UNIVERSITY OF KONSTANZ DEPARTMENT OF COMPUTER & INFORMATION SCIENCE PD Dr. Sven Kosub Complexity Theory Summer 2011

Course Quiz "Complexity Theory"

Name: _

Prename:

MatrNr: _____ Field of study: _____

Hints: Using auxiliary resources is not allowed. Please, first read the questions and problems carefully. Working time is **30 minutes**. Good luck!

Problems	1	2	total
points achievable	15	15	30
points achieved			

Problem 1:

15 points

Consider the language $\mathsf{DW} =_{\operatorname{def}} \{ x \# x \mid x \in \{0,1\}^* \}$. Note that # is a separating symbol not belonging to the alphabet $\{0,1\}$.

Find resource bounds $t : \mathbb{N} \to \mathbb{N}$, as small as possible, such that $\mathsf{DW} \in \Phi(O(t))$, where Φ stands for the following complexity measures:

(a) T-DTIME

- (b) 1-T-DTIME
- (c) 2T-DTIME
- (d) T-NTIME
- (e) coT-NTIME

Hint: Think of $\overline{\mathsf{DW}} \in \operatorname{T-NTIME}(t)$.

Problem 2: Relating space and time classes

Relate the following complexity classes

$\mathrm{DTIME}(2^{O(\log n)}),$	$\mathrm{NSPACE}(2^{O(\log n)}),$	$DSPACE(2^{O(\log n)})$
$\mathrm{NTIME}(2^{O(\log n)}),$	$\operatorname{coNSPACE}(\operatorname{Pol} n),$	$\operatorname{coNTIME}(\operatorname{Pol}n)$

with respect to set inclusion. That is, fill $\subseteq, =, \supseteq$ in the box connecting the row containing class \mathcal{A} and the column containing \mathcal{B} iff $\mathcal{A} \subseteq \mathcal{B}$, $\mathcal{A} = \mathcal{B}$, $\mathcal{A} \supseteq \mathcal{B}$, respectively. Use X in case that you believe that \mathcal{A} and \mathcal{B} are incomparable.

	$\mathrm{NSPACE}(2^{O(\log n)})$	$\mathrm{DSPACE}(2^{O(\log n)})$	$\operatorname{NTIME}(2^{O(\log n)})$	$coNSPACE(Pol \ n)$	$\operatorname{coNTIME}(\operatorname{Pol} n)$
$DTIME(2^{O(\log n)})$					
$\boxed{\text{NSPACE}(2^{O(\log n)})}$					
$DSPACE(2^{O(\log n)})$					
$\operatorname{NTIME}(2^{O(\log n)})$					
coNSPACE(Pol n)					

15 points

Notes. Please indicate the problem you are referring to.