
Lecture Notes

Logic in Computer Science

taught in Summer term 2017

by

Sven Kosub

May 18, 2017
Version v1.2

Contents

Prologue 1

1 Propositional logic 5

1.1 Syntax and semantics of propositional logic 5

1.2 Boolean functions and normal forms . 10

1.3 Models and proofs in propositional logic . 12

1.4 The compactness theorem for propositional logic 15

1.5 Resolution . 18

Bibliography 21

version v1.2 as of May 18, 2017

vi Contents

Logic in Computer Science – Lecture Notes

Prologue

A very short (and incomplete) history of mathematics-based logic in a perspective of
computer science:

∼ 1700 Gottfried Wilhelm Leibniz characteristica universalis; binary numbers
1847 George Boole boolean algebra and logic; The Laws of Thought

1874 Georg Cantor first formal statements about sets (Inbegriffe)
1879 Gottlob Frege Begriffschrift; first use of quantifiers
1895 Georg Cantor näıve set theory
1902 Bertrand Russell Russell’s paradox
1903 Bertrand Russell, Principia mathematica

Alfred North Whitehead
1920 David Hilbert Hilbert’s program (e.g., solvability of diophantic equations,

axiomatizability of mathematics)
1928 Kurt Gödel completeness of first-order logic
1931 Kurt Gödel incompleteness of arithmetics
1936 Alonzo Church formalization of the notion of an algorithm

Alan Turing
Emil Post

Around that time, as computer science began to exist as a scientific discipline, mathemat-
ical logic became an integral part of computer science at all levels and differentiated into
its full entirety. The following list contains exemplary computer science applications of
logics beyond rigorous mathematical proofs:

• logic programming (e.g., PROLOG)

• knowledge representation

• rule-based machine learning

• automated theorem proving

• model checking

• circuits

• ...

Today, formal and mathematical logic is mainly used in a computer scientist’s everyday
life for specifying computer systems etc., i.e., for the definability of certain objects in
appropriate logical systems. In the following, we want to exemplify this usage.

Assume we want to describe words w = w1 . . . wn over the alphabet Σ = {a, b} by letters
at certain positions. That is, we use two predicates Pa, Pb so that Pa(i), Pb(i) are true if
and only if wi = a,wi = b. If position i does not exist in a particular word then both Pa(i)

version v1.2 as of May 18, 2017

2 Contents

and Pb(i) are false. For instance, the expression Pa(1)∧Pb(2) is true for each word having
letter a at its first and letter b at its second position. That is, the expression defines the
regular language ab{a, b}∗.

The other way round, we might ask which formula defines a certain language or a certain
pattern we want to have in all words w of that language, e.g.:

1. “letter a occurs,” i.e., w ∈ {a, b}∗a{a, b}∗: (∃x)[Pa(x)]

2. “last letter is b,” i.e., w ∈ {a, b}∗b: (∃x)(∀y)[x ≥ y ∧ Pb(x)]

Note that the expression Pb(n) is not correct as it depends on n which is part of
the “input.” We have to find a formula forcing that a certain position is the last
position—here, the maximum. Defining (x = max) =def (∀y)[x ≥ y], we can rewrite
the expression equivalently as:

(∃x)[(x = max) ∧ Pb(x)]

Obviously, (x = min) =def (∀y)[x ≤ y].

3. “a is immediately followed by b,” i.e., w ∈ b∗(abb∗)∗: (∀x)[Pa(x) → Pb(x+ 1)]

But, what if the increment x + 1 (as a function) is not allowed in our logic. Then,
we have to define what is the next position given a position x. Together with the
formula above, this can be clearly expressed by the following formula:

(∀x)[Pa(x) → (∃y)[Pb(y) ∧ x < y ∧ ¬(∃z)[x < z ∧ z < y]]]

So, defining (y = x + 1) =def x < y ∧ (∀z)[x ≥ z ∨ z ≥ y], we can rewrite the
expression equivalently as:

(∀x)[Pa(x) → (∃y)[(y = x+ 1) ∧ Pb(y)]]

It is clear by these examples that it is important which predicates or functions are allowed
to express statements on words formally. We want to discuss two more, more complex
examples.

How to describe the regular language ab(ab)∗? This can be done by the following formula:

(∃x)[(x = min) ∧ Pa(x)] ∧ (∀x)[Pa(x) ↔ (∃y)[(y = x+ 1) ∧ Pb(y)]]

Suppose the formula is true for a (finite) word w. The first subformula forces w to start
with an a. The second subformula is true if at a certain position there is letter a then at
the next position there is letter b. For instance, ab satisfies the formula (note that Pa(2)
is false and there exists no y such that y = x + 1). So do all words ab(ab)∗. In contrast,
aba does not satisfy the formula (note that Pa(3) is true but there is no next position).

How to describe the regular language aa(aa)∗? Though seemingly simpler than the lan-
guage above, the situation is in fact, more complicated as we have to check for words of
even length explicitly. We use the idea to check if it is possible to partition the set of

Logic in Computer Science – Lecture Notes

Contents 3

positions into two disjoint sets of the same size. For two finite sets to have the same size
we check if there is a bijective mapping between the sets. The following formula realizes
this idea:

(∃A)(∃B) [(∀x)[x ∈ A↔ x /∈ B]

∧ (∃x)[(x = min) ∧ x ∈ A]

∧ (∃x)[(x = max) ∧ x ∈ B]

∧ (∀x)(∀y)[x ∈ A ∧ (y = x+ 1) → y ∈ B]

∧ (∀x)(∀y)[x ∈ B ∧ (y = x+ 1) → y ∈ A]]

It is important to note that there is a fundamental difference between both formulas. In
the first formula, quantifiers only range over positions. We will say that the formula is first
order (FO). In the second formula, there are existential quantifiers (∃A) and (∃B) ranging
over sets of positions. We will say that the formula is monadic second order (MSO). So,
ab(ab)∗ is FO-definable and aa(aa)∗ is MSO-definable. Later, in the chapter on finite
model theory, we will learn that it is not possible to define aa(aa)∗ by an FO formula.

version v1.2 as of May 18, 2017

4 Contents

Logic in Computer Science – Lecture Notes

Propositional logic 1

In a sense, propositional logic (PL) is the coarsest logic: PL is domain-independent. State-
ments are only distinguished with respect to their truth values, e.g., there is no difference
between the sentences “2 + 3 = 5” and “Konstanz is situated on Lake Constance” as both
statements are true. So, statements are represented by propositional variables X which
can take on exactly one of the values 0 (or “true”) or 1 (or “false”).

The use of propositional variables eliminates non-sense sentences, e.g., “2 and 3 form an
acute angle,” and paradoxical sentences, e.g., “This sentence is false” from logic. In both
cases, it is not possible to assign exactly one truth value. Note that there are scenarios and
domains where a formal treatment of paradoxical situations is necessary. In these cases,
specific logical approaches exist, e.g., paraconsistent logic or variants of many-valued logic.
However, the soundness of these logical systems is based on PL.

1.1 Syntax and semantics of propositional logic

We use the following notations and symbols for defining propositional formulas:

• τ = {X0,X1,X2, . . .} is a countable set of propositional variables

• 0, 1 are constant symbols

• ¬,∧,∨,→ are (logical) connectives

• (,) are parenthesis symbols

Definition 1.1 The set PL of propositional formulas is inductively defined as follows:

1. base case:

τ ⊆ PL (i.e., variables are formulas)

0, 1 ∈ PL (i.e., constants are formulas)

2. inductive step: if ϕ,ψ ∈ PL then

¬ϕ ∈ PL (negation; stands for: “ not ϕ”)

(ϕ ∧ ψ) ∈ PL (conjunction; stands for: “ ϕ and ψ”)

(ϕ ∨ ψ) ∈ PL (disjunction; stands for: “ ϕ or ψ”)

(ϕ→ ψ) ∈ PL (implication; stands for: “ if ϕ then ψ”)

The formulas defined in the base case are called atomic.

version v1.2 as of May 18, 2017

6 Chapter 1. Propositional logic

Further connectives are common (though not considered in the forthcoming):

(ϕ↔ ψ) =def ((ϕ→ ψ) ∧ (ψ → ϕ)) (equivalence)

(ϕ⊕ ψ) =def ¬(ϕ↔ ψ) (exclusive disjunction)

(ϕ | ψ) =def ¬(ϕ ∧ ψ) (Sheffer stroke)

Notice that PL ⊆ (τ ∪ {0, 1,¬,∧,∨,→, (,)})∗ and, when using an encoding of Xi by
X || . . . |

︸ ︷︷ ︸

i times

, even PL ⊆ {X, 0, 1,¬,∧,∨,→, (,)}∗ . So, propositional formulas can be repre-

sented as words over a finite alphabet, e.g., when formulas are inputs to some algorithm.

We mention some further remarks:

1. The equality symbol = stands for equality of symbol sequences.

2. As in the case of arithmetical formulas, parentheses are often omitted according to
the following binding rules:

• ¬ binds stronger than ∧,∨,→

• ∧,∨ bind stronger than →

• implicit left parentheses in iterated conjunctions and disjunctions

For instance, ϕ ∧ ¬ψ → η = ((ϕ ∧ ¬ψ) → η) and ϕ ∧ ψ ∧ η = ((ϕ ∧ ψ) ∧ η).

3. We also use the following abbreviations for iterated conjunctions and disjunctions:

n∧

i=1

ϕi =def ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ · · · ∧ ϕn

n∨

i=1

ϕi =def ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ · · · ∨ ϕn

Definition 1.2 An assignment is a mapping I : τ → {0, 1}. Given an assignment I, the
interpretation [[ϕ]]I ∈ {0, 1} of ϕ is inductively defined as follows:

1. base case:

[[X]]I =def I(X) for all X ∈ τ

[[0]]I =def 0, [[1]]I =def 1

2. inductive step:

[[¬ϕ]]I =def 1− [[ϕ]]I

[[ϕ ∧ ψ]]I =def min{[[ϕ]]I , [[ψ]]I}

[[ϕ ∨ ψ]]I =def max{[[ϕ]]I , [[ψ]]I}

[[ϕ→ ψ]]I =def [[¬ϕ ∨ ψ]]I

Logic in Computer Science – Lecture Notes

1.1. Syntax and semantics of propositional logic 7

Let τ(ϕ) denote the set of variables occurring in ϕ ∈ PL.

Lemma 1.3 Let ϕ ∈ PL be a propositional formula and let I, I ′ be assignments. If
I(X) = I ′(X) for all X ∈ τ(ϕ) then [[ϕ]]I = [[ϕ]]I

′
.

It follows from this coincidence lemma that only assignments to variables in τ(ϕ) are
needed to be considered when determinig the interpretation of a formula.

As long as possible, we meet the following conventions:

• small greek letters ϕ,ψ, η, . . . stand for formulas,

• capital greek letters Φ,Ψ,Γ, . . . stand for sets of formulas,

• ϕ(X1, . . . ,Xn) indicates that τ(ϕ) ⊆ {X1, . . . ,Xn}, and

• for I(X1) = w1, . . . , I(Xn) = wn, we use [[ϕ(w1, . . . , wn)]], [[ϕ(w)]] to denote [[ϕ]]I .

Examples:

• Consider the following propositional formula

ϕ =def ((¬(X1 → (X2 ∨ ¬X3)) → (X2 → (¬X2 ∧X3))).

We decompose ϕ to the following subformulas:

ϕ1 =def X2 ∨ ¬X3

ϕ2 =def ¬(X1 → ϕ1)

ϕ3 =def ¬X2 ∧X3

ϕ4 =def X2 → ϕ3

Thus, ϕ = ϕ2 → ϕ4. We obtain the following truth table (consisting of
interpretations of subformulas):

X1 X2 X3 ϕ1 ϕ2 ϕ3 ϕ4 ϕ

0 0 0 1 0 0 1 1
0 0 1 0 0 1 1 1
0 1 0 1 0 0 0 1
0 1 1 1 0 0 0 1
1 0 0 1 0 0 1 1
1 0 1 0 1 1 1 1
1 1 0 1 0 0 0 1
1 1 1 1 0 0 0 1

So, ϕ is true for all assignments.

version v1.2 as of May 18, 2017

8 Chapter 1. Propositional logic

• Consider the following propositional formula (for the colloquial “and/or”):

ϕ =def ((X1 ∧X2) ∨ (X1 ∨X2)).

Again, we decompose ϕ to subformulas:

ϕ1 =def X1 ∧X2, ϕ2 =def X1 ∨X2

Thus, ϕ = ϕ1 ∨ ϕ2. We obtain the following truth table:

X1 X2 ϕ1 ϕ2 ϕ

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 1

So, ϕ and ϕ2 have the same interpretations (i.e., we can omit ϕ1).

Definition 1.4 Let ϕ,ψ ∈ PL be propositional formulas.

1. A formula ϕ is said to be a tautology if and only if [[ϕ]]I = 1 for all assignments I.

2. A formula ϕ is said to be satisfiable if and only if [[ϕ]]I = 1 for some assignment I.

3. The formulas ϕ and ψ are said to be (logically, semantically) equivalent, in symbols,
ϕ ≡ ψ, if and only if [[ϕ]]I = [[ψ]]I for all assignments I.

Example: In the examples above, the first formula is a tautology. The second
formula is not a tautology, but satisfiable; it holds that ϕ ≡ X1 ∨X2.

Note that ≡ is an equivalence relation on PL (i.e., ≡ is reflexive, transitiv, symmetric).

Proposition 1.5 Let ϕ,ψ ∈ PL be propositional formulas.

1. ϕ is a tautology ⇐⇒ ¬ϕ is not satisfiable

2. ϕ is satisfiable ⇐⇒ ¬ϕ is not a tautology

3. ϕ,ψ are tautologies =⇒ ϕ ≡ ψ

4. ϕ ≡ ψ ⇐⇒ (ϕ↔ ψ) is a tautology

Proof: Exercise.

A list of important equivalences:

Logic in Computer Science – Lecture Notes

1.1. Syntax and semantics of propositional logic 9

ϕ ≡ (ϕ ∧ ϕ)

ϕ ≡ (ϕ ∨ ϕ)

}

idempotent laws

(ϕ ∧ ψ) ≡ (ψ ∧ ϕ)

(ϕ ∨ ψ) ≡ (ψ ∨ ϕ)

}

commutative laws

((ϕ ∧ ψ) ∧ η) ≡ (ϕ ∧ (ψ ∧ η))

((ϕ ∨ ψ) ∨ η) ≡ (ϕ ∨ (ψ ∨ η))

}

associative laws

((ϕ ∧ ψ) ∨ ϕ) ≡ ϕ

((ϕ ∨ ψ) ∧ ϕ) ≡ ϕ

}

absorption laws

((ϕ ∧ ψ) ∨ η) ≡ ((ϕ ∨ η) ∧ (ψ ∨ η))

((ϕ ∨ ψ) ∧ η) ≡ ((ϕ ∧ η) ∨ (ψ ∧ η))

}

distributive laws

¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ)

¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ψ)

}

De Morgan’s laws

¬¬ϕ ≡ ϕ double negation law

(ϕ ∧ 0) ≡ 0

(ϕ ∨ 1) ≡ 1

}

domination laws

(ϕ ∧ 1) ≡ ϕ

(ϕ ∨ 0) ≡ ϕ

}

identity laws

(ϕ ∧ ¬ϕ) ≡ 0

(ϕ ∨ ¬ϕ) ≡ 1

}

tertium non datur

(ϕ→ ψ) ≡ (¬ψ → ¬ϕ) contraposition

Example: We want to show that the first formula in the examples above is
a tautology without using truth tables. Using the list above and the obvious
equivalence (ϕ→ ψ) ≡ (¬ϕ ∨ ψ), we obtain the following:

¬(X1 → (X2 ∨ ¬X3)) → (X2 → (¬(X2 ∧X3))

≡ ¬(¬(¬X1 ∨ (X2 ∨ ¬X3))) ∨ (¬X2 ∨ (¬X2 ∧X3))

≡ (¬X1 ∨ (X2 ∨ ¬X3)) ∨ ¬X2

≡ (¬X1 ∨ ¬X3) ∨ (X2 ∨ ¬X2)

≡ (¬X1 ∨ ¬X3) ∨ 1

≡ 1

version v1.2 as of May 18, 2017

10 Chapter 1. Propositional logic

1.2 Boolean functions and normal forms

Any formula ϕ(X1, . . . ,Xn) ∈ PL is associated with a boolean function f : {0, 1}n → {0, 1}
via its interpretations. In this section, we want to study propositional formulas in terms
of boolean functions. The set of all boolean functions is denoted by BF:

BF =def { f | f : {0, 1}n → {0, 1}, n ∈ N+ }

There are 22
n
boolean functions of arity n. The 4 unary boolean functions f1j are (in

lexicographical order):

x1 f1

0 f1

1 f1

2 f1

3

0 0 0 1 1
1 0 1 0 1

C1

0 id non C1

1

Here we use the following function names: C1
0, C

1
1 are unary constant 0, 1, id is the identity,

and non is the negation (also denoted by NOT).

The 16 binary boolean functions f2j are (in lexicographical order):

x1 x2 f2

0 f2

1 f2

2 f2

3 f2

4 f2

5 f2

6 f2

7 f2

8 f2

9 f2

10 f2

11 f2

12 f2

13 f2

14 f2

15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

C2

0 et id2

1 id2

2 aut vel nd eq non2

2 non2

1 seq sh C2

1

The names commonly used in logic for the most relevant functions are: C2
0,C

2
1 are the

binary constants 0, 1, id20, id
2
1 are identities in the first and second argument (i.e., projec-

tions), non20,non
2
1 are negations in the first and second argument, et is the conjunction (also

denoted by AND), vel is the disjunction (also denoted by OR), seq is the implication, eq
is the equivalence (also denoted by XNOR), aut is the exclusive disjunction (also denoted
by XOR), nd is Nicod’s function (also denoted by NOR), and sh is Sheffer’s function (also
denoted by NAND).

In an obvious way, we can define a homomorphism (PL;¬,∧,∨,→) → (BF; non, et, vel, seq).
To see this, let ϕ = ϕ(X1, . . . ,Xn) ∈ PL and define a function fϕ depending on ϕ as

fϕ(w1, . . . , wn) =def [[ϕ(w1, . . . , wn)]].

Then, fϕ([[X1]]
I , . . . , [[Xn]]

I) = [[ϕ(X1, . . . ,Xn)]]
I for all assignments I. Thus, the mapping

ϕ 7→ fϕ is homomorphism. Intuitively, this means that we can replace logic by algebra
(and computation).

Which boolean functions can be defined by propositional formulas?

Logic in Computer Science – Lecture Notes

1.2. Boolean functions and normal forms 11

We answer to this question by considering disjunctive normalforms (DNF) and conjunctive
normal forms (CNF). First, we define for a propositional variable X:

X0 =def ¬X, X1 =def X

Propositional formulas X and ¬X are called literals; X is a positive literal, ¬X is a
negative literal. A propositional formula ϕ ∈ PL is in disjunctive normal form or, in short,
is a DNF, if and only if it has the form

n∨

i=1

ni∧

j=1

Lij ,

where Lij is a literal. A propositional formula ϕ ∈ PL is in conjunctive normal form or,
in short, is a CNF, if and only if it has the form

n∧

i=1

ni∨

j=1

Lij ,

where Lij is a literal.

Proposition 1.6 For each assignment I, the following statements hold:

1. [[Xw]]I = 1 ⇐⇒ [[X]]I = w

2. [[
∧n

i=1 ϕi]]
I = 1 ⇐⇒ [[ϕi]]

I = 1 for all i ∈ {1, . . . , n}

3. [[
∨n

i=1 ϕi]]
I = 1 ⇐⇒ [[ϕi]]

I = 1 for some i ∈ {1, . . . , n}

Theorem 1.7 For each satisfiable formula ϕ = ϕ(X1, . . . ,Xn) ∈ PL,

ϕ ≡
∨

fϕ(w1,...,wn)=1

n∧

i=1

Xwi

i .

The constructed formula on the right-hand side is called canonical DNF. Notice that the
canonical DNF for a satisfiable formula ϕ needs not be the shortest DNF equivalent to ϕ.
In case that ϕ is not satisfiable, X ∧ ¬X is an equivalent DNF.

Proof: Let I : τ → {0, 1} be an assignment. We conclude:

[[ϕ]]I = 1 ⇐⇒ fϕ([[X1]]
I , . . . , [[Xn]]

I) = 1

⇐⇒ there exists (w1, . . . , wn) ∈ {0, 1}n such that fϕ(w1, . . . , wn) = 1

and [[Xi]]
I = wi for all i ∈ {1, . . . , n}

⇐⇒ there exists (w1, . . . , wn) ∈ {0, 1}n such that fϕ(w1, . . . , wn) = 1

version v1.2 as of May 18, 2017

12 Chapter 1. Propositional logic

and [[Xwi

i]]I = 1 for all i ∈ {1, . . . , n}

⇐⇒ there exists (w1, . . . , wn) ∈ {0, 1}n such that fϕ(w1, . . . , wn) = 1

and [[
∧n

i=1X
wi

i]]I = 1

⇐⇒ [[
∨

fϕ(w1,...,wn)=1

∧n
i=1X

wi

i]]I = 1

This proves the theorem.

By duality, we have a similar theorem for canonical CNF’s.

Theorem 1.8 For each non-tautology ϕ = ϕ(X1, . . . ,Xn) ∈ PL,

ϕ ≡
∧

fϕ(w1,...,wn)=0

n∨

i=1

X1−wi

i .

Proof: Swap ∧ with ∨ and 0 with 1 in the proof of Theorem 1.7.

1.3 Models and proofs in propositional logic

Definition 1.9 Let Φ ⊆ PL be a set of propositional formulas.

1. An assignment I : τ → {0, 1} is said to be a model of Φ, in symbols, [[Φ]]I = 1, if
and only if [[ϕ]]I = 1 for all ϕ ∈ Φ.

2. Φ is said to entail a propositional formula ϕ ∈ PL, in symbols, Φ |= ϕ, if and only if
[[Φ]]I ≤ [[ϕ]]I for all assignments I.

3. Φ|= =def { ϕ ∈ PL | Φ |= ϕ }.

Note that to check if Φ |= ϕ we have to verify that [[ϕ]]I = 1 whenever [[Φ]]I = 1. In other
words, Φ |= ϕ means that each model of Φ is also a model of ϕ.

Example:

• {ψ,ϕ} |= ψ ∧ ϕ.

• {ψ,ψ → ϕ} |= ϕ.

• If Φ ∪ {ψ} |= ϕ and Φ ∪ {¬ψ} |= ϕ then Φ |= ϕ.

Logic in Computer Science – Lecture Notes

1.3. Models and proofs in propositional logic 13

Proposition 1.10 |= is a closure operator on P(PL), i.e., |= satisfies the following con-
ditions for all set Φ,Ψ ⊆ PL:

1. Φ ⊆ Φ|= (|= is extensive)

2. If Φ ⊆ Ψ then Φ|= ⊆ Ψ|= (|= is increasing)

3.
(
Φ|=

)|=
= Φ|= (|= is idempotent)

Proof: We prove all properties of a closure operator individually:

1. We have to show: ϕ ∈ Φ =⇒ Φ |= ϕ. This is easily seen as if [[Φ]]I = 1 then [[ϕ]]I = 1
since ϕ ∈ Φ. Hence, Φ |= ϕ.

2. We have to show: Φ |= ϕ =⇒ Ψ |= ϕ. This is easily seen as if [[Ψ]]I = 1 then
[[Φ]]I = 1, since Φ ⊆ Ψ, and thus, [[ϕ]]I = 1, since Φ |= ϕ. Hence, Ψ |= ϕ.

3. it is enough to show: Φ|= |= ϕ =⇒ Φ |= ϕ. This is easily seen as if [[Φ]]I = 1 then
[[ψ]]I = 1 for all ψ ∈ Φ|= (by definition), i.e., [[Φ|=]]I = 1, and thus, [[ϕ]]I = 1, since
Φ|= |= ϕ. Hence, Φ |= ϕ.

This proves the proposition.

Proposition 1.11 Let ϕ,ψϕ1, . . . , ϕn ∈ PL be propositional formulas.

1. ϕ is a tautology ⇐⇒ ∅ |= ϕ

2. ∅ |= (ϕ→ ψ) ⇐⇒ {ϕ} |= ψ

3. ϕ ≡ ψ ⇐⇒ {ϕ} |= ψ and {ψ} |= ϕ

4. ϕ ≡ ψ ⇐⇒ Φ |= ϕ if and only if Φ |= ψ for all sets Φ ⊆ PL

5. {ϕ1, . . . , ϕn}
|= = {

∧n
i=1 ϕi}

|=

Proof: Exercise.

version v1.2 as of May 18, 2017

14 Chapter 1. Propositional logic

Definition 1.12 Let Φ ⊆ PL be a set of propositional formulas. The set Φ⊢ (i.e., the set
of formulas derived from Φ) is inductively defined as follows:

1. Base case: Φ ⊆ Φ⊢.

2. Inductive step: Let ϕ,ψ ∈ PL be propositional formulas.

ϕ ∈ (Φ ∪ {ψ})⊢, ϕ ∈ (Φ ∪ {¬ψ})⊢ =⇒ ϕ ∈ Φ⊢ (case distinction; (CD))

ψ,¬ψ ∈ (Φ ∪ {¬ϕ})⊢ =⇒ ϕ ∈ Φ⊢ (indirect proof; (IP))

¬ψ, (ψ ∨ ϕ) ∈ Φ⊢ =⇒ ϕ ∈ Φ⊢ (modus ponens; (MP))

ϕ ∈ Φ⊢ =⇒ (ϕ ∨ ψ), (ψ ∨ ϕ) ∈ Φ⊢ (disjunction introduction; (DI))

ϕ,ψ ∈ Φ⊢ =⇒ (ϕ ∧ ψ) ∈ Φ⊢ (conjunction introduction; (CI))

(ϕ ∧ ψ) ∈ Φ⊢ =⇒ ϕ,ψ ∈ Φ⊢ (conjunction elimination; (CE))

(¬ϕ ∨ ψ) ∈ Φ⊢ =⇒ (ϕ → ψ) ∈ Φ⊢ (implication; (IMP))

Finally, Φ ⊢ ϕ denotes ϕ ∈ Φ⊢.

Examples:

• ∅ ⊢ (ϕ ∨ ¬ϕ):

By base case, {ϕ} ⊢ ϕ. Thus, ∅ ∪ {ϕ} = {ϕ} ⊢ (ϕ ∨ ¬ϕ) by dis-
junction introduction (DI). Again, by base case, {¬ϕ} ⊢ ¬ϕ. Hence,
∅ ∪ {¬ϕ} ⊢ (ϕ ∨ ¬ϕ) by disjunction introduction (DI). So, ∅ ⊢ (ϕ ∨ ¬ϕ)
by case distinction (CD).

• {ϕ,¬ϕ}⊢ = PL:

Let ψ ∈ PL be an arbitrary formula. By base case, ¬ϕ,ϕ ∈ {ϕ,¬ϕ,¬ψ}⊢.
Hence, ψ ∈ {ϕ,¬ϕ}⊢ by indirect proof (IP).

• {ϕ} ⊢ ¬¬ϕ:

By base case, {ϕ,¬¬ϕ} ⊢ ¬¬ϕ, i.e., ¬¬ϕ ∈ {ϕ,¬¬ϕ}⊢. Furthermore,
¬¬ϕ ∈ {ϕ,¬ϕ}⊢ = PL. Hence, ¬¬ϕ ∈ {ϕ}⊢ by case distinction (CD).

Proposition 1.13 ⊢ is a closure operator on P(PL), i.e., ⊢ is extensive, increasing, and
idempotent.

The proofs of the following theorems are postponed to Ch. ?? where we prove the same
results in the more general setting of first-order logic. The theorems mentioned here appear
as special cases.

Theorem 1.14 (Correctness theorem) Φ⊢ ⊆ Φ|= for all sets Φ ⊆ PL.

Logic in Computer Science – Lecture Notes

1.4. The compactness theorem for propositional logic 15

In other words, Theorem 1.14 states that everything that can be proven is also true.

Theorem 1.15 (Completeness theorem) Φ|= ⊆ Φ⊢ for all sets Φ ⊆ PL.

In other words, Theorem 1.15 states that everything that is true can also be proven. We
should note that this theorem cannot be proven anymore if one of the rules in Definition
1.12 is omitted.

Both together Theorem 1.14 and 1.15 show that the entailment operator |= and the deriva-
tion operator ⊢ are interchangeable.

Theorem 1.16 Φ|= = Φ⊢ for all sets Φ ⊆ PL.

1.4 The compactness theorem for propositional logic

Lemma 1.17 Let Φ ⊆ PL be a set of propositional formulas, let ϕ ∈ Φ be a propositional
formula. If Φ ⊢ ϕ then Φ0 ⊢ ϕ for some finite subset Φ0 ⊆ Φ.

Proof: The proof is by induction on the structure of the set Φ⊢. Suppose ϕ ∈ Φ⊢.

1. Base case: ϕ ∈ Φ⊢ because ϕ ∈ Φ. Then, ϕ ∈ {ϕ}⊢ and {ϕ} ⊆ Φ is finite.

2. Inductive step: We make case distinctions according to the derivation rules:

• (CD): ϕ ∈ Φ⊢ because ϕ ∈ (Φ ∪ {ψ})⊢ and ϕ ∈ (Φ ∪ {¬ψ})⊢. By inductive
assumption, there are finite sets Ψ1 ⊆ Φ ∪ {ψ} and Ψ2 ⊆ Φ ∪ {¬ψ} such that
ϕ ∈ Ψ⊢

1 and ϕ ∈ Ψ⊢
2 . Define

Φ0 =def (Ψ1 ∪Ψ2) ∩Φ.

So, Φ0 ⊆ Φ is finite and it holds that

ϕ ∈ Ψ⊢
1 ⊆ ((Ψ1 ∩ Φ) ∪ {ψ})⊢ ⊆ (Φ0 ∪ {ψ})⊢

ϕ ∈ Ψ⊢
2 ⊆ ((Ψ2 ∩ Φ) ∪ {ψ})⊢ ⊆ (Φ0 ∪ {¬ψ})⊢

Hence, ϕ ∈ Φ⊢
0 by applying the derivation rule (CD).

• (IP): ϕ ∈ Φ⊢ because ψ,¬ψ ∈ (Φ∪{¬ϕ})⊢. By inductive assumption, there are
finite sets Ψ1,Ψ2 ⊆ Φ ∪ {¬ϕ} such that ψ ∈ Ψ⊢

1 and ¬ψ ∈ Ψ⊢
2 . Again, define

Φ0 =def (Ψ1 ∪Ψ2) ∩Φ.

So, Φ0 ⊆ Φ is finite and it holds that

ψ ∈ Ψ⊢
1 ⊆ ((Ψ1 ∩ Φ) ∪ {¬ϕ})⊢ ⊆ (Φ0 ∪ {¬ϕ})⊢

¬ψ ∈ Ψ⊢
2 ⊆ ((Ψ2 ∩ Φ) ∪ {¬ϕ})⊢ ⊆ (Φ0 ∪ {¬ϕ})⊢

Hence, ϕ ∈ Φ⊢
0 by applying the derivation rule (IP).

version v1.2 as of May 18, 2017

16 Chapter 1. Propositional logic

• (MP), (DI), (CI), (CE), (IMP): Analogously.

This proves the lemma.

Theorem 1.18 (Compactness theorem for propositional logic) Let Φ ⊆ PL be set
of propositional formulas. Then, Φ is satisfiable if and only if each finite subset Φ0 ⊆ Φ
is satisfiable.

Proof: The direction (⇒) holds trivially true. The direction (⇐) is proven by contra-
position. So, suppose Φ is not satisfiable. Then, Φ |= 0 (or any other contradiction). By
Theorem 1.16, Φ ⊢ 0. By Lemma 1.17, there exists a finite set Φ0 ⊆ Φ such that Φ0 ⊢ 0.
Again, by Theoremn 1.16, Φ0 |= 0. Hence, there exists a finite set Φ0 ⊆ Φ that is not
satisfiable. This proves the theorem.

We discuss some consequences of the compactness theorem for locally finite graphs. A
graph G = (V,E) over a finite or countably infinite set of vertices is called locally finite if
each vertex v ∈ V is incident with a finite number of edges in E.

Lemma 1.19 (Kőnig’s lemma) Let T = (V,E) be a locally finite tree rooted at vertex
w ∈ V . If T contains paths of arbitrary length then T contains an infinite path (starting
at w).

Proof: Let T = (V,E) be a locally finite tree rooted at w ∈ V . Without loss of generality,
we consider the tree oriented away from root w (i.e., there is no edge pointing to w and
for all vertices v ∈ V \{w} there is exactly one directed edge (u, v) ∈ E). Define for n ∈ N

Sn =def { v ∈ V | dT (w, v) = n },

where dT (w, v) denotes the length of a shortest (w, v)-path (in fact, the only (w, v)-path)
on T . Since T is locally finite, Sn is finite for all n ∈ N. Furthermore, S0 = {w} and
Sn 6= ∅ since T contains arbitrarily long paths.

An infinite path in T corresponds to some subset W ⊆ V satisfying

• ‖W ∩ Sn‖ = 1 for all n ∈ N and

• if v ∈W and (u, v) ∈ E then u ∈W .

We describe such a set using an infinite set of propositional formulas. We assign a propo-
sitional variable Xv to each vertex v ∈ V , define formulas

αn =def

∨

v∈Sn

Xv (to check for ‖W ∩ Sn‖ ≥ 1)

βn =def

∧

u,v∈Sn
u 6=v

¬(Xu ∧Xv) (to check for ‖W ∩ Sn‖ ≤ 1)

Logic in Computer Science – Lecture Notes

1.4. The compactness theorem for propositional logic 17

and, finally, define the set Φ of formulas as follows:

Φ =def { αn | n ∈ N } ∪ { βn | n ∈ N } ∪ { (Xv → Xu) | (u, v) ∈ E }

It is easily seen that each finite subset Φ0 ⊆ Φ is satisfiable: Let n ∈ N be maximum
subject to an ∈ Φ0 or βn ∈ Φ0. Choose some z ∈ Sn. Then, there exists a (w, z)-path in
T . Consider the assignment I fulfilling I(Xv) = 1 ⇐⇒ v lies on the (w, z)-path. Clearly,
I is model of Φ0. By Theorem 1.18, there exists a model I of Φ. Define W ⊆ V to be the
following vertex set:

W =def { v ∈ V | I(Xv) = 1 }

We conclude thatW corresponds to an infinite path in T : Since αn, βn ∈ Φ, there is exactly
one vertex v ∈W ∩ Sn for all n ∈ N. Moreover, we obtain for v ∈W and (u, v) ∈W

[[Xv → Xu]]
I = 1, [[Xv]]

I = 1; thus, [[Xu]]
I = 1.

Hence, u ∈W . This completes the proof of the lemma.

Kőnig’s lemma is helpful in extending results from finite graphs to locally finite graphs.
As an example, consider Hall’s marriage theorem. A matching M of an undirected, finite
or infinite graph G = (V,E) is a subsetM ⊆ E of edges such that e∩ f = ∅ for all distinct
edges e, f ∈ M . Given a finite or infinite, bipartite graph G = (A ⊎ B,E), a matching
M ⊆ E is perfect for A if and only if each vertex v ∈ A is incident with an edge in M and
each edge e ∈M is incident with a vertex in A, i.e., M covers exactly A.

Theorem 1.20 Let G = (A ⊎ B,E) be a locally finite, bipartite graph. There exists a
matching in G which is perfect for A if and only if ‖S‖ ≤ ‖NG(S)‖ for all subsets S ⊆ A.

Proof: Obviously, we only have to show the direction (⇐). Let G = (A⊎B,E) be a locally
finite, bipartite graph. If A is finite then the statement reduces to the usual Hall’s marriage
theorem. So, let A be countably infinite; without loss of generality, A = {1, 2, . . .} = N+.
In order to apply Lemma 1.19, we define an appropriate tree T = (VT , ET) as follows:

VT =def { M ⊆ E | M is matching of size n covering {1, . . . , n} for some n ∈ N }

ET =def { (M,M ′) | ‖M ′‖ = ‖M‖+ 1 and M ⊆M ′ }

That is, there is an edge between two matchings M and M ′ if M ′ extends M via a new
edge for vertex n+1. Clearly, T is a tree rooted at ∅. Since G is locally finite, T is locally
finite. Moreover, T has paths of arbitrary length. To see this, consider hypothetical
paths of length n starting at the root. All such paths would lead to vertices representing
matchings of size n. The induced graph G[{1, . . . , n} ⊎B] is finite and thus, the existence
of a matching perfect for {1, . . . , n} follows from the usual Hall’s marriage theorem. Hence,
there is a vertex reachable via a path of length n. Now, Lemma 1.19 implies the existence
of a matching perfect for A. This proves the theorem.

Note that the theorem still holds for “one-sided” locally finite, bipartite graphs; it is,
however, not true for arbitrary countably infinite graphs.

version v1.2 as of May 18, 2017

18 Chapter 1. Propositional logic

1.5 Resolution

Resolution is a principle applicable to test if a propositional formula in CNF is not satisfi-
able. As the satisfiability problem for CNF is NP-complete, the resolution principle cannot
lead to a polynomial algorithm for testing non-satisfiability (unless P = NP). Nevertheless,
in many cases it shows an efficient behavior.

For sake of convenience, formulas are identified with sets:

• A clause is a finite set of literals.

• The empty clause is denoted by ✷.

• A set K(ϕ) of clauses is assigned to a given CNF ϕ =
∧n

i=1

∨ni

j=1 Lij :

K(ϕ) =def { { Lij | j ∈ {1, . . . , ni} } | i ∈ {1, . . . , n} }

Note that multiplicities and the ordering of literals and clauses are neglected.

We extend the semantics from formulas to set of clauses. Let I : τ → {0, 1} be an
assignment. For a clause C and a set K of clauses, we define:

[[C]]I = 1 ⇐⇒def [[L]]I = 1 for some literal L ∈ C

[[K]]I = 1 ⇐⇒def [[C]]I = 1 for all clauses C ∈ K

In particular, [[ϕ]]I = [[K(ϕ)]]I for all assignments I. Related notions, such as equivalence
(≡) or satisfiability, translate from formulas to sets. Note that the empty set of clauses is
satisfiable and the empty clause ✷ is not satisfiable.

Definition 1.21 Let C,C1 and C2 be a clauses. Then, C is said to be a resolvent of C1

and C2 if and only if there is a variable X such that X ∈ C1 and ¬X ∈ C2 and it holds
that

C = C1 \ {X} ∪ C2 \ {¬X}.

Example:

• {X1,¬X3,X4} is the resolvent of {X1,¬X2,¬X3} and {X2,X4}.

• {X1,X3,¬X3,X4} and {X1,¬X2,X2,X4} are resolvents of {X1,¬X2,X3}
and {X2,¬X3X4}.

• The clause ✷ is the resolvent of {X1} and {¬X1}.

Lemma 1.22 Let K be any set of clauses and let C1, C2 ∈ K be clauses. Suppose C is a
resolvent of C1 and C2. Then, K ≡ K ∪ {C}.

Logic in Computer Science – Lecture Notes

1.5. Resolution 19

Proof: Let I : τ → {0, 1} be an assignment. Clearly, [[K ∪ {C}]]I = 1 implies [[K]]I = 1.
Now, suppose [[K]]I = 1 and C = C1 \ {X} ∪ C2 \ {¬X}. We have two cases:

1. If [[X]]I = 1 then [[C2 \ {¬X}]]I = 1 (otherwise [[C2]]
I = 0). Thus, [[C]]I = 1.

2. If [[X]]I = 0 then [[C1 \ {X}]]I = 1 (otherwise [[C1]]
I = 0). Thus, [[C]]I = 1.

Hence, [[K ∪ {C}]]I = 1. This proves the lemma.

In the light of the last example above, namely that ✷ is the resolvent of {X1} and {¬X1},
Lemma 1.22 can be iteratively applied to derive the empty clause as a resolvent.

Example: Consider K = { {X1,¬X2}, {¬X3}, {¬X1,¬X2,X3}, {X2,X3} }.
A proof that ✷ is a resolvent can be represented graphically as follows:

{X1,¬X2} {X2,X3} {¬X1,¬X2,X3} {¬X3}

{X1,X3} {¬X1,X3}

{X3}

✷

Hence, K is not satisfiable.

This gives rise to an algorithm for non-satisfiablitiy based on iteratively determining all
resolvents of a set of clause. Let K be any set of clauses. Then,

Res(K) =def K ∪ { C | C is a resolvent of some clauses C1, C2 ∈ K }.

After n iterations the set of clauses is given by

Resn(K) =def Res
(
Resn−1(K)

)
for n > 0; Res0(K) =def K.

In the end, we compute: Res∗(K) =def
⋃

n∈NResn(K)

Proposition 1.23 Let K be a set of clauses. Then, K ≡ Res∗(K).

version v1.2 as of May 18, 2017

20 Chapter 1. Propositional logic

Proof: Inductively apply Lemma 1.22.

Theorem 1.24 (Resolution theorem) Let K be any set of clauses. K is not satisfiable
if and only if ✷ ∈ Res∗(K).

Proof: We prove both directions individually:

• (⇐): ✷ is not satisfiable. Thus, if ✷ ∈ Res∗(K) then Res∗(K) ≡ K is not satisfiable.

• (⇒): Suppose K is not satisfiable. The proof is by induction on the number n of
variables occurring as literals in the clauses of K.

1. Base case n = 0: Thus, either K = ∅ which is satisfiable or K = {✷} which is
not satisfiable. Hence, ✷ ∈ K ⊆ Res∗(K).

2. Inductive step n > 0: Choose a variable X occurring in K. Define the following
two sets of clauses:

K+ =def { C\{¬X} | X /∈ C,C ∈ K }, K− =def { C\{X} | ¬X /∈ C,C ∈ K }

Then, K+ and K− contain only n − 1 variables and both are not satisfiable.
By inductive assumption, ✷ ∈ Res∗(K+) and ✷ ∈ Res∗(K−). That is, there
exist clauses C1, C2, . . . , Cm such that Cm = ✷ and for all i ∈ {1, . . . ,m − 1},
Ci ∈ K+ or Ci is a resolvent of Cj and Ck, where j, k ∈ {1, . . . , i − 1}. Two
cases are possible:

(a) Some clauses Ci are obtained by removing ¬X: When re-inserting ¬X
appropriately, there exists thus a sequence of clauses C ′

1, . . . , C
′
m such that

C ′
m = {¬X} and for all i ∈ {1, . . . ,m− 1}, C ′

i ∈ K and C ′
i is a resolvent of

C ′
j , C

′
k for j, k ∈ {1, . . . , i− 1}.

(b) All clauses Ci are obtained without removing ¬X: That is, Ci ∈ Res∗(K)
for all i ∈ {1, . . . ,m}.

Hence, either {¬X} ∈ Res∗(K) or ✷ ∈ Res∗(K). Analogously, we obtain that
either {X} ∈ Res∗(K) or ✷ ∈ Res∗(K). Since ✷ is the resolvent of {X} and
{¬X}, we conclude ✷ ∈ Res∗(K).

This proves the theorem.

Remark: Using the compactness theorem, Theorem 1.24 can also be proven for countably
infinite sets K of clauses.

Complexity: The complexity of resolution depends on the number of resolvents. Given
n variables, there are at most 22n clauses as candidates for resolvents. Thus, resolution is
an exponential algorithm (but not worse).

Logic in Computer Science – Lecture Notes

1.5. Resolution 21

A set of formulas that actually forces an exponential number of resolvents is known as the
pigeonhole formulas PFn. It is best described by variables organized in matrices filled with
−, +, and blank symbols:

• − at position (i, j) means that ¬Xi,j is in the clause,

• + at position (i, j) means that Xi,j is in the clause, and

• blank at position (i, j) means that Xi,j is neither positively nor negatively contained
in the clause.

PFn corresponds to the set of all n× (n+1)-matrices that have either exactly one column
consisting only of −’s or exactly one row with exactly two +’s.

Example: PF2 consists of the following matrices:

−

−

−

−

−

−

+ + + + + +
+ + + + + +

That is,

PF2 =def { {¬X1,1,¬X2,1}, {¬X1,2,¬X2,2}, {¬X1,3,¬X2,3},

{X1,1,X1,2}, {X1,1,X1,3}, {X1,2,X1,3},

{X2,1,X2,2}, {X2,1,X2,3}, {X2,2,X2,3} }

Note that PFn is not satisfiable: Assume I is a satisfying assignment. So, in each row i
at most one positive literal Xi,j is allowed to be I(Xi,j) = 0. Thus, there are at most
n such variables but there are n + 1 columns. By the pigeonhole principle, there is
a column, i.e., a clause, consisting only of negative literals ¬X1,j, . . . ,¬Xn,j such that
I(X1,j) = · · · = I(Xn,j) = 1. Hence, I cannot be a satisfying assinment for PFn.

Though PFn consists of Θ(n3) clauses, it can be shown that there are cn, c > 1, resolvents
of PFn.

version v1.2 as of May 18, 2017

22 Chapter 1. Propositional logic

Logic in Computer Science – Lecture Notes

Bibliography

[Ben12] Mordechai Ben-Ari. Mathematical Logic for Computer Science. 3rd edition,
Springer, London, 2012.

[EF05] Heinz-Dieter Ebbinghaus, Jörg Flum. Finite Model Theory. 2nd edition,
Springer-Verlag, Berlin, 2005.

[EFT94] Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas. Mathematical Logic.
2nd edition, Springer-Verlag, New York, NY, 1994.

German edition: Einführung in die Mathematische Logik. 5. Auflage, Spektrum
Akademischer Verlag, 2007.

[HR04] Michael Huth, Mark Ryan. Logic in Computer Science. Modelling and Rea-
soning about Systems. 2nd edition, Cambridge University Press, Cambridge,
2004.

[Rau05] Wolfgang Rautenberg. Einführung in die Mathematische Logik. Ein Lehrbuch.
3., überarbeitete Auflage, Vieweg + Teubner, Wiesbaden, 2008.

version v1.2 as of May 18, 2017

24 Bibliography

Logic in Computer Science – Lecture Notes

