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Networks 1

1.1 Networks in a Static Perspective

1.1.1 Population

An actor x is a variable with values in a set D called the attribute type. If x takes a
concrete value z ∈ D, then z is the state of x.

Definition 1.1 1. A population X = {x1, . . . , xn} is a finite set of actors x1, . . . xn
with attribute types D1, . . . Dn.

2. A population X = {x1, . . . , xn} with attribute types D1 . . . , Dn is said to be homoge-
neous with attribute type D if D1 = · · · = Dn = D.

In the following we restrict ourselves to homogeneous populations. Therefore we omit the
word “homogeneous.”

Let X = {x1, . . . xn} be a population with attribute type D. A configuration (assignment,
interpretation) is a mapping I : X → D. A configuration I assigns a state I(x) ∈ D to
each actor x ∈ X. We also refer to a tuple (z1, . . . , zn) as a configuration.

1.1.2 Structure

The fundamental relation in network analysis is the dyad. A dyad relates two actors of a
population. We use graph theory to descrive dyadic structures of populations.

Definition 1.2 Let X = {x1, . . . , xn} be a population with attribute type D.

1. A structure is a set E ⊆ X ×X.

2. The elements of a structure E are called dyads (or edges).

Structures can be directed, undirected, or mixed. Structures are allowed to have annota-
tions (weights) with certain attribute types. That is, a structure E may be equipped with
a weight function w : E → A where A is the attribute type.
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2 Chapter 1. Networks

1.1.3 Constraint

Constraints (conditions, invariants) limit the set of possible configurations of populations.

Definition 1.3 Let X = {x1, . . . , xn} be a population of attribute type D. A relation
R ⊆ Dn is called a constraint on X.

A configuration I : X → D is said to be admissible (with respect to constraint R) if and
only if (I(x1), . . . I(xn)) ∈ R.

Example: We discuss constraints for some populations and structures.

• Let X = {1, 2, 3, 4} be a population of type D = {0, 1}. Let E = C4 be a
cycle containing the four actors. Define R to be the following constraint:

R =def { (0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1) }

Then, constraint R corresponds to the set of solution of the following set
of equations:

x1 = x4 ⊕ x1 ⊕ x2

x2 = x1 ⊕ x2 ⊕ x3

x3 = x2 ⊕ x3 ⊕ x4

x4 = x3 ⊕ x4 ⊕ x1

Here, ⊕ denotes XOR. Clearly, x1 does not directly depend on x3 and
x2 does not directly depend on x4. All other dependencies between the
variable are represented by an edge in the structure. Therefore, we call
E the interdependence structure for R.

• Again, let X = {1, 2, 3, 4} be a population of type D = {0, 1} and let
E = C4 be a cycle containing the four actors. In contrast to the first
example, suppose constraint R is given by the following set of equations:

x1 = x4 ∧ x1 ∧ x2

x2 = x1 ∧ x2 ∧ x3

x3 = x2 ∧ x3 ∧ x4

x4 = x3 ∧ x4 ∧ x1

It is easily seen that in fact, R is empty. Thus, there is no admissible
configuration.

• Let X = {x1, . . . , xn} be a population of type D = R, and let E be
unspecified. Then, R could be defined to be the convex polytope for the
linear inequality constraints A · z ≤ b such that A ∈ Rn×n, b ∈ Rn and
z ≥ 0.
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1.2. Networks in a Dynamical Perspective 3

1.1.4 System

Definition 1.4 Let D be an attribute type. A (homogeneous) system S is a triple
(X,E,R) such that X is a population with attribute type D, E is a structure on X,
and R is a constraint on X.

Example: ({1, 2, 3, 4}, C4, {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)}) as in
the example abve is a system.

A state of S is any admissible configuration I : X → D.

1.2 Networks in a Dynamical Perspective

1.2.1 Process

Let [h] = {1, 2, . . . , h} for any h ∈ N+. We also allow h to be ∞ and define [∞] = N+.
The parameter h represents the observational horizon of a process.

Definition 1.5 A process P is any finite or infinite sequence (Si)i∈[h] of systems Si.

We also denote a process P = (Xi, Ei, Ri)i∈[h] when referring to the components of the
systems.

Basically, we can identify three (non-excluding) important subtypes of processes:

• A process of type (Xi, ∅, ∅)i∈[h] is called a population process.

• A process of type (Xi, Ei, ∅)i∈[h] is called a structure process.

• A process of type (X,E,Ri)i∈[h] is called a state process.

In this course the focus is solely on state processes.

1.2.2 Trajectory

Systems running through a process can take several paths of state changes depending, e.g.,
on initial or environmental conditions. Such paths are called trajectories.

Definition 1.6 Let (X,E,Ri)i∈[h] be any state process with a population of size n.
A trajectory is a finite or infinite sequence (Ij)j∈[h] of admissible configurations, i.e.,
(Ij(x1), . . . , Ij(xn)) ∈ Rj for all j ∈ [h].
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4 Chapter 1. Networks

The set of possible trajectories of a process (X,E,Ri)i∈[h] is
h

×
i=0

Ri and can thus be, in

the case h = ∞, uncountable, even for a binary attribute type. A large fraction of these
trajectories is certainly not realistic.

1.2.3 Global State Dynamic

A global (deterministic) dynamic is a mechanism for selecting trajectories of a process.
We focus on state dynamics.

Definition 1.7 Let P = (X,E,Ri)i∈[h] be a state process with attribute type D and a
population of size n.

1. A (global) state dynamic is a mapping F : Dn × [h− 1]→ Dn.

2. A state dynamic f is said to be compatible with P if F(R1, t) ⊆ Rt+1 for all
t ∈ [h− 1].

A global state dynamic F produces the trajectory (I,F(I, 1),F(I, 2), . . .) depending on
the initial configuration I.

Example: Let P1 = (X,E,Ri)i∈[h] and P2 = (X,E,Ri)i∈[h] be state processes
of type D = {0, 1}, population X = {1, 2, 3}, structure E = K3, and con-
straints R1

i = D3, R2
i = {(z1, z2, z3) ∈ D3 | 1 ≤ z1 + z2 + z3 ≤ 2 }. Consider

the following two global state dynamics F1 and F2:

F1 : (z1, z2, z3, t) 7→ (1− z1, 1− z2, 1− z3)

F2 : (z1, z2, z3, t) 7→


(1− z1, z2, z3) if mod(t− 1, 3) = 0
(z1, 1− z2, z3) if mod(t− 1, 3) = 1
(z1, z2, 1− z3) if mod(t− 1, 3) = 2

Note that F1 does not depend on parameter t. For h = 5, it produces the
following set of trajectories (the rows of the table):

(z1, z2, z3) F1(z1, z2, z3, 1) F1(z1, z2, z3, 2) F1(z1, z2, z3, 3) F1(z1, z2, z3, 4)
(0, 0, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
(0, 0, 1) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
(0, 1, 0) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1)
(0, 1, 1) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(1, 0, 1) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)
(1, 1, 0) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
(1, 1, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
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1.2. Networks in a Dynamical Perspective 5

It is obvious that F1 is compatible with both processes P1 and P2 (for each
choice of h).

In contrast, F2 produces the following set of trajectories for h = 5.

(z1, z2, z3) F2(z1, z2, z3, 1) F2(z1, z2, z3, 2) F2(z1, z2, z3, 3) F2(z1, z2, z3, 4)
(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 0, 0)
(0, 0, 1) (1, 0, 1) (0, 1, 1) (0, 0, 0) (1, 0, 1)
(0, 1, 0) (1, 1, 0) (0, 1, 0) (0, 1, 1) (1, 1, 0)
(0, 1, 1) (1, 1, 1) (0, 1, 1) (0, 1, 0) (1, 1, 1)
(1, 0, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (0, 0, 0)
(1, 0, 1) (0, 0, 1) (1, 0, 1) (1, 0, 0) (0, 0, 1)
(1, 1, 0) (0, 1, 0) (1, 0, 0) (1, 1, 1) (0, 1, 0)
(1, 1, 1) (0, 1, 1) (1, 0, 1) (1, 1, 0) (0, 1, 1)

We observe that F2 is compatible with P1 but is compatible with P2, since,
e.g., F2(0, 1, 1, 1) = (1, 1, 1) /∈ R2

2 although (0, 1, 1) ∈ R2
1.

1.2.4 Local State Dynamic

Local dynamics separate the state-change information for each actor and the environmental
information of global dynamics.

Definition 1.8 Let P = (X,E,Ri)i∈[h] be a state process with a population of type D and
size n.

1. A local transition function on X (or local transition) is a mapping f : Dn → D.

2. An update schedule on X is a mapping α : [h− 1]→ P(X).

3. A local state dynamic on X is a pair (F, α) such that F = {f1, . . . , fn} is a set of
local transitions on X, where fi is associated with actor xi ∈ X, and α is an update
schedule on X.

Example: Let P be the process given by X = {1, 2, 3} with D = {0, 1},
E = K3 (the interdepence structure), and Ri = D3 for all i ∈ [∞] = N+. We
consider the following two local state dynamics (F, α1) and (F, α2):

• F = {f1, f2, f3} consists of the local transitions fi defined for i ∈ {1, 2, 3}
and x1, x2, x3 ∈ {0, 1} by

fi(x1, x2, x3) =def

{
xi if x1 + x2 + x3 = 1
1− xi otherwise

• update schedule α1 : N+ → P(X) : t 7→ {1, 2, 3}
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6 Chapter 1. Networks

• update schedule α2 : N+ → P(X) is defined as follows:

α2 : t 7→


{2} if mod(t− 1, 3) = 0
{1} if mod(t− 1, 3) = 1
{3} if mod(t− 1, 3) = 2

The update schedule α1 is an example of a synchronous update schedule; α2

is an example of a sequential update schedule.

Local state dynamics induce global state dynamics in the following way.

Definition 1.9 Let P = (X,E,Ri)i∈[h] be a state process with a population of type D and
size n. Let (F, α) be a local state dynamic on X.

1. For each actor xi ∈ X and for a each subset U ⊆ X of actors, the activity function
ϕi[U ] is defined for a configuration ~z = (z1, . . . , zn) ∈ Dn by

ϕi[U ](~z) =def

{
fi(z1, . . . , zn) if xi ∈ U
zi if xi /∈ U

2. For a set U ⊆ X the global transition function F[U ] : Dn → Dn is defined by

FF [U ](~z) =def (ϕ1[U ](~z), . . . , ϕn[U ](~z)).

3. The global state dynamic F(F,α) : Dn → Dn induced by the local state dynamic (F, α)
is defined by

F(F,α)(·, t) =def

t∏
k=1

FF [α(k)],

i.e., by the composition of global transition functions specified by the update schedule.

Note that our usage of f · g is (f · g)(x) = g(f(x)).

Note also that activity functions and global transition functions do not depend on sched-
ules.

Example: We continue the example of local state dynamics discussed above.
Let U1 = {1, 2} and U2 = {1, 2, 3} be subsets of populations. Then we obtain
the following activity functions:

• ϕ1[U1] = f1, ϕ2[U1] = f2, and ϕ3[U1] = id;

• ϕ1[U2] = f1, ϕ2[U2] = f2, and ϕ3[U2] = f3.

Network Dynamics – Lecture Notes



1.2. Networks in a Dynamical Perspective 7
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Figure 1.1: Global transition function

The global transition function looks as follows:

• FF [U1](z1, z2, z3) = (f1(z1, z2, z3), f2(z1, z2, z3), z3); concrete function val-
ues are, e.g.,

FF [U1](1, 1, 1) = (0, 0, 1)

FF [U1](1, 0, 1) = (0, 1, 1)

FF [U1](0, 0, 1) = (0, 0, 1)

• FF [U2](z1, z2, z3) = (f1(z1, z2, z3), f2(z1, z2, z3), f3(z1, z2, z3); concrete
values are, e.g.,

FF [U2](1, 1, 1) = (0, 0, 0)

FF [U2](0, 0, 0) = (1, 1, 1)
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8 Chapter 1. Networks

Figure 1.1 visualizes the global transition functions for F = {f1, f2, f3} com-
pletely. The global state dynamic induced by (F, α1) is as follows:

(z1, z2, z3) {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} . . .

(0,0,0) (1,1,1) (0,0,0) (1,1,1) (0,0,0) . . .
(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) . . .
(0,1,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0) . . .
(0,1,1) (1,0,0) (1,0,0) (1,0,0) (1,0,0) . . .
(1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) . . .
(1,0,1) (0,1,0) (0,1,0) (0,1,0) (0,1,0) . . .
(1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) . . .
(1,1,1) (0,0,0) (1,1,1) (0,0,0) (0,0,0) . . .

That is, (F, α1) can generate oscillating trajectories.

The global state dynamic induced by (F, α2) is as follows:

(z1, z2, z3) {2} {1} {3} {2} . . .

(0,0,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0) . . .
(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) . . .
(0,1,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0) . . .
(0,1,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) . . .
(1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) . . .
(1,0,1) (1,1,1) (0,1,1) (0,1,0) (0,1,0) . . .
(1,1,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) . . .
(1,1,1) (1,0,1) (0,0,1) (0,0,1) (0,0,1) . . .

We observe that any further update does not change the resulting configura-
tions. Thus, (F, α2) is highly stable as each trajectory reaches a fixed point.

Network Dynamics – Lecture Notes



Mathematical Tools A

In this chapter we discuss relevant terminology and notation for sets, relations, and graphs,
some fundamental algorithms, and a few other mathematical preliminaries.

A.1 Sets and relations

We denote the set of integers by Z, the set of non-negative integers by N, and the set of
positive integers by N+. Z2 denotes the Galois field GF[2].

Sets

The empty set is denoted by ∅. For an arbitrary set A, P(A) denotes the power set of A,
i.e., the family of all subsets of A, and P+(A) denotes the set P(A)\{∅}. For an arbitrary
finite set A, its cardinality is denoted by ‖A‖. Let A and B be any sets. Then A \ B
denotes the difference of A with B, i.e., the set of all elements that are in A but not in B.
A×B denotes the cartesian product, i.e, the set of all pairs (a, b) with a ∈ A and b ∈ B.
For m ∈ N+, define Am =def A× · · · ×A︸ ︷︷ ︸

m times

. Let M be any fixed basic set. For a set

A ⊆M , its complement in the basic set M is denoted by A, i.e., A = M \A. A multiset A
is allowed to contain elements many times. The multiplicity of an element x in a multiset
A is the number of occurrences of x in A. The cardinality of a multiset A is also denoted
by ‖A‖.

Functions

Let M and M ′ be any sets, and let f : M → M ′ by any function. The domain of f
which we denote by Df is the set of all x ∈ M such that f(x) is defined. A function f
is total if the domain of f is M . For a set A ⊆ Df , let f(A) = {f(x) | x ∈ A} denote
the image of A under f . In particular, the range of f which is denoted by Rf is the set
f(Df ). For a set A ⊆ M , the restriction of a total function f to A is denoted by f [A].
The inverse of f is denoted by f−1, i.e, f−1 : M ′ → P(M) such that for all y ∈ M ′,
f−1(y) = {x ∈ M | f(x) = y}. If f−1(y) is at most a singleton then we omit the braces.
The pre-image of A under f is the set f−1(A) = {x ∈M | f(x) ∈ A}.

We use two notations for composition of functions. If f and f ′ are functions with
f : M → M ′ and f ′ : M ′ → M ′′, then (f ′ ◦ f) is the function mapping from M to
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10 Appendix A. Mathematical Tools

M ′′ which is defined for all x ∈M as (f ′ ◦ f)(x) =def f ′(f(x)). In contrast, we use f · f ′
to denote f ′ ◦ f .

A function f : M → M ′ is bijective if f is surjective, i.e., Rf = M ′ and injective, i.e., for
all y ∈ Rf , f−1(y) is a singleton. Suppose M ′ = M and M is finite. In this case a bijective
function f is a permutation. Suppose M = {1, 2, . . . , n}. A cycle (i1 i2 . . . ik) of length
k of the permutation π : M → M is a sequence (i1, i2, . . . , ik) such that π(ij) = ij+1 for
1 ≤ j < k and π(ik) = i1. Each permutation allows a decomposition into cycles.

Orders

In more detail the following can be found in any textbook (e.g., [Grä78, DP90]) about
theory of orders and lattices.

Let P be any set. A partial order on P (or order, for short) is a binary relation ≤ on P
that is reflexive, antisymmetric, and transitive. The set P equipped with a partial order
≤ is said to be a partially ordered set (for short, poset). Usually, we talk about the poset
P . Where it is necessary we write (P,≤) to specify the order. A poset P is a chain if
for all x, y ∈ P it holds that x ≤ y or y ≤ x (i.e., any two elements are comparable with
respect to ≤). Such an order is also called a total order. A poset P is an antichain if for
all x, y ∈ P it holds that x ≤ y implies that x = y (i.e., no two elements are comparable
with respect to ≤).

We consider N to be ordered by standard total order on the natural numbers. If a set A
is partially ordered by ≤ then Am can be considered to be ordered by the vector-ordering,
i.e., (x1, . . . , xm) ≤ (y1, . . . , ym) if and only if for all i ∈ {1, . . . ,m}, xi ≤ yi.

An important tool for representing posets is the covering relation ≺. Let P be a poset
and let x, y ∈ P . We say that x is covered by y (or y covers x), and write x ≺ y, if x < y
and x ≤ z < y implies that x = z. The latter condition is demanding that there be no
element z of P with x < z < y. A finite poset P can be drawn in a diagram consisting of
points (representing the elements of P ) and interconnecting lines (indicating the covering
relation) as follows: To each element x in P associate a point P (x) in the picture which is
above all points P (y) associated to elements y less than x, and connect points P (x) and
P (y) by a line if and only if x ≺ y. A poset can have different representation by diagrams.

Let P and P ′ be posets. A map ϕ : P → P ′ is said to be monotone (or order-preserving)
if x ≤ y in P implies ϕ(x) ≤ ϕ(y) in P ′. We say that ϕ is an (order-)isomorphism if ϕ
is monotone, injective, and surjective. Two posets P and P ′ are isomorphic, in symbols
P ∼= P ′, if there exists an isomorphism ϕ : P → P ′. Isomorphic poset shall be considered
to be not essentially different: Two finite posets are isomorphic if and only if they can be
drawn with identical diagrams.

Words

Network Dynamics – Lecture Notes



A.2. Graph theory 11

Sometimes we make no difference between m-tuples (x1, . . . , xm) over a finite set M and
words x1 . . . xm of length m over M . Such finite sets are called alphabets. Let Σ be a
finite alphabet. Σ∗ is the set of all finite words that can be built with letters from Σ. For
x, y ∈ Σ∗, x · y (or xy for short) denotes the concatenation of x and y. The empty word is
denoted by ε. For a word x ∈ Σ∗, |x| denotes the length of x. For n ∈ N, Σn is the set of
all words x ∈ Σ∗ such that with |x| = n. For a word x = x1 . . . xn ∈ Σ∗ any word x1 . . . xk
such that k ≤ n is called a prefix of x. We use regular expressions to describe subsets of
Σ∗ (see, e.g., [HMU01]).

A.2 Graph theory

A graph G = (V,E) consists of a set V of vertices and a set E of edges joining pairs
of vertices. The vertex set and edge set of a graph G are denoted by V (G) and E(G),
respectively. The cardinality of V is usually denoted by n, the cardinality of E by m. If
two vertices are joined by an edge, they are adjacent and we call them neighbors. Graphs
can be undirected und directed. In undirected graphs, the order in which vertices are
joined is irrelevant. An undirected edge joining vertices u, v ∈ V is denoted by {u, v}. In
directed graphs, each directed edge has an origin and a destination. An edge with origin
u ∈ V and destination v ∈ V is represented by an ordered pair (u, v). For a directed graph
G = (V,E), the underlying undirected graph is the undirected graph with vertex set V
that has an undirected edge between two vertices u, v ∈ V if (u, v) or (v, u) is in E.

Multigraphs

In both undirected and directed graphs, we may allow the edge set E to contain the same
edge several times, i.e., E can be a multiset. If an edge occurs several times in E, the
copies of that edge are called parallel edges. Graphs with parallel edges are also called
multigraphs. A graph is called simple, if each of its edges in contained in E only once, i.e.,
if the graph does not have parallel edges. An edge joining a vertex to itself, is called a
loop. A graph is called loopless if it has no loops. In general, we assume all graphs to be
loopless unless specified otherwise.

Degrees

The degree of a vertex v in an undirected graph G = (V,E), denoted by dv, is the number
of edges in E joining v. If G is a multigraph, parallel edges are counted according to their
multiplicity in E. The set of neighbors of v is denoted by N(v). N0(v) denotes the vertex
set N(v) ∪ {v}. If the graph under consideration is not clear from the context, these
notations can be augmented by specifying the graph as an index. For example, NG(v)
denotes the neighborhood of v in G.
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Subgraphs

A graph G′ = (V ′, E′) is a subgraph of the graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
Sometimes we denote this by G′ ⊆ G. It is a (vertex-)induced subgraph if E′ contains all
edges e ∈ E that join vertices in V ′. The induced subgraph of G = (V,E) with vertex set
V ′ ⊆ V is denoted by G[V ′]. The (edge-)induced subgraph with edge set E′ ⊆ E, denoted
by G[E′], is the subgraph G′ = (V ′, E′) of G, where V ′ is the set of all vertices in V that
are joined by at least one edge in E′.

Walks, paths, and cycles

A walk from x0 to xk in a graph G = (V,E) is a sequence x0, e1, x1, e2, x2, . . . , xk−1, ek, xk
alternating between vertices and edges of G, where ei = {xi−1, xi} in the undirected case
and ei = (xi−1, xi) in the directed case. The length of a walk is the number of edges on
the walk. As shorthands we use (x0, x1, . . . , xk) and (e1, e2, . . . , ek) to denote a walk. The
walk is called a path if xi 6= xj for i 6= j. A walk with x0 = xk is called a cycle if ei 6= ej
for i 6= j. A cycle is a simple cycle if xi 6= xk for 0 ≤ i < j ≤ k − 1.

Special graphs

A tree is a connected (for a definition see below) undirected graph not containing a cycle.
An undirected graph G = (V,E) is called complete if it contains all possible pairs of
vertices as edges. A complete graph with n vertices is denoted by Kn. A Kn is called a
clique. A K2 is a graph of two vertices with one edge joining them. A K3 is also called
a triangle or triad. A graph without edges is called empty. An independent set within a
graph G = (V,E) is a vertex set U ⊆ V such that G[U ] is empty. A graph G = (V,E)
is called bipartite if there are independent vertex sets V1, V2 ⊆ V such that V1 and V2 are
disjoint and V1∪V2 = V . We denote by E(V1, V2) the set of edges joining vertices from V1

with vertices from V2. If E(V1, V2) = V1 × V2 then G is called a complete bipartite graph.
Such a graph is denoted by Kn1,n2 if V1 consists of n1 vertices and V2 of n2 vertices. A
K1,n is also called a star. For two graphs G = (V,E) and G′ = (V ′, E′) we denote by
G⊕G′ the graph consisting of the disjoint union of the graphs G and G′.

Graph classes

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic, denoted by G ' G′, if there is a
bijective mapping ϕ : V → V ′ such that for all vertices u, v ∈ V the following is true: in the
case that G and G′ are directed graphs it holds that (u, v) ∈ E ⇔ (ϕ(u), ϕ(v)) ∈ E′, and in
the case that G and G′ are undirected graphs it holds that {u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ E′.
A set of graphs is called a graph class if for each graph G in the class all graphs isomorphic
to G belong to the class as well.
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A.3 Algorithmics

Most results of this work relate to algorithms. In the following we mention essential
problems and concepts which are needed more than once.

For two functions f : N→ N and g : N→ N we say that f is in O(g) if there are constant
n0, c ∈ N+ such that for all n ≥ n0, f(n) ≤ c · g(n). We say that f is in Ω(g) if g is in
O(f). We say that f is in Θ(g) if f is in O(g) ∩ Ω(g).

Connected components

An undirected graph G = (V,E) is connected if every vertex can be reached from every
other vertex, i.e., if there is a path from every vertex to every other vertex. A graph
consisting of a single vertex is also taken to be connected. Graphs that are not connected
are called disconnected. For a given undirected graph G = (V,E), a connected component
of G is an induced subgraphs G′ = (V ′, E′) that is connected and maximal, i.e., there is
no connected subgraph G′′ = (V ′′, E′′) such that V ′′ ⊃ V ′. Checking whether a graph is
connected and finding all its connected components can be done in time O(n+m) using
depth-first search or breadth-first search.

A directed graph G = (V,E) is strongly connected if there is a directed path from every
vertex to every other vertex. A strongly connected component of a directed graph G is
an induced subgraph that is strongly connected and maximal. The strongly connected
components of a directed graph can be computed in time O(n + m) using a depth-first
search.

NP-completeness

It is important to consider the running-time of an algorithm for a given problem. Usually,
one wants to give an upper bound on the running time of the algorithm for inputs of a
certain size. If the running-time of an algorithm is O(nk) for some k ∈ N and for inputs
of size n, we say that the algorithm runs in polynomial time. For graph problems, the
running-time is usually specified as a function of n and m, the number of vertices and edges
of the graph, respectively. For many problems, however, no polynomial-time algorithm
has been discovered. Although one cannot rule out the possible existence of polynomial-
time algorithms for such problems, the theory of NP-completeness provides means to give
evidence for the computational intractability of a problem.

A decision problem is in the complexity class NP if there is a nondeterministic Turing
machine that solves the problem in polynomial time. That is to say that the answer to
a problem instance is “yes” if there exists a solution in the set of all possible solutions to
the instance which is of polynomial size. Moreover, the test whether a potential solution
is an actual solution must be performed in polynomial time. Note that a decision problem
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is usually considered to consist of the set of the “yes”-instances. A decision problem is
NP-hard if every problem in NP can be reduced to it via a polynomial-time many-one
reduction. (A polynomial-time many-one reduction from a set A to a set B is a function
computable in polynomial time such that for all instances x, x ∈ A⇔ f(x) ∈ B.) Problems
that are NP-hard and belong to NP are called NP-complete. A polynomial-time algorithm
for an NP-hard problem would imply polynomial-time algorithms for all problems NP—
something that is considered very unlikely. Therefore, the NP-hardness of a problem is
considered substantial evidence for the computational difficulty of the problem.

A standard example of an NP-complete problem is 3SAT, i.e., checking whether a given
propositional formula given as a 3CNF has a satisfying assignment. To be more precise, a
kCNF is a formula H = C1 ∧ · · · ∧Cm consisting of clauses Ci each of which has the form
Ci = li1 ∨ li2 ∨ · · · ∨ lik where lij is either a positive or a negative literal. A positive literal
is some variable, say xk, and a negative literal is the negation of some variable, say xk.

The class of complements of NP sets is denoted by coNP, i.e., coNP = {A|A ∈ NP}.

For optimization problems (where the goal is to compute a feasible solution that maxi-
mizes or minimizes some objective function), we say that the problem is NP-hard if the
corresponding decision problem (checking whether a solution with objective value better
than a given value k exists) is NP-hard.

#P-completeness

A complexity class closely related to NP is the class #P which has been introduced in
[Val79a, Val79b] to provide evidence for the computational intractability of counting prob-
lems. The class #P consists of all problems of the form “compute f(x)” where f(x) is the
number of accepting paths of a nondeterministic Turing machine running in polynomial
time. Equivalently, a #P-functions counts the number of solutions to instances of an NP-
problem. We say that a function f is #P-complete if it belongs to #P and every function
g ∈ #P is polynomial-time Turing reducible to f , i.e., g can be computed by a determinis-
tic polynomial-time Turing machines which is allowed to make queries to f and answering
these queries is done within one step (see, e.g., [HMU01, HO02]). The canonical example
of a #P-complete problem is #3SAT, i.e., counting the number of satisfying assignments
of a propositional formula given as a 3CNF. One of the most prominent #P-complete
problem is counting the number of perfect matchings in a bipartite graph [Val79b]. As in
the case of NP, if there is a polynomial-time algorithm for computing some #P-complete
function from #P then there are polynomial-time algorithms for all #P-functions—which
is equally considered unlikely. In particular, such a polynomial-time algorithm would
imply that P = NP.
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