Assignment 1

Ausgabe: 28 Oct 2010 Abgabe: 10 Nov 2010

Problem 1: System States

Consider the boolean system S = (X, E, R) defined by population $X = \{0, 1, 2, 3\}$ of type $D = \{0, 1\}$, structure $E = C_4$ (an undirected cycle of length 4), and constraint R given by the following set of equations:

 $\begin{aligned} x_0 &= (x_3 \wedge x_1) \lor (x_3 \wedge \neg x_1) \lor (\neg x_3 \wedge x_1) \\ x_1 &= (x_0 \wedge x_2) \lor (x_0 \wedge \neg x_2) \lor (\neg x_0 \wedge x_2) \\ x_2 &= (x_1 \wedge x_3) \lor (x_1 \wedge \neg x_3) \lor (\neg x_1 \wedge x_3) \\ x_3 &= (x_2 \wedge x_0) \lor (x_2 \wedge \neg x_0) \lor (\neg x_2 \wedge x_0) \end{aligned}$

Here, \wedge denotes the logical AND, \vee denotes the logical OR, and \neg denotes the logical negation.

Find all states of the system S.

Problem 2: Constraints

You are given the following boolean system

 $S = (\{0, 1, 2, 3\}, P_3, \{(0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 0, 1), (1, 1, 1, 1)\}).$

Here, P_3 denotes an undirected path of length 3, i.e., the system's structure consists of the three undirected edges $\{0, 1\}, \{1, 2\}$, and $\{2, 3\}$. Suppose you want to explain the states of the system by a set of equations:

$$\begin{array}{rcl} x_0 &=& f_0(x_0, x_1) \\ x_1 &=& f_1(x_0, x_1, x_2) \\ x_2 &=& f_2(x_1, x_2, x_3) \\ x_3 &=& f_3(x_2, x_3) \end{array}$$

Notice that set of equations corresponds to the interdependences given by P_3 (we omit loops).

Find functions f_0, f_1, f_2 , and f_3 such that the set of solutions of the equation system above is exactly the constraint of the system S.

Note: You are only allowed to use \land , \lor , and \neg to describe your functions.

Network Dynamics WS 2010/11

10 Points

10 Points

Problem 3: Global State Dynamic

10 Points

Consider a state process $P = (S_1, \ldots, S_h)$ such that for each $i \in [h]$, the system S_i consists of population $X = \{0, 1, 2\}$ of type $D = \{0, 1\}$, structure $E = K^3$, and constraint $R_i = D^3$.

Let \mathbf{F} be the global state dynamic defined by

$$\mathbf{F}: D^3 \times [h-1] \to D^3: (x_0, x_1, x_2) \mapsto (x_2 \oplus x_0 \oplus 1, x_0 \oplus x_1 \oplus 1, x_1 \oplus x_2 \oplus 1)$$

Obviously, \mathbf{F} is compatible with P for each choice of h.

- (a) Describe all trajectories generated by the global state dynamic for $h = \infty$.
- (b) What is the smallest h such that the generated set of trajectories contains the complete information on the behavior of the trajectories?