UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Prof. Dr. Sven Kosub Logic in Computer Science Summer 2017

Assignment 2

Issue date: 06 Jun 2017 Due date: 13 Jun 2017

Exercise 4.

Let τ be some vocabulary containing the unary relation symbols P, Q.

Prove or disprove the following logical equivalences:

- (a) $\exists x(\varphi \lor \psi) \equiv \exists x \varphi \lor \exists x \psi$
- (b) $\forall x(\varphi \lor \psi) \equiv \forall x\varphi \lor \forall x\psi$
- (c) $\varphi \lor \forall x \psi \equiv \forall x (\varphi \lor \psi)$ if x does not occur in φ
- (d) $\forall x (Px \lor Qx) \equiv Px \lor \forall xQx$

Exercise 5.

Let τ be any vocabulary. An $\mathsf{FO}(\tau)$ formula φ is said to be in *prenex normal form* if and only if $\varphi = Q_1 x_1 \dots Q_r x_r \psi$ where $Q_i \in \{\exists, \forall\}$ and ψ is quantifier-free.

Find for each of the following $FO(\tau)$ formulas a logically equivalent $FO(\tau)$ formula in prenex normal form (for $P, Q, R \in \tau$):

- (a) $\forall x \exists y Pxy \lor (\neg Qz \land \neg \exists x Rxy)$
- (b) $\exists y Rxy \leftrightarrow \forall x Rxx$

Exercise 6.

Let τ be any vocabulary.

Prove the following statements for sets $\Phi \subseteq \mathsf{FO}(\tau)$ and $\mathsf{FO}(\tau)$ formulas φ :

- (a) If $\varphi \notin \Phi^{\vdash}$ then $\Phi \cup \{\neg \varphi\}$ is consistent.
- (b) If $\varphi \in \Phi^{\vdash}$ and Φ is consistent then $\Phi \cup \{\varphi\}$ is consistent.
- (c) Φ is consistent if and only if $\Phi \cup \{\varphi\}$ is consistent or $\Phi \cup \{\neg\varphi\}$ is consistent.