Assignment 1

Ausgabe: 28 Oct 2010 Abgabe: 10 Nov 2010

Problem 1: System States

10 Points
Consider the boolean system $S=(X, E, R)$ defined by population $X=\{0,1,2,3\}$ of type $D=\{0,1\}$, structure $E=C_{4}$ (an undirected cycle of length 4), and constraint R given by the following set of equations:

$$
\begin{aligned}
& x_{0}=\left(x_{3} \wedge x_{1}\right) \vee\left(x_{3} \wedge \neg x_{1}\right) \vee\left(\neg x_{3} \wedge x_{1}\right) \\
& x_{1}=\left(x_{0} \wedge x_{2}\right) \vee\left(x_{0} \wedge \neg x_{2}\right) \vee\left(\neg x_{0} \wedge x_{2}\right) \\
& x_{2}=\left(x_{1} \wedge x_{3}\right) \vee\left(x_{1} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge x_{3}\right) \\
& x_{3}=\left(x_{2} \wedge x_{0}\right) \vee\left(x_{2} \wedge \neg x_{0}\right) \vee\left(\neg x_{2} \wedge x_{0}\right)
\end{aligned}
$$

Here, \wedge denotes the logical AND, \vee denotes the logical $O R$, and \neg denotes the logical negation. Find all states of the system S.

Problem 2: Constraints

10 Points

You are given the following boolean system

$$
S=\left(\{0,1,2,3\}, P_{3},\{(0,1,0,1),(0,1,1,1),(1,1,0,1),(1,1,1,1)\}\right)
$$

Here, P_{3} denotes an undirected path of length 3, i.e., the system's structure consists of the three undirected edges $\{0,1\},\{1,2\}$, and $\{2,3\}$. Suppose you want to explain the states of the system by a set of equations:

$$
\begin{aligned}
x_{0} & =f_{0}\left(x_{0}, x_{1}\right) \\
x_{1} & =f_{1}\left(x_{0}, x_{1}, x_{2}\right) \\
x_{2} & =f_{2}\left(x_{1}, x_{2}, x_{3}\right) \\
x_{3} & =f_{3}\left(x_{2}, x_{3}\right)
\end{aligned}
$$

Notice that set of equations corresponds to the interdependences given by P_{3} (we omit loops).
Find functions f_{0}, f_{1}, f_{2}, and f_{3} such that the set of solutions of the equation system above is exactly the constraint of the system S.

Note: You are only allowed to use \wedge, \vee, and \neg to describe your functions.

Problem 3: Global State Dynamic

Consider a state process $P=\left(S_{1}, \ldots S_{h}\right)$ such that for each $i \in[h]$, the system S_{i} consists of population $X=\{0,1,2\}$ of type $D=\{0,1\}$, structure $E=K^{3}$, and constraint $R_{i}=D^{3}$.

Let \mathbf{F} be the global state dynamic defined by

$$
\mathbf{F}: D^{3} \times[h-1] \rightarrow D^{3}:\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(x_{2} \oplus x_{0} \oplus 1, x_{0} \oplus x_{1} \oplus 1, x_{1} \oplus x_{2} \oplus 1\right)
$$

Obviously, \mathbf{F} is compatible with P for each choice of h.
(a) Describe all trajectories generated by the global state dynamic for $h=\infty$.
(b) What is the smallest h such that the generated set of trajectories contains the complete information on the behavior of the trajectories?

