UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE Prof. Dr. Sven Kosub Logic in Computer Science Summer 2017

Assignment 3

Issue date: 29 Jun 2017 Due date: 06 Jul 2017

Exercise 7.

Find classes (possibly low) in the arithmetical hierarchy for each of the following problems:

- (a) TOT =_{def} { $i \mid \text{RAM } M_i \text{ always stops } \}$
- (b) $\text{NU} =_{\text{def}} \{ i \mid \text{RAM } M_i \text{ never stops } \}$
- (c) FIN =_{def} { $i \mid \text{RAM } M_i \text{ stops on finitely many inputs }$
- (d) COFIN =_{def} { $i \mid \text{RAM } M_i$ does not stop on finitely many inputs }

Exercise 8.

Let τ be a vocabulary. A theory T is a set of $\mathsf{FO}(\tau)$ formulas such that $T = T^{\models}$ and T is satisfiable. A theory T is said to be *axiomatizable* if and only if there exists a decidable set $\Phi \subseteq \mathsf{FO}(\tau)$ such that $\Phi^{\models} = T$.

Prove the following statements for a theory T:

- (a) If T is decidable then T is axiomatizable.
- (b) If T is axiomatizable then T is enumerable.
- (c) If T is complete and enumerable then T is decidable.

Exercise 9.

Complete the proof of Church's theorem as discussed in the lecture. In particular, find subformulas for the following two types of RAM instructions:

- (a) GOTO k
- (b) IF Rk=0 GOTO ℓ