounds are compared asymptotically. Define for f,g: N — N:

[<ae 9 =det (Fno)(Yn)[n > ng — f(n) < g(n)]

version v1.9 as of May 28, 2015

2 Chapter 1. Basic complexity theory

The subscript “ae” refers to “almost everywhere.”

Let t : N — N be a resource bound (i.e., t is monotone). We say that an algorithm A of
type T computes the total function f in ®-complexity t if and only if p4 = f and &4 <go t.
We define the following complexity classes:

F®(t) =qef { f | f is a total function and there is an algorithm A of type 7
computing f in ®-complexity t }

FO(O(t)) =aet | J FO(k - 1)
k>1

F(Pol t) =qer | FO(t")

k>1

When considering the complexity of languages (sets) instead of functions, we use the
characteristic function to define the fundamental complexity classes. The characteristic
function cr, : ¥* — {0, 1} of a language L C ¥* is defined to be for all z € ¥*:

CL(.QC) =1<=gex €L

Recall that an algorithm A accepts (decides) a language L C X* if and only if A computes
cr,. Accordingly, we say that A accepts a language L in ®-complexity t if and only if
pa = cp and &y < o t. We obtain the following deterministic complexity classes of
languages (sets):

D(t) =qef { L | L C X* is a total function and there is an algorithm A of type 7
accepting L in ®-complexity ¢ }

D(0(t)) =aer | k- 1)

k>1

®(Pol t) =qef U D(t")
k>1

Proposition 1.1 Let ® be a complexity measure and let t,t be resource bounds.

1. If t <ge t' then FO(t) C FO(t).

2. If t <ge t' then ®(t) C d(t').

Remarks:

1. In the definition of complexity classes, there is no restriction on a certain input
alphabet but all alphabets used must be finite.

2. Numbers are encoded in dyadic. That is, for a language L C N we use the following
encoding;:

L € O(t) <=ger { (dya(ni),...,dya(nm,) | (n1,...,nm) € L } € O(¢)

Complexity Theory — Lecture Notes

1.1. Complexity measures 3

A function f: N™ — N can be encoded as:
f €FO(t) <=qet [€ FO(t) where f': ({1,2}*)™ — {1,2} is given by
f(z1,. .. 2m) =aer dya (f(dyafl(wl), e dyafl(xm)))
The dyadic encoding dya : N — {1,2}* is recursively defined by

dya(O) —def €
dya(2n +1) =qef dya(n)l
dya(2n +2) =qef dya(n)2

The decoding dya™' : {1,2}* — N is given by
n—1
dyafl(an_l co.ajag) = Z ay - 2F
k=0

Note that the dyadic encoding is bijective (in contrast to the usual binary encoding).

Complexity measures for RAMs. We consider the case 7 = RAM. A RAM (ran-
dom access machine) is a model of an idealized computer based on the von Neumann
architecture and consists of

e countably many register RO, R1,R2, ..., each register Ri containing a number (Ri) € N
e an instruction register BR containing the next instruction (BR) to be executed

e a finite instruction set with instructions of several types:

type syntax semantics
transport Ri < Rj (Ri) := (Rj)
RRi « Rj (R(R1)) := (Rj)
Ri < RRj (Ri) := (R(Rj))
arithmetic Ri <k (Ri) =k
Ri < Rj +Rk (Ri) := (Rj) + (Rk)
Ri ¢+ Rj — Rk (Ri) := max{(Rj) — (Rk),0}
jumps GOTO k (BR) :=k
. |k if (Ri) =0
IFRi=0GOTOk (BR):= { (BR+ 1) otherwisc
stop STOP (BR) :=0
e a program consisting of m € N instructions enumerated by [1],[2], ..., [m]
The input (z1,...,2y) € N is given by the following initial configuration:

(Ri) :=mjp1 for0<i<m-—1
(Ri) :==0 for i >m

version v1.9 as of May 28, 2015

Chapter 1. Basic complexity theory

A RAM computation stops when the instruction register contains zero. Then, the output
is given by (RO).

The complexity measures we are interested in are the following. Let § be a computation

of a RAM:

RAM-DTIME(S) =4ef number of steps (tacts, cycles) of
RAM-DSPACE(S) =aef max BIT(8,1)

where BIT(5,1) =det > >0 [dya({Ri)s)| + 3 gs), 20 [dyal(i)]
and (Ri); is the content of Ri after the ¢-th step of 3

This gives the following complexity functions for a RAM M:

number of steps of a computation by M on input z

RAM-DTIME /() =gef if M terminates on input x

not defined otherwise

max;>o BIT(computation by M on input z,t)

RAM-DSPACE () =get if M terminates on input x

not defined otherwise

We obtain the following four complexity classes with respect to resource bounds s, t:

FRAM-DTIME(t), FRAM-DSPACE(s), RAM-DTIME(t), RAM-DSPACE(s)

Example: We design a RAM M computing mult : Nx N — N: (z,y) — z -y
in order to analyze the time complexity. The simple idea is adding y-times x.
This is done by the following RAM:

[1]
[2]
(3]
(4]
(5]
(6]
(7]

R3 «+ 1

IF R1=0 GOTO 5
R2 < R2 + RO
R1 < R1 - R3
GOTO 2

RO <« R2

STOP

Given the input (z,y), the M takes 4 -y + 3 steps. In the worst case for inputs
of size n (i.e., z = 0), we obtain

2"t2 _ 1 < RAM-DTIME;(n) < 2"*3 — 5.

Complexity Theory — Lecture Notes

1.1. Complexity measures 5

Complexity measures for Turing machines. In the following, we adopt the reader
to be familiar with the notion of a Turing machine (see, e.g., [HMUO1]). According to
the number of tapes Turing machines are equipped with, we consider different algorithm
types 7. A Turing machines consists of:

e (possibly) a read-only input tape which either can be one-way or two-way
e k working tapes with no restrictions

e a write-only one-way output tape

The corresponding algorithm types can be taken from the following table:

T one working tape k& working tapes arbitrarily many
working tapes
no input tape T kT multiT
one-way input tape 1-T 1-kT 1-multiT
two-way input tape 2-T 1-kT 2-multiT
The input (x1,...,zy,) to a Turing machines is given by the following initial configuration:

e input tape (first working tape, resp.) contains ... 000z % ... % x,, 000 . ..

e all other tapes are empty, i.e., they contain ...000. ..

The Turing machines stops if the halting state is taken. Then, the output is given by
the configuration ...000z0... on the output tape where z is the leftmost word on the
output tape which does not contain the blank symbol O.

Turing machines accepting languages do not possess an output tape. Instead, they have
accepting and rejecting halting states.

The complexity measures we are interested in are the following. Let 7 be a Turing machine
type and 8 be a computation of a Turing machine of type 7:

7-DTIME(3) =gef number of steps of

7-DSPACE(3) =gef number of cells visited or containing an input symbol during
computation 3

This yields the following complexity functions for a Turing machine M of type 7:

number of steps of a computation by M on input z
T-DTIME s () =det if M terminates on input x

not defined otherwise

number of cells visited or containing any input symbol
during a computation of M on x

7-DSPACE p/ (%) =det if M terminates on input x

not defined otherwise

version v1.9 as of May 28, 2015

6 Chapter 1. Basic complexity theory

We obtain the following set of complexity classes with respect to a resource bound r:

0 T 0 T
DTIME DTIME
Fols- ET 5 - { } (r), 1y- ET 5 - { } (r)
2 multiT DSPACE 2 multiT DSPACE

Example: We discuss several computational problems regarding their mem-
bership in complexity classes.

1. For the function len : x — |z|, it holds len € F1-T-DTIME((1 +¢) - n) for
all € > 0.

2. We consider two context-free languages over ¥ = {0,1}:

S =def {:z::cR]a:E{O,l}*}
C =def {0n1n|n€N}

Then, the complexity classes (specified by resource bounds) S and C
belong to are given in the following table (where € > 0).

T-DTIME(r) 1-T-DTIME(r) 2 T-DTIME(r) 1-T-DSPACE(r) 2-T-DSPACE(r)
e-n? e-n? (1.5+¢)-n e-n e-logn

S
C e-nlogn n n e-logn e-logn

We want to look more closely at a result of the table: S € T-DTIME(e - n?) for all € > 0.
The basic idea of a suitable Turing machine M is to compare, in rounds, leftmost and
rightmost letters of a given word and removing compared letters. Suppose we are given
the word = = 1001001001 which belongs to S. The initial configuration is as follows (with
the inital state above a cell indicating the position of the head):

s
...00100100100100 ...

M stores the leftmost letters in two states: sy for letter 1 and sg for letter 0. The head
moves to right until the first blank symbol next to the rightmost letter is reached. The
head moves one cell to the left and compares that letter with the letter stored in the state.
The machine stops if there is a mismatch, otherwise it moves back to left using a state s;.
Then, the next round starts.

Complexity Theory — Lecture Notes

1.1. Complexity measures 7

The first round is given by the following sequence of configurations:

S
.0o100100100100 ...

S1
.0o0o0010010010D0 ...

S1
.0o0o0010010010D0 ...

8/

000001001001 00 ...

S¢
.ooooo100100000 ...

Sy
.0o0o000100100000 ...

S
.0o0o000100100000 ...

Note that this round takes 2|x| + 1 steps.

The second round is given by the following sequence of configurations:

i
.ooooo0o100100000 ...

50
.0ooooo100100000 ...

50
.000D00100100000 ...

3/

00000100100 000 ...

S¢
.0ooodo100100000 ...

S
.0ooodo1o00100000 ...

54
.ooooo100100000 ...

Note that this round takes 2(|z| — 2) + 1 steps.

After a number of rounds all letters are removed. The machine accepts if and only if there
are no mismatches and in the last round there are exactly two letters on the tape.
The time complexity for = such that |z| = 2m can be estimated as follows:

m—1
T-DTIMEy (z) < > 4m — 4i+ 1 =4m” —
=0

dm(m — 1)

2
5 +m:2m2+3m§ae§-\:c\2

version v1.9 as of May 28, 2015

8 Chapter 1. Basic complexity theory

Now, instead of comparing one symbol, compare k symbols (by increasing the numbers of
states exponentially). This gives the following complexity analysis for x:

Lm/k]
T-DTIMEpr(x) < Y (|2 = 2ki) + (Jo| — 2ki — (k= 1)) +1 +k
1=0
Lm/k]
=) dAm-—(di+1Dk+1 +k
1=0

< (4m+1)<%+1) +k
2
<ae E ‘33|2

For k > 2-¢71, we obtain S € T-DTIME(e - n?).

1.1.2 Nondeterministic measures

Nondeterminism of algorithms is a certain kind of parallelism:

e possibly many instructions to perform next given a situation
e realized in parallel (by identical copies of the machine/algorithm)

e number of instructions limited by a constant number

For a nondeterministic RAM, this means that instructions may have same numbers. For
a nondeterministic Turing machine, this means that, given a situation (i.e., a state and
symbols on tapes), there are many transitions applicable.

Nondeterministic machines produce computation trees. Let k be the maximum number
of nondeterministic branches of M. A computation path of M on input z is a word
aj...ap € {1,...,k}* such that a; is the a;-th instruction of the same number performed

Complexity Theory — Lecture Notes

1.1. Complexity measures 9

in the ¢-th step of the computation. Note that not each word from {1,...,k}* describes a
computation path.

As an example consider the computation tree above. Here, x is the input to the algorithm.
The red computation path can be described by the word 1221232 € {1,2,3}*. In contrast,
the word 1212 € {1, 2,3} does not correspond to a computation path on input z.

As it is not obvious how to define nondeterministic function classes, we focus on decision
problems only in the forthcoming. We define the notion of “acceptance by a nondetermin-
istic machine:”

e 7 is an algorithm type
e A is a nondeterministic algorithm of type 7
e 1 is an input

e 2 is a computation path of A on x
Then, we define:

o ©4(z|z) =gt result of A on z along z

o A accepts ¥ <=>qef there is a z of A on x such that pa(z|z) =1 (i.e., there is an
accepting computation path of A on x)

o Aaccepts L CX* <=4 L ={ 2z €3¥*| Aaccepts = }

version v1.9 as of May 28, 2015

10 Chapter 1. Basic complexity theory

Note that deterministic algorithms are a subclass of nondeterministic algorithms.

A complexity measure for nondeterministic algorithm A of type 7 is a mapping ®:

® : computation path of Aof Tonxz — reN

Example: Standard complexity measures are the following:
® = 7-NTIME ® = 7-NSPACE

Here, “N” indicates that algorithms are nondeterministic. Note that if A is
actually deterministic then the following holds:

7-NTIME(computation path) = 7-DTIME(computation)
7-NSPACE(computation path) = 7-DSPACE(computation)

We define the following complexity functions: Let & be a complexity measure for nonde-
terministic algorithms A of type 7.

D 4(z]2) =get P(computation path z of A on x)
Dy (x) =gof min { P4(x|2) | palz|z) =1} (we set min () =ger 0!)

D 4(n) =get max 4 (z)

|z[=n

We say that a nondeterministic algorithm A accepts a language L in ®-complexity ¢ if and
only if A accepts L and ® 4 <,e t.

We obtain the following nondeterministic complexity classes of languages:

D(t) =qef { L | L C X* and there is a nondeterministic algorithm A of type 7
accepting L in ®-complexity ¢ }

O(O(t)) =aer |J ®(k-1)

k>1

O(Pol t) =qer | J @)
k>1

Proposition 1.2 Let 7 be any algorithm type, and let tt' be resource bounds.

1. Ift <o t' then ®(t) C ®(¢') for all D.
2. 7-DTIME(#) C ~-NTIME(#).

3. 7-DSPACE(t) C 7-NSPACE(t).

Complexity Theory — Lecture Notes

1.1. Complexity measures 11

For deterministic complexity classes, the following equivalences are true:

L € -DTIME(t) <= L € r-DTIME(t)
L € T-DSPACE(t) «= L € r-DSPACE(t)

The same statements need not be true for —-NTIME and 7-NSPACE because of the non-
symmetrical acceptance conditions.

Examples: We discuss the nondeterministic complexities of the problems S
and C with respect to various computational models. According to the remarks
above we make a distinction between S, S, C, and C. The differences in the
complexities illustrate the remark once more.

T-NTIME(r) 1-T-NTIME(r) 2-T-NTIME(r) 1-T-NSPACE(r) 2-T-NSPACE(r)

S c-n” n n e-n €-logn
S e-n-logn n n e-logn e-logn
C e-n-logn n n €-logn €-logn
C e-n-loglogn n n € -loglogn € -loglogn

We discuss two particular cases in more detail:

1. In order to show that S € T-NTIME(n -logn), define M to be the T-TM
that, on input =z,
(a) guesses a position ¢,
(b) determines the letter at the i-th position from left (i.e., z;),
(c) determines the letter at the i-th position from right (i.e., z,,—;),
(d) accepts if and only if the letters are different and |z| is even.
Clearly, M accepts S. Analyzing the complexity is as follows: if € S

then there is a position 0 < ¢ < 7 such that x; # x,;. Let z be the
computation path for guessing ¢. Then, we obtain:

T-NTIME(z|2) <a.e. |z| - log |z

Thus, S belongs to T-NTIME(n - logn).
2. In order to show C € T-NTIME(n-logn), define M to be the T-TM that,
on input z,
(a) guesses a k € N\ {0,1},
(b) determines oy =qef mod(|x]o, k) (Jz|o denotes the number of 0’s in
x),
(c) determines By =qef mod(|z|1, k) (|x]1 denotes the number of 1’s in z),

(d) accepts if and only if oy # By or there occurs a 1 followed by 0.

version v1.9 as of May 28, 2015

12 Chapter 1. Basic complexity theory

Clearly, M accepts C. We analyze the complexity of M: if z ¢ C (i.e.,
x = 0™1") then there is no accepting path; if z € C' (i.e., |z|o # |z|1) then
there is an accepting path zp for £k < n. Thus, we obtain

T-NTIME;(z|z) < |z| - log k

But this only proves an n - log n-bound. We can do a finer analysis: The
Chinese remainder theorem states that Z,.q = (Z,) x (Z4) for different
prime numbers p and ¢q. That is, if € C, we find oy # B for at least
one of the first m prime numbers p1,...,p, such that n < py- -+ - pn.
So, m =qet [logn] is enough (since n < 218" < 2m < p;p.). By
the prime number theorem we know that p,, < c¢-m-logm for some ¢ > 1.
Then, we conclude

T-NTIME(z|z2) |z| - log k

|.%" ' logpm
2] - log(c - log | - log log |z1))

VAN VAN VANRR VAN

2|z| - loglog |z| + |z| - loge <4 3|z|-loglog |x|

Using linear compression we obtain C' € T-NTIME(n - loglogn).

1.1.3 Type-independent measures

We determine complexity classes T-DSPACE(s) and 7-NSPACE(s) that do not depend on
7 for s(n) > n.

Theorem 1.3 For X € {D,N} and all s(n) > 0, the following holds:
1. i-kT-XSPACE(s) = i-multiT-XSPACE(s) fori € {0,1,2} and k > 1

2. T-XSPACE(s) = 1-T-XSPACE(s) = 2-T-XSPACE(s) for s(n) >n

3. 1-T-XSPACE(s) C 2-T-XSPACE(s)

4. RAM-XSPACE(O(s)) = T-XSPACE(s) for s(n) >n
Turing machines equipped with a 2-way input tape are most flexible in sublinear space.
We define the following machine-independent space-complexity classes (for s(n) > 0):

DSPACE(s) =q¢ 2-T-DSPACE(s)
NSPACE(s) =qo 2-T-NSPACE(s)

Proposition 1.4 DSPACE(s) C NSPACE(s) for all s(n) > 0.

Complexity Theory — Lecture Notes

1.1. Complexity measures 13

We introduce names for special space-complexity classes:

L =4 DSPACE
NL =g NSPACE

NLIN =4 NSPACE

PSPACE =4 DSPACE
NPSPACE =4 NSPACE

Pol n)

(logn)

(logn)
LIN =4 DSPACE(O(n))

(O(n))

(

(Pol n)

Proposition 1.5 The following inclusions are true: ...

Remarks:

1. For arbitrary s : N — N, it is open whether DSPACE(s) C NSPACE(s) or whether
DSPACE(s) = NSPACE(s).

2. Special open questions are: L L NL, LIN Z NLIN (aka the first LBA problem)

Theorem 1.6 For X € {D,N} and all t(n) > n, the following holds:
1. i-kT-XTIME(Pol ¢) = i-multiT-XTIME(Pol ¢) for i € {0,1,2} and k > 1

2. T-XTIME(Pol t) = 1-T-XTIME(Pol ¢) = 2-T-XTIME(Pol ¢)
3. RAM-XTIME(Pol ¢) = T-XTIME(Pol t)

Remarks: There are some results regarding tight simulations for “easy-to-compute” time
bounds t(n) > n:

o multiT-DTIME(t) C T-DTIME(#2)

o multiT-DTIME(t) C 2T-DTIME(t - log t)

o multiT-NTIME(t) = 2T-NTIME(t)

e multiT-DTIME(¢) € RAM-DTIME (O(t/logt)) for t(n) > n-logn
¢ RAM-DTIME(#) C multiT-DTIME(#3)

e multiT-NTIME(¢) € RAM-NTIME(O(t)) C multiT-NTIME(#?)

version v1.9 as of May 28, 2015

14 Chapter 1. Basic complexity theory

We define the following machine-independent time-complexity classes (for ¢(n) > n):

DTIME(Pol t) =q¢s T-DTIME(Pol ¢)
NTIME(Pol t) =g T-NTIME(Pol t)

Proposition 1.7 DTIME(Pol t) C NTIME(Pol t) for all t(n) > n.

We introduce name for special time-complexity classes:

P =4 DTIME(Pol n)
NP =4 NTIME(Pol n)

(
E =4 DTIME(Pol 2"
NE =qef NTIME(Pol 2"

)
)
EXP =4 DTIME (2P°1 ")

NEXP —4¢ NTIME <2P°1”

Proposition 1.8 The following inclusions are true: ...

Remarks:
1. For arbitrary ¢t : N — N, it is open whether DTIME(¢) C NTIME(¢) or whether
DTIME(t) = NTIME(t); an exception is the following proven result: DTIME(O(n))
C NTIME(O(n)).

9. Special open questions are P = NP, E = NE, and EXP = NEXP

1.2 Complexity hierarchies

Let ® be any complexity measure. Which of the following both (complementary) state-
ments is true?

1. Is there a computable function ¢ : N — N such that ®(¢) contains all decidable sets?

2. Given any computable function ¢ : N — N, is there a decidable set A such that
A¢ o(t)?

In the case that the answer to the second question is “yes”
3. Given t, how much greater has ¢’ to be in order to get ®(t) C ®(¢')?

That is: Is there an infinite hierarchy of complexity classes ®(t)?

Complexity Theory — Lecture Notes

1.2. Complexity hierarchies 15

1.2.1 Deterministic space

We consider DSPACE = 2-T-DSPACE.

As a preliminary remark we syntactically define a 2-T-TM M as a tuple (X, A, S, 6, s4,5-)
where

e Y is a finite input alphabet
e A is a finite internal alphabet

S is a finite set of states

§:SxExA—8xAx{L,0,R}>

e s, is the accepting halting state

e s_ is the rejecting halting state

Let | M| denote the description length of M:

[M= (S]] - 1A

Lemma 1.9 If a deterministic 2-T-TM M terminates on input x then it holds

2-T-DTIME;(z) < ||z|| - o|M|-DSPACE ()
Corollary 1.10 DSPACE(s) C DTIME(2°®)) for s(n) > logn.

Theorem 1.11 For every computable function s : N — N there is a decidable language L
such that L ¢ DSPACE(s).

A function s : N — N is said to be space-constructible if and only if there is a 2-T-TM M
such that DSPACE(z) = s(|x]).

Proposition 1.12 Let s : N — N be a function. Then, the following equivalence holds:

s 1is space-constructible <= solen € FDSPACE(s)

Remarks:

L. len: ¥* - N:z — |z]

2. solen: ¥* - N:z — s(len(z)) = s(|z|)

version v1.9 as of May 28, 2015

16 Chapter 1. Basic complexity theory

Examples: n* for k > 1, logn, 2" are space-constructible functions.

Proposition 1.13 Let s and s’ be space-constructible functions. Then,

1. s+, s- s, max(s,s') are space-constructible,

2. so s is space-constructible, if s(n) > n.
Theorem 1.14 (Hierarchy Theorem) Let s and s be space-constructible functions,
s(n) >logn. If s = o(s) then DSPACE(s’") C DSPACE(s).
Theorem 1.15 (Linear Compression) For every function s : N — N,

DSPACE(s) = DSPACE(O(s)).

Remarks:

1. Gap Theorem (TRAKHTENBROT 1964, BORODIN 1972): For every computable
r : N — N there is a computable s : N — N such that DSPACE(s) = DSPACE(ros).
(So, s is not space-constructible.)

2. There is an s such that DSPACE(s) = DSPACE(2°).
3. REG = DSPACE(1) = DSPACE(s) for s = o(loglogn).

1.2.2 Nondeterministic space

We consider NSPACE = 2-T-NSPACE.

Theorem 1.16 (Hierarchy Theorem) For every space-constructible s(n) > logn and
every s’ such that s'(n + 1) = o(s(n)),

NSPACE(s") € NSPACE(s).

Remarks:

1. Diagonalization does not work for nondeterministic measures.

2. Proof is based on recursive padding. The padding technique is as follows: For a set
A and a function r(n) > n define

Ay =qer { aba” DTN 1 p Lapnz e A Y
Then, one can prove that

A, € NSPACE(s) <= A € NSPACE(sor)

Complexity Theory — Lecture Notes

1.2. Complexity hierarchies 17

3. Upward translation of equality: We show that
NSPACE(n?) C NSPACE(n) = NSPACE(n®) C NSPACE(n).
Let 7(n) =get n*/? and note that n® = (n%?2)2. Then, conclude as follows:

A € NSPACE(n®) = A, € NSPACE(n?)
— A, € NSPACE(n)
— A e NSPACE(n*/?)
— A € NSPACE(n?)
—> A € NSPACE(n)

4. SavitcH’s Theorem: NSPACE(s) € DSPACE(s?). We obtain that
NSPACE(s) € DSPACE(s*) € DSPACE(s®) C NSPACE(s®).
In particular, NSPACE(n) C NSPACE(n?)

Theorem 1.17 (Linear Compression) For every function s : N — N,

NSPACE(s) = NSPACE(O(s)).

1.2.3 Deterministic time

Theorem 1.18 (Hierarchy Theorem) For “easy-to-compute” functions t(n) > n and
for all t'(n) = o(t(n)),

multiT-DTIME(#') C multiT-DTIME(t - log t).

Remarks:

1. Proof is by diagonalization; the logt factor appears because of the simulation of
arbitrarily many tapes by a fixed number of tapes.

2. Using recursive padding: multiT-DTIME(¢') C multiT-DTIME(¢ - v/log ?)
3. For k > 2 fixed: KT-DTIME(#) C kT-DTIME(t)

4. RAM-DTIME(t) ¢ RAM-DTIME(c - t) for some ¢ > 1.

Theorem 1.19 (Linear Speed-up) For t(n) > c¢-n such that ¢ > 1,

multiT-DTIME(t) = multiT-DTIME(O(t)).

Theorem 1.20 multiT-DTIME(n) C multiT-DTIME(O(n)).

version v1.9 as of May 28, 2015

18 Chapter 1. Basic complexity theory

1.2.4 Nondeterministic time

Theorem 1.21 (Hierarchy Theorem) For “easy-to-compute” functions t(n) > n and
for all t'(n) > n such that t'(n + 1) = o(t(n)),

multiT-NTIME(#') C multiT-NTIME(¢)

Theorem 1.22 (Linear Speed-up) For t(n) > n,
multiT-NTIME(t) = multiT-NTIME(O(t)).
Remarks:

1. The linear speed-up already holds for t(n) = n in contrast to the linear speed-up for
deterministic time.

2. multiT-DTIME(n) C multiT-NTIME(n).

3. multiT-DTIME(O(n)) C multiT-NTIME(O(n)).

1.3 Relations between space and time complexity
In this chapter we relate DSPACE, NSPACE, DTIME, and NTIME.
1.3.1 Space versus time

We first study time-efficient simulations of space-bounded computations.

Proposition 1.23 If a nondeterministic 2-T-TM M accepts a language L in space
s(n) > logn then M accepts L in time 2005,

Theorem 1.24 Let s(n) > logn be space-constructible. Then,

NSPACE(s) C DTIME(2°0)).

Corollary 1.25 1. NLCP.
2. NLIN C E.

3. NPSPACE C EXP.

Complexity Theory — Lecture Notes

1.3. Relations between space and time complexity 19

We turn to space-efficient simulations of time-bounded computations. Clearly, it holds
that DTIME(¢) € DSPACE(t) and NTIME(¢) C NSPACE(t).
Theorem 1.26 For any space-constructible function t(n) > n,
T-NTIME(t) C DSPACE(t).
Corollary 1.27 1. -NTIME(Pol t) C -DSPACE(Pol t) for any space-constructible
function t(n) > n.

2. NP C PSPACE.

1.3.2 Nondeterministic space versus deterministic space

Lemma 1.28 For all space-constructible functions s(n),t(n) > logn, the following holds:
If a language L is accepted by a 2-T-NTM in space s and time 2t then L is accepted by a
2-T-DTM in space s - t.

Theorem 1.29 (SAviTCH 1970) For any space-constructible function s(n) > logn,

NSPACE(s) C DSPACE(s?).

Corollary 1.30 1. NL C DSPACE(log?n).
2. NLIN C DSPACE(n?).

3. NPSPACE = PSPACE.

1.3.3 Complementing nondeterministic space

For each set class K define
CO/CZdef{Z|A€]C}.

Note that in order to prove KL = coK it is enough to prove one of the inclusions K C cokC
or cokC C K.

Theorem 1.31 (SZELEPCZENYI, IMMERMAN 1987) For any space-constructible func-
tions s(n) > logn,
coNSPACE(s) = NSPACE(s).

Corollary 1.32 1. coNL = NL.

2. coNLIN = NLIN.

version v1.9 as of May 28, 2015

20 Chapter 1. Basic complexity theory

1.3.4 Open problems in complexity theory

The following table shows that general complexity-theoretic open problems. The most
important open problems are framed.

General Problem Special cases
DSPACE(s) = NSPACE(s) L < NL
LIN = NLIN
NSPACE(s) = DTIME(20®)) NL = P
NLIN £ E

PSPACE = EXP

DTIME(Pol t) = NTIME(Pol t) P L NP

E < NE

EXP < NEXP
NTIME(Pol ¢) = DSPACE(Pol t) NP < PSPACE

NE < DSPACE(20¢))
NEXP = DSPACE(2P #)

NTIME(Pol ¢) = coNTIME(Pol ¢) NP < coNP
NE = coNE
NEXP < coNEXP

Remark: The classes L, NL, P, NP, coNP, PSPACE, ... are the most important complex-
ity classes as they contain many practically relevant problems. Furthermore, they are
reference classes for more advanced or refined computational models, e.g., quantum, ran-
domized, or parallel computations.

In the following we want to study relations among open problems (upward translation of
equality): For a function r : N — N, a set A C ¥* and a fixed, distinct letters a,b € 2
define the set

Ay =dof { wba” (D —lzl-1 |bAaNnz €A }

Complexity Theory — Lecture Notes

1.3. Relations between space and time complexity 21

A function t : N — N is time-constructible if and only if ¢ o len € FDTIME(Pol t), i.e.,
x > t(|x|) is computable in time t(|z|)* for some k > 1.

Lemma 1.33 (Padding Lemma) Let X € {D,N}.

1. For any space-constructible function s(n) > logn and any function r(n) > n such
that r o len € DSPACE(s o),

A € XSPACE(sor) <= A, € XSPACE(s).

2. For any time-constructible function t(n) > n and any function r(n) > n,

A € XTIME(Pol t o r) <= A, € XTIME(Pol t).

Theorem 1.34 Let s be a space-constructible function, and let t be time-constructible
function.

1. L=NL = DSPACE(s) = NSPACE(s) for s(n) > logn

2. LIN = NLIN = DSPACE(s) = NSPACE(s) for s(n) > n

3. NL=P = NSPACE(s) = DTIME(2°®)) for s(n) > logn

4. P=NP = DTIME(Pol t) = DSPACE(Pol t) for t(n) > n

5. NP = PSPACE = NTIME(Pol t) = DSPACE(Pol t) for t(n) > n

6. NP = coNP = NTIME(Pol t) = coNTIME(Pol t) for t(n) > n

Corollary 1.35 1. L=NL = LIN =NLIN
2. NL=P =— NLIN=E =— PSPACE = EXP
3. P=NP =— E=NE — EXP = NEXP

4. NP =PSPACE — NE = DSPACE(2°™) — NEXP = DSPACE(2° ")

version v1.9 as of May 28, 2015

22

Chapter 1. Basic complexity theory

Complexity Theory — Lecture Notes

Lower bounds 2

We turn to a complexity theory for computational problems.

Let t : N — N be a resource bound, and let A be any language. Then,

e ¢ is a lower bound for A with respect to ®-complexity if and only if A ¢ &(¢),

e ¢ is an upper bound for A with respect to ®-complexity if and only if A € ®(¢).

Remark: If & admits linear compression or speed-up then there is no greatest lower bound.
Suppose A ¢ ®(t) and ¢ is greatest lower bound for A. Then, A ¢ ®(¢) but A € ®(2t). By
linear compression/speed-up, A € ®(t) which is a contradiction.

The goal in this chaper is to provide techniques for proving lower bound for concrete prob-

lems. We consider two techniques: the completeness method (based on diagonalization)
and the counting method (based on the pigeonhole principle).

2.1 The completeness method

Instead of proving explicite resource bound, we compare computational problems, i.e., we
prove statements like “A is computationally not harder then B.”

2.1.1 Reducibilities

Definition 2.1 Let A C X* and B C A* be languages.
1. A<, B if and only if there is an f € FP such that for all z € ©*

r €A~ f(z) € B.

2. A §1%g B if and only if there is an f € FL such that for all x € ¥*

r € A< f(z) € B.
3. A<kt B if and only if there exist an f € FL and a ¢ > 0 such that for all x € ¥*,

|[f(z)] < ¢ |z| and
r € A< f(z) € B.

version v1.9 as of May 28, 2015

24

Chapter 2. Lower bounds

Example: Consider the following two sets:

SUBSET SUM =ger { (a1,...,am,b) | (AT C{1,....m}) [X,;c;ai=0b]}
PARTITION =qef { (a1, am) | G C{1,...,m}) [Xierai = igrai] }

We show SUBSET SUM S%%g PARTITION. Consider the following function
fi(aty .. am,b) — (a1,...,am,b+1,N —b+1)

where N =gef Y ioq a;. That is, f(ai,...,am,b) = (a},...,a},) such that

a;=a; forie{l,...,m},a,, ., =b,and a, o = N —b.
Claim: (ay,...,am,b) € SUBSET SUM <= f(ai,...,Gmn,b) € PARTITION.
For (=) let (a1,...,am,b) € SUBSET SUM, i.e., thereisan I C {1,...,m} such

that >°,.;a; = b. Define I’ =g¢ I U {m + 2}. Then,

dap = Y ditan, =Y ai+N-b+1=b+N-b+1=N+1
iel’ el el

Sap = Y aitd, =) aitb+1=N-bt+b+1=N+1
il igl igl

Hence, f(ai,...,am,b) € PARTITION.
For (<) let f(ai,...,am,b) € PARTITION, ie., there is an I' C {1,...,m + 2}
such that
1 m+2
YIUES TR WA
icl’ igI i=1

It holds that m+2 € I' if and only if m +1 ¢ I' (since a], | +a;,, o = N +2).
Without loss of generality, assume that m+2 € I'. Define I =ger I’ \ {m + 2}.

Then,
N+1=> aj=Y aj+a, = ai+N-b+1
iel’ icl icl
Thus, > ;. a; = b. Hence, (ai,...,amy,b) € SUBSET SUM.

The running space of an appropriate Turing machine summing up all a;’s to
compute N is certainly O(logn). That is, f € FL.

Proposition 2.2 Let A and B be any languages.

CA<ledling g p — 4<P B.
. <, Si%g, and <187 e reflezive and transitive.
. IfA€P and B,B # 0 then A <}, B.

4. IfA€L and B,B # 0 then A <158 ™™ B.

Complexity Theory — Lecture Notes

2.1. The completeness method 25

The proposition implies that non-trivial problems in P cannot be separated by means of
<., i.e., <, is too coarse for P (and NL).

By experience, <h,-reductions between concrete problems can be replaced by Slrzg . (Note
that this is not a theorem!) That is, in the following we only consider <log and <los-lin,

Closure of (complexity) class K under <] :

e R (K)=aet { A| (3B K)[A<], B] }
® R.,(B) =aet R;,,({B}) ={ A| A<}, B}

o ICis closed under <I' <=qet R (K) =K

Proposition 2.3 Let IC be any class of languages.

1. Rln(;g and Ri%g i e hull operators (i.e., they are extensional, monotone, and idem-
potent).

2. K C R () C RI%(K).

3. If K is closed under <198 yhen IC is closed under <1087,

Theorem 2.4 Let X € {D,N}, s(n) > logn be space-constructible, and t(n) > n.
1. RI%(XSPACE(s)) = XSPACE(s(Pol n)).

2. R8¢ "(XSPACE(s)) = XSPACE(s(O(n))).
3. RiE(XTIME(Pol t)) = XTIME(Pol t(Pol n)).

4. Rie& I (XTIME(Pol t)) = XTIME(Pol £(O(n))).

Corollary 2.5 1. L,NL, P, NP, PSPACE, EXP, NEXP are closed under Sﬁg.
2. LIN,NLIN, E, NE are not closed under S}%g.

3. L,NL, P, NP, PSPACE, EXP, NEXP, LIN, NLIN, E, NE are closed under <\28 ™.

2.1.2 Complete problems

Definition 2.6 Let K be closed under <! for r € {log,log-lin}, and let B be any set.

1. B is hard for K with respect to <], <=4t K C R}, (B).

2. B is complete for K with respect to <}, <=4t K =R}, (B).

version v1.9 as of May 28, 2015

26 Chapter 2. Lower bounds

We also say that B is <] -hard (<] -complete) for K.

Suppose a set B is <] -complete for K. Now let C' € K be another set such that B <] C.
Then, (by transitivity of <], and closedness of I under <]) we obtain that C is <] -
complete for K. This establishes a methodology for proving problems complete for a
complexity class.

Proposition 2.7 Let Ky and K2 be closed under <7, and let B be <] -complete for K;.
Then,
K1 C Ky <— B € Ks.

Corollary 2.8 Let B <! -complete for K.

1. If € = NL then: L=NL < BelL

2. If K =P then: NL=P <= BeNL

3. If K = NP then: P=NP < BeP

4. If K = PSPACE then: NP =PSPACE <= B NP

N

. If K = coNP then: NP = coNP < B e NP

Theorem 2.9 1. There are §lr?1g—complete sets for NL, P, NP, PSPACE, EXP, NEXP.
2. There are Si?lg _lin—complete sets for LIN, NLIN, E, NE.

3. There are no Siﬁg _lin—complete sets for PSPACE, EXP, NEXP.

Complete problems for the class NL:

Problem: GAP (graph accessibility problem)
Input: directed graph G = (V, E), vertices u,v € V
Question: Is there a (u,v)-path in G?

Theorem 2.10 GAP s §lr?lg—complete for NL.
Corollary 2.11 GAP € L < L = NL.

Remark: UGAP (undirect graph accessbility problem) is in L by a theorem of Reingold
from 2004.

Complexity Theory — Lecture Notes

2.1. The completeness method 27

Complete problems for the class P:

Problem: CVP (circuit value problem)
Input: logical circuit using {A, V, —}-gates (of arbitrary fan-in), assignment z
Question: Does the circuit evaluate to 17

Theorem 2.12 CVP is <\%8-complete for P.

Complete problems for the class NP:

Lemma 2.13 For each language A C ¥*, it holds that A € NP if and only if there exist
a set B € P and a polynomial p such that for all x € ¥*,

r€A <= (F2)] |z| =p(z|]) A (z,2) € B].

Problem: CIRCUIT SAT (circuit satisfiability)

Input: logical circuit using {A, V, —}-gates (without an assigment to the inputs)

Question: Is there an assignment z to the inputs of C' such that C(z) evaluates to
17

Theorem 2.14 CIRCUIT SAT is S}%g—complete for NP.

Problem: SAT (satisfiability)

Input: propositional formula H = H(z1,...,z,) over {A,V,—}
Question: Is there a truth assignment to x1,...,x, making H true?
Problem: 3SAT

Input: a CNF H = H(xy,...,zy,) with exactly 3 literals in each clause
Question: Is there a truth assignment to x1,...,x, making H true?

Theorem 2.15 SAT and 3SAT are gﬁg—complete for NP.

Corollary 2.16 P = NP <= CircuUIT SAT€ P < SAT €P <= 3SAT €P

version v1.9 as of May 28, 2015

28 Chapter 2. Lower bounds

What is the simplest NP-complete SAT version to reduce from?

Problem: (k,0)-SAT

Input: a CNF H = H(x1,...,z,) with exactly k literals in each clause such
that each variable z; occurs in exactly £ clauses as a literal

Question: Is there a truth assignment to x1,...,x, making H true?

Then, if £ > 3 and ¢ > 4 then (k,()-SAT is Sl%g—complete for NP; otherwise it is P. So,
a complexity jump occurs between (3,3)-SAT and (3,4)-SAT.

Corollary 2.17 SUBSET SUM is gﬁg—complete for NP.

Problem: TAUT (tautology)
Input: propositional formula H = H(zq,...,zy)
Question: Is H a tautology, i.e., is each truth assignment to =1, ..., z, a satisfying

assignment for H?

Corollary 2.18 TAUT is S;%g—complete for coNP.

Complexity Theory — Lecture Notes

Bibliography

[Pap94]

[BDG95)

[BDGIO]

[BCY3]

[ABOY]

[HOO1]

[WWS6]

[Wec00]

[HMUO1]

Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Read-
ing, MA, 1994.

José L. Balcézar, Josep Diaz, and Joaquim Gabarré. Structural Complexity I.
Texts in Theoretical Computer Science. 2nd edition. Springer-Verlag, Berlin,
1995.

José L. Balcédzar, Josep Diaz, and Joaquim Gabarré. Structural Complexity I1.
EATCS Monographs in Theoretical Computer Science. Springer-Verlag, Berlin,
1990.

Daniel P. Bovet and Pierluigi Crescenzi. Introduction to the Theory of Com-
plexity. Prentice Hall International Series in Computer Science. Prentice-Hall,
Englewood Cliffs, NJ, 1993.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, Cambridge, UK, 2009.

Lane A. Hemaspaandra and Mitsunori Ogihara. The Complezity Theory Com-
panion. An EATCS series. Springer-Verlag, Berlin, 2001.

Klaus W. Wagner and Gerd Wechsung. Computational Complexity. Reidel,
Dordrecht, 1986.

Gerd Wechsung. Vorlesungen zur Komplexititstheorie. Teubner-Verlag,
Stuttgart, 2000. In German.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation 2nd edition. Addison Wesley,
Reading, MA, 2001.

version v1.9 as of May 28, 2015

30

Bibliography

Complexity Theory — Lecture Notes

