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How Can Extremism Prevail? 1

In order to give an impression on what opinion dynamics is about, we present a case study
based on an article that received some echo in several scientific disciplines:

Guillaume Deffuant, Frédéric Amblard, Gérard Weisbuch, Thierry Faure: How
can extremism prevail? A study on the relative agreement interaction model.
Journal of Artificial Societies and Social Simulation, 5(4), 2002.

The article addresses the question whether it is possible to identify certain parameters and
parameter values that endogeneously govern the distribution of opinions within a human
population. A particular goal is to look for values that allow extreme opinions to dominate
eventually.

The study is representative for a physics-oriented approach to complex networks:

• Methodologically, it employs agent-based modelling. Agent-based modelling uses sim-
plified interaction models and simulations to explore a nonlinear dynamical behavior
of complex systems. Agent-based modelling is applied when kinetic models involv-
ing differential equation systems are inappropriate, e.g., due to the number and the
heterogeneity of variables.

• It explains a complex phenomenon in a stylized, metaphorical fashion.

Apart from the methodological perspective, the concrete, original research motivation for
the study presented lies in the influence “green” farmers have attained in the farming
population.

1.1 The Relative Agreement model

We consider the following formal scenario: A population of n agents is given. An agent i
is characterized by two variables:

• opinion xi ∈ [−1, 1]

• uncertainty ui ∈ [0, 1]

Thus, the actual opinion of the agents ranges in her opinion segment

Si =def [xi − ui, xi + ui],
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2 Chapter 1. How Can Extremism Prevail?

the size of which is (xi + ui)− (xi − ui) = 2ui.

We suppose a directed model of influence where any two agents use a communication chan-
nel. Agent i locally communicates to agent j over her communication channel, possibly
causing changes in opinion and uncertainty of agent j. In this situation, agent i is the
influencer of agent j and agent j is the influenced of agent i.

The effect of a communicative influence is given by an update rule which is assumed to
be the same for all interaction pairs of agents. Figure 1.1 describes a situation of an
interaction pair (i, j).

opinion segment of j

opinion segment of i

overlap hij

non-overlap 2ui − hij

xjxj − uj xj + uj

xi xi + uixi − ui

−1 1

1−1

Figure 1.1: The Relative Agreement model

The update rule is based on the agreement along the opinion segments of agents i and j,
i.e.,

hij − (2ui − hij) = 2(hij − ui),
in relation to the uncertainty of the influencer

2(hij − ui)
2ui

=
hij
ui
− 1.

The formal specification of the update rule is given by defining local transitions:

xj ← xj +

{
µ
(
hij

ui
− 1
)

(xi − xj) if hij ≥ ui
0 otherwise

uj ← uj +

{
µ
(
hij

ui
− 1
)

(ui − uj) if hij ≥ ui
0 otherwise

Here, µ is some decay constant, 0 < µ < 1.

1.2 Dyadic convergence

Proposition 1.1 Let an interaction pair (i, j) be given. Let hij denote the overlap of the
opinion segments of the actors i and j before interaction, and let h′ij denote the overlap
of the opinion segments of the actors i and j after interaction. Then, hij ≤ h′ij.
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1.2. Dyadic convergence 3

Proof: Let (xi, ui) be the opinion/uncertainty pair of actor i, let (xj , uj) be the opin-
ion/uncertainty pair of actor j. According to our update rule, if hij ≤ ui then there are no
changes, neither in the opinions nor in the uncertainties of both actors. That is, h′ij = hij .
So, let hij > ui. Let x′j denote actor j’s opinion after interaction, and let u′j denote actor
j’s uncertainty after interction. More specifically, we have

x′j =
(

1− µ
(
hij
ui
− 1
))

xj + µ

(
hij
ui
− 1
)
xi,

u′j =
(

1− µ
(
hij
ui
− 1
))

uj + µ

(
hij
ui
− 1
)
ui.

The overlap h′ij is given by

h′ij = min(xi + ui, x
′
j + u′j)−max(xi − ui, x′j − u′j).

Note that hij ≤ 2ui. Thus, the update rules define convex combinations. By linearity, we
easily examine the following cases:

1. Suppose xi + ui ≤ xj + uj and xi − ui ≥ xj − uj . Therefore,

xi + ui ≤ x′j + u′j ≤ xj + uj ,

xj − uj ≤ x′j − u′j ≤ xi − ui.

We obtain

hij = xi + ui − (xi − ui),
h′ij = (xi + ui)− (xi − ui) = hij

2. Suppose xi + ui ≤ xj + uj and xi − ui ≤ xj − uj . Therefore,

xi + ui ≤ x′j + u′j ≤ xj + uj ,

xi − ui ≤ x′j − u′j ≤ xj − uj .

We obtain

hij = xi + ui − (xj − uj),
h′ij = (xi + ui)− (x′j − u′j) ≥ (xi + ui)− (xj − uj) = hij

3. Suppose xi + ui ≥ xj + uj and xi − ui ≤ xj − uj . Therefore,

xj + uj ≤ x′j + u′j ≤ xi + ui,

xi − ui ≤ x′j − u′j ≤ xj − uj .

We obtain

hij = xj + uj − (xj − uj),
h′ij = (x′j + u′j)− (x′j − u′j) ≥ (xi + ui)− (xj − uj) = hij
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4 Chapter 1. How Can Extremism Prevail?

4. Suppose xi + ui ≥ xj + uj and xi − ui ≥ xj − uj . Therefore,

xj + uj ≤ x′j + u′j ≤ xi + ui,

xj − uj ≤ x′j − u′j ≤ xi − ui.

We obtain

hij = xj + uj − (xi − ui),
h′ij = (x′j + u′j)− (xi − ui) ≥ (xj + uj)− (xi − ui) = hij

This proves the proposition.

Proposition 1.2 Let the interaction pair (i, j) be given. For k ∈ N, let x(k)
j be actor

j’s opinion after the k-th round of the directed interaction (i, j), and let u(k)
j be actor j’s

uncertainty after the k-th round of the directed interaction (i, j). Then,

lim
k→∞

x
(k)
j = xi, lim

k→∞
u

(k)
j = ui.

Proof: We only prove the convergence in opinions. Since hij ≤ 2ui, we obtain as an
upper bound on the opinion x

(k)
j for k ∈ N+

x
(k)
j ≤ (1− µ)x(k−1)

j + µxi,

and furthermore, by induction,

x
(k)
j ≤ (1− µ)kxj +

(
1− (1− µ)k

)
xi.

Hence, limk→∞ x
(k)
j ≤ xi. For the lower bound, we write

x
(k)
j = (1− µAk−1)x(k−1)

j + µAk−1xi,

where Ak =
h
(k)
ij

ui
− 1 is the relative agreement after the k-th interaction. By Proposition

1.1, it holds that Ak ≤ Ak+1 for all k ∈ N. Thus, we can estimate

x
(k)
j ≥ (1− µA0)x(k−1)

j + µA0xi,

and, again by induction,

x
(k)
j ≥ (1− µA0)kxj +

(
1− (1− µA0)k

)
xi,

Hence, limk→∞ x
(k)
j ≥ xi. This proves the proposition.
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1.3. Extremists 5

1.3 Extremists

In general populations of actors, it is not clear at all whether there is any convergence to a
“stable” opinion/uncertainty pattern over several time steps. If unambiguous convergence
is reachable, there are three important cases: convergence to the opinion poles, either
positive or negative, or convergence to the middle. We are interest in studying convergence
to extreme opinions.

Extremists are people with extreme opinions, i.e., opinions close to the boundaries mea-
sured by −1 and 1. Furthermore, the model of extremists within a population is based on
two observations which are claimed to possess a certain anectodal evidence [7]:

1. “. . . people who have extreme opinions tend to be more convinced,”

2. “. . . people who have moderate initial opinions, often express a lack of knowledge
(and uncertainty).”

A simplification of these observations can be incorporated into the Relative Agreement
model as follows. Let ue be the uncertainties of the extremists, supposed to be small
and the same for all extremists. Let u be the (identical) uncertainty of the moderate.
According to our observations, it holds that u > ue. Then, the population can be initially
decomposed into three classes corresponding to their opinion/uncertainty pairs:

1. positive extremists: xi ≈ 1, ui = ue

2. negative extremists: xi ≈ −1, ui = ue

3. moderates: xi ≈ 0, ui = u

Let pe denote the fraction of extremists, either positive or negative, in the population.
Depending on the fraction of actors belonging to these classes, an extremism bias can
be defined. Let p+ be the fraction of positive extremists, and let p− be the fraction of
negative extremists. Then, the extremism bias δ is given as

δ =
p+ − p−
p+ + p−

The simulation works in two phases:

1. For initalization, (a) choose n opinions uniformly at random from [−1, 1] and set all
n uncertainties to u, (b) for the p+ ·n most positive opinions and p− ·n most negative
opinons, the uncertainties are set to ue.

2. Iteratively choose a pair (i, j) of agents and let agent i exert influence on agent j
according to the specified update rule.
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6 Chapter 1. How Can Extremism Prevail?

The stylized simulation results can be divided into three stable scenarios: central clus-
tering, bipolarization, single polarization. The following figures show diagram schemes
for each of the three scenarios together with parameter settings such that the described
behavior can be observed. The x-axis codes for time, i.e., number of iterations per actor,
and the y-axis codes for opinions. A trajectory of an actor’s opinion over the course of
time runs inside the region bounded by the drawn curves. Common parameters for all
figures (and the simulations) are n = 200, µ = 0.5, δ = 0, and ue = 0.1. The initial
uncertainty parameter u is increased from figure to figure.

In Figure 1.2, the initial uncertainty of the moderates is u = 0.4. It is an example
of central convergence. The majority of the moderate actors are not attracted by the
extreme opinions.

positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 0.4)

−1

1

0

iterations per actor

opinion x

Figure 1.2: Scheme of central convergence.

In Figure 1.3, the initial uncertainty of the moderates is u = 1.2. It is an example of
convergence to both extremes. The initially moderate actors split and become extremists.

positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 1.2)

−1

1

0

iterations per actor

opinion x

Figure 1.3: Scheme of bipolarization.

In Figure 1.4, the initial uncertainty of the moderates is u = 1.4. It is an example
of convergence to one single extreme. In this case, the majority of the population is
attracted by one of the extremes. This behavior can take place even when the number of
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1.3. Extremists 7

initial extremissts is the same at both extremes, which is claimed to have been a priori
unexpected.

positive extremists (ue = 0.1)

negative extremists (ue = 0.1)

moderates (ue = 1.4)

−1

1

0

iterations per actor

opinion x

Figure 1.4: Scheme of single polarization.

version v1.6 as of November 29, 2012



8 Chapter 1. How Can Extremism Prevail?
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Networks 2

2.1 Networks in a Static Perspective

2.1.1 Population

An actor x is any variable with values ranging in a set D called attribute type. If x takes
on a value z ∈ D, then z is called state of x.

Definition 2.1 1. A population X = {x1, . . . , xn} is a finite set of actors x1, . . . xn
with attribute types D1, . . . Dn.

2. A population X = {x1, . . . , xn} with attribute types D1 . . . , Dn is said to be homoge-
neous of attribute type D if D = D1 = · · · = Dn.

In the following we restrict ourselves to homogeneous populations. Therefore we omit the
word “homogeneous.”

Let X = {x1, . . . xn} be a population with attribute type D. A configuration (assignment,
interpretation) is a mapping I : X → D, i.e., a configuration I assigns a state I(x) ∈ D
to each actor x ∈ X. As an alternative notation we also refer to a tuple (z1, . . . , zn) ∈ Dn

such that zi = I(xi) as a configuration.

2.1.2 Structure

The fundamental relation in network analysis is the dyad. A dyad relates two actors of a
population. We use graph theory to describe dyadic structures of populations.

Definition 2.2 Let X = {x1, . . . , xn} be a population of attribute type D.

1. A structure is a set E ⊆ X ×X.

2. The elements of X ×X are called dyads.

3. The elements of a structure E are called edges.

Structures can be directed, undirected, or mixed. They are allowed to have annotations
(weights) with certain attribute types. That is, a structure E may be equipped with a
weight function w : E → A where A is the attribute type.

version v1.6 as of November 29, 2012



10 Chapter 2. Networks

2.1.3 Constraint

Constraints limit the set of possible configurations of populations.

Definition 2.3 Let X = {x1, . . . , xn} be a population of attribute type D. A constraint
on X is any relation R ⊆ Dn.

A configuration I : X → D is said to be admissible with respect to constraint R if and
only if (I(x1), . . . , I(xn)) ∈ R.

Example: We discuss constraints for some populations and structures.

• Let X = {1, 2, 3, 4} be a population of type D = {0, 1}. Let E = Circ4 be
a cycle containing the four actors. Define R to be the following constraint:

R =def { (0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1) }

Then, constraint R corresponds to the set of solution of the following set
of equations:

4 3

1 2 x1 = x4 ⊕ x1 ⊕ x2

x2 = x1 ⊕ x2 ⊕ x3

x3 = x2 ⊕ x3 ⊕ x4

x4 = x3 ⊕ x4 ⊕ x1

Here, ⊕ denotes XOR. Clearly, x1 does not directly depend on x3 and
x2 does not directly depend on x4. All other dependencies between the
variable are represented by an edge in the structure. Later, we will call
such an E interdependence structure for R.
• Again, let X = {1, 2, 3, 4} be a population of type D = {0, 1} and let
E = Circ4 be a cycle containing the four actors. In contrast to the first
example, suppose constraint R is given by the following set of equations:

x1 = x4 ∧ x1 ∧ x2

x2 = x1 ∧ x2 ∧ x3

x3 = x2 ∧ x3 ∧ x4

x4 = x3 ∧ x4 ∧ x1

It is easily seen that in fact, R is empty. Thus, there is no admissible
configuration.
• Let X = {x1, . . . , xn} be a population of type D = R, and let E be

unspecified. Then, R could be defined to be the convex polytope for the
linear inequality constraints A · z ≤ b such that A ∈ Rn×n, b ∈ Rn and
z ≥ 0.

Network Dynamics – Lecture Notes



2.2. Networks in a Dynamical Perspective 11

2.1.4 System

Definition 2.4 Let D be an attribute type. A (homogeneous) system S is a triple
(X,E,R) such that X is a population of attribute type D, E is a structure on X, and
R is a constraint on X.

Example: The triple(
{1, 2, 3, 4},Circ4,

{
(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)

})
as in the example above is a system.

A state of S is any admissible configuration I : X → D.

Note that if R = Dn, where n is the population size, then we omit R in the description of
a system, ie., we write (X,E) instead of (X,E,Dn).

2.2 Networks in a Dynamical Perspective

2.2.1 Process

Definition 2.5 A process P is any infinite sequence (Si)i∈N of systems Si

We also denote a process by P = (Xi, Ei, Ri)i∈N when referring to the components of the
systems.

Basically, we can identify at least three (non-excluding) important subtypes of processes:

• A process of type (Xi, ∅, ∅)i∈N is called a population process.

• A process of type (Xi, Ei, ∅)i∈N is called a structure process.

• A process of type (X,E,Ri)i∈N is called a state process.

In this course, the focus is solely on state processes.

2.2.2 Trajectory

Systems running through a process can take several paths of state changes depending, e.g.,
on initial or environmental conditions. Such paths are called trajectories.

Definition 2.6 Let P = (X,E,Ri)i∈N be any state process with a population of size
‖X‖ = n. A trajectory is an infinite sequence (Ij)j∈N of admissible configurations, i.e.,
(Ij(x1), . . . , Ij(xn)) ∈ Rj for all j ∈ N.

version v1.6 as of November 29, 2012



12 Chapter 2. Networks

The set of possible trajectories of a process (X,E,Ri)i∈N is ×∞i=0Ri and can thus be
uncountable in general, even for a binary attribute type. An overwhelming fraction of
these trajectories is certainly not realistic.

2.2.3 Global State Dynamic

A global (deterministic) state dynamic is a mechanism for selecting trajectories of a state
process.

Definition 2.7 Let P = (X,E,Ri)i∈N be a state process of attribute type D and a popu-
lation of size n.

1. A global state dynamic is a mapping F : Dn × N+ → Dn.

2. A global state dynamic F is said to be compatible with P if F(R0, t) ⊆ Rt for all
t ∈ N.

A global state dynamic F produces the trajectory (I,F(I, 1),F(I, 2), . . . ) depending on
the initial configuration I.

Example: Let P1 = (X,E,R1
i )i∈N and P2 = (X,E,R2

i )i∈N be state processes
of type D = {0, 1}, population X = {1, 2, 3}, structure E = K3, and con-
straints

R1
i =def D3,

R2
i =def { (z1, z2, z3) ∈ D3 | 1 ≤ z1 + z2 + z3 ≤ 2 }.

Consider the following global state dynamics:

F1 : (z1, z2, z3, t) 7→ (1− z1, 1− z2, 1− z3)

F2 : (z1, z2, z3, t) 7→


(z1, z2, 1− z3) if t ≡ 0 mod 3
(1− z1, z2, z3) if t ≡ 1 mod 3
(z1, 1− z2, z3) if t ≡ 2 mod 3

Note that F1 does not depend on parameter t. For h = 5, it produces the
following set of trajectories (the rows of the table):

(z1, z2, z3) F1(z1, z2, z3, 1) F1(z1, z2, z3, 2) F1(z1, z2, z3, 3) F1(z1, z2, z3, 4)
(0, 0, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
(0, 0, 1) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0)
(0, 1, 0) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1)
(0, 1, 1) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)
(1, 0, 1) (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)
(1, 1, 0) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
(1, 1, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

Network Dynamics – Lecture Notes



2.2. Networks in a Dynamical Perspective 13

It is obvious that F1 is compatible with both processes P1 and P2 (for each
choice of h).

In contrast, F2 produces the following set of trajectories for h = 5.

(z1, z2, z3) F2(z1, z2, z3, 1) F2(z1, z2, z3, 2) F2(z1, z2, z3, 3) F2(z1, z2, z3, 4)
(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 0, 0)
(0, 0, 1) (1, 0, 1) (0, 1, 1) (0, 0, 0) (1, 0, 1)
(0, 1, 0) (1, 1, 0) (0, 1, 0) (0, 1, 1) (1, 1, 0)
(0, 1, 1) (1, 1, 1) (0, 1, 1) (0, 1, 0) (1, 1, 1)
(1, 0, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (0, 0, 0)
(1, 0, 1) (0, 0, 1) (1, 0, 1) (1, 0, 0) (0, 0, 1)
(1, 1, 0) (0, 1, 0) (1, 0, 0) (1, 1, 1) (0, 1, 0)
(1, 1, 1) (0, 1, 1) (1, 0, 1) (1, 1, 0) (0, 1, 1)

We observe that F2 is compatible with P1 but is compatible with P2, since,
e.g., F2(0, 1, 1, 1) = (1, 1, 1) /∈ R2

2 although (0, 1, 1) ∈ R2
1.

2.2.4 Local State Dynamic

Definition 2.8 Let P1 = (X,E,Ri)i∈N be a state process of attribute type D and popula-
tion size n.

1. A local transition on X is a mapping f : Dn → D

2. An update schedule on X is a mapping α : N+ → P(X)

3. A local state dynamic an X is a pair (F, α) such that F = {f1, . . . , fn} is a set of
local transitions on X, where fi is associated with actor xi ∈ X, and α is an update
schedule on X.

Example: Consider again P1 and the following two local state dynamics,
given by the same set F = {f1, f2, f3} of local transitions such that for each
i ∈ {1, 2, 3}, z1, z2, z3 ∈ {0, 1}

fi : {z1, z2, z3} 7→
{
zi if z1 + z2 + z3 = 1
1− zi otherwise

and the following two update schedules:

α1 : N+ → P(X) : t 7→ {1, 2, 3}

α2 : N+ → P(X) : t 7→


{3} if t ≡ 0 mod 3
{2} if t ≡ 1 mod 3
{1} if t ≡ 2 mod 3

Schedule α1 is called synchronous as the schedule allows all actors to update
their states in one step in parallel. In contrast, schedule α2 periodically selects
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14 Chapter 2. Networks

exactly one actor in each step for updating. Such a schedule is called sequen-
tial. Sequential updates are usually described by sequences of actors. In our
example, α2 can be written as (2, 1, 3, 2, 1, 3, 2, 1, 3, . . . ) or, due to its periodic
structure, simply by the permutation (tuple) (2, 1, 3).

A local state dynamic induces a global state dynamic.

Definition 2.9 Let P = (X,E,Ri)i∈N be a state process of attribute type D and population
size n. Let (S, α) be a local state dynamic on X.

1. For each actor xi ∈ X and for each subset U ⊆ X of actors, activity function ϕi[U ]
is defined for configuration ~z = (z1, . . . , zn) ∈ Dn by

ϕi[U ](~z) =def

{
fi(z1, . . . , zn) if xi ∈ U
zi if xi /∈ U

2. For each set U ⊆ X, the global transition (function) FS [U ] : Dn → Dn is defined
for configuration ~z = (z1, . . . , zn) by

FS [U ](~z) =def

(
ϕ1[U ](~z), . . . , ϕn[U ](~z)

)
3. The global state dynamic F(S,α) : Dn×N+ → Dn induced by the local state dynamic

(S, α) is defined for t ∈ N+ by

F(S,α)(·, t) =def

(
t∏

k=1

FS [α(k)]

)
(·),

i.e., by the composition of global transitions specified by the update schedule.

Note that f ·g is the function defined by (f ·g)(x) = g(f(x)). The following shall elucidate
the above definition in detail. For t = 3 and ~z ∈ Dn, we have

F(S,α)(~z, 3) =

(
3∏

k=1

FS [α(k)]

)
(~z) =

(
FS [α(1)] ·

3∏
k=2

FS [α(k)]

)
(~z)

=

(
3∏

k=2

FS [α(k)]

)(
FS [α(1)](~z)

)
=
(
FS [α(2)] · FS [α(3)]

)(
FS [α(1)](~z)

)
= FS [α(3)]

(
FS [α(2)]

(
FS [α(1)](~z)

))
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Figure 2.1: Global transition function

Also notice that activity functions and global transition functions do not depend on sched-
ules.

Example: We continue the example of local state dynamics discussed above.
Let U1 = {1, 2} and U2 = {1, 2, 3} be subsets of populations. Then we obtain
the following activity functions:

• ϕ1[U1] = f1, ϕ2[U1] = f2, and ϕ3[U1] = id;

• ϕ1[U2] = f1, ϕ2[U2] = f2, and ϕ3[U2] = f3.

The global transition function looks as follows:

• FS [U1](z1, z2, z3) = (f1(z1, z2, z3), f2(z1, z2, z3), z3); concrete function val-
ues are, e.g.,

FS [U1](1, 1, 1) = (0, 0, 1)

FS [U1](1, 0, 1) = (0, 1, 1)

FS [U1](0, 0, 1) = (0, 0, 1)
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• FS [U2](z1, z2, z3) = (f1(z1, z2, z3), f2(z1, z2, z3), f3(z1, z2, z3); concrete val-
ues are, e.g.,

FS [U2](1, 1, 1) = (0, 0, 0)

FS [U2](0, 0, 0) = (1, 1, 1)

Figure 2.1 visualizes the global transition functions for F = {f1, f2, f3} com-
pletely. The global state dynamic induced by (S, α1) is as follows:

(z1, z2, z3) {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} . . .

(0,0,0) (1,1,1) (0,0,0) (1,1,1) (0,0,0) . . .
(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) . . .
(0,1,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0) . . .
(0,1,1) (1,0,0) (1,0,0) (1,0,0) (1,0,0) . . .
(1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) . . .
(1,0,1) (0,1,0) (0,1,0) (0,1,0) (0,1,0) . . .
(1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) . . .
(1,1,1) (0,0,0) (1,1,1) (0,0,0) (0,0,0) . . .

That is, (S, α1) can generate oscillating trajectories.

The global state dynamic induced by (F, α2) is as follows:

(z1, z2, z3) {2} {1} {3} {2} . . .

(0,0,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0) . . .
(0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) . . .
(0,1,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0) . . .
(0,1,1) (0,0,1) (0,0,1) (0,0,1) (0,0,1) . . .
(1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) . . .
(1,0,1) (1,1,1) (0,1,1) (0,1,0) (0,1,0) . . .
(1,1,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) . . .
(1,1,1) (1,0,1) (0,0,1) (0,0,1) (0,0,1) . . .

We observe that any further update does not change the resulting configura-
tions. Thus, (S, α2) is highly stable as each trajectory reaches a fixed point.

2.3 Network Equivalence

2.3.1 Functional Equivalence

Let (X,E,R) be any state process with population size n = ‖X‖ and attribute type D.
Let L be a set of local transitions with interdependence structure E.

Network Dynamics – Lecture Notes
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A schedule α : N+ → X(= P1(X)) is said to be sequential if and only if

1. α(t) = a(t+ k · n) for all k ∈ N,

2. α is surjective,

3. α(t1) 6= α(t2) for all t1, t2 ∈ {1, . . . , n} such that t1 6= t2.

A sequential schedule can be described by a permutation π : X → X. A local state
dynamic (L,α) over a sequential update schedule α can be written as (L, π), where π is
the permutation that generates α in the sense of the definition above.

Definition 2.10 Let L be a set of local transitions on X, ‖X‖ = n. Let π, π′ : X → X
be a permutation on X. Then, π and π′ are said to be functionally equivalent, π ≡f π

′ in
symbols, if and only if

F(L,π)(·, k · n) = F(L,π′)(·, k · n)

for all k ∈ N+.

Clearly, it is logically equivalent to require the equation F(L,π)(·, n) = F(L,π′)(·, n) for π
and π′ to be functionally equivalent.

A deeper analysis of the notion of functional equivalence is based on update orders given
by permutations. Let X be a population, without loss of generality, X = {1, . . . , n}, let
E be an interdependence structure, and let SX denote the symmetric group of X, i.e.,
the set all permutations π : X → X. For different π, π′ ∈ SX , we say that π and π′ are
adjacent (with respect to (X,E)) if and only if there is a k such that {π(k), π(k+ 1)} /∈ E
and π(i) = π′(i) for i /∈ {k, k + 1}. In other words, π and π′ are adjacent with respect to
(X,E) iff π′ is obtained by swapping consecutive elements, not neighbored in E, in the
permutation order of π.

Proposition 2.11 Let π, π′ ∈ SX be adjacent with respect to (X,E). Let k be such that
{π(k), π(k + 1)} /∈ E and π(i) = π′(i) for all i /∈ {k, k + 1}. Then,

FL[π(k)] · FL[π(k + 1)] = FL[π(k + 1)] · FL[π(k)]

for all sets L of local transition functions with interdependence structure E.

Proof: Since {π(k), π(k + 1)} /∈ E, π(k) is fictive in fπ(k+1) and π(k + 1) is fictive in
fπ(k). That is, we can replace the π(k)-th argument in fπ(k+1) as well as the π(k + 1)-st
argument in fπ(k) arbitrarily. Suppose L is a set of local transitions. Let ~z = (z1, . . . , zn)
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be any configuration. Assume that, without loss of generality, π(k) < π(k + 1). Then,(
FL[π(k)] · FL[π(k + 1)]

)
(~z)

= FL[π(k + 1)]
(
FL[π(k)](~z)

)
= FL[π(k + 1)](z1, . . . , fπ(k)(z1, . . . , zn), . . . , zn)

= (z1, . . . , fπ(k)(z1, . . . , zn), . . . , fπ(k+1)(z1, . . . , fπ(k)(z1, . . . , zn), . . . , zn), . . . , zn)

= FL[π(k)](z1, . . . , fπ(k+1)(z1, . . . , zn), . . . , zn)

= FL[π(k)]
(
F[π(k + 1)](~z)

)
=

(
FL[π(k + 1)] · FL[π(k)]

)
(~z)

This proves the proposition.

Update graph. The update graph (or ugraph, for short) U = U(X,E) consists of vertex
set SX and edge set {(π, π′) | π and π′ are adjacent}

Example: We determine update graph for Circ4, with populationX = {1, 2, 3, 4}.

(0,1,2,3) (1,2,3,0)

(2,3,0,1) (3,0,1,2)

(2,1,3,0) (2,3,1,0)

(0,1,3,2) (0,3,1,2)

(0,2,1,3) (0,2,3,1)

(2,0,1,3) (2,0,3,1)

(3,2,1,0) (2,1,0,3)

(1,0,3,2) (0,3,2,1)

(1,2,0,3) (1,0,2,3)

(1,0,2,3) (1,2,0,3)

(1,3,2,0) (3,1,2,0)

(1,3,0,2) (3,1,0,2)

Based on the update graph, we define an equivalence relation on SX with respect to
U = U(X,E):

π ∼U π′ ⇐⇒def π and π′ are connected by a path in U

Proposition 2.12 Let G = (X,E) be an undirected graph, ‖X‖ = n. Let π, π′ ∈ SX and
let U = U(X,E) be the update graph. If π ∼U π′ then

F(L,π)(·, n) = F(L,π′)(·, n)

for all sets L of local transition functions with interdepence structure E.

Proof: The proof is by induction on the distance d between permutations in the update
graph U = U(X,E). The distance dU (π, π′) is defined to be the length of a shortest path
from π to π′ in U .

• Base of induction: Let d = 0. So, dU (π, π′) = 0, i.e., π = π′.

Network Dynamics – Lecture Notes
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• Induction step: Let dU (π, π′) = dU (π′, π) = d > 0. Let (π0, . . . , πd−1, πd) be a
shortest path in U such that π0 = π′ and πd = π. It follows that πd−1 and πd are
adjacent with respect to U . Thus, there is a k such that {π(k), π(k + 1)} /∈ E and
π(i) = πd−1(i) for all i /∈ {k, k + 1}. We obtain for any set L of local transition
functions and ~z ∈ Dn

F(L,π)(~z, n)

=

 n∏
j=1

FL[π(j)]

 (~z)

=

k−1∏
j=1

FL[π(j)] · FL[π(k)] · FL[π(k + 1)] ·
n∏

j=k+2

FL[π(j)]

 (~z)

=

k−1∏
j=1

FL[π(j)] · FL[π(k + 1)] · FL[π(k)] ·
n∏

j=k+2

FL[π(j)]

 (~z)

(by Proposition 2.11)

=

k−1∏
j=1

FL[πd−1(j)] · FL[πd−1(k)] · FL[πd−1(k + 1)] ·
n∏

j=k+2

FL[πd−1(j)]

 (~z)

=

 n∏
j=1

FL[πd−1(j)]

 (~z)

= F(L,πd−1)(~z, n)

= F(L,π′)(~z, n) (by induction assumption)

This proves the proposition.

We consider the equivalence class [π]U of a permutation π with respect to U = U(X,E),
i.e.,

[π]U =def {π′ | π ∼U π′},

together with the quotient set with respect to the equivalence relation ∼U

SX/ ∼U= {[π]U | π ∈ SX} .

Proposition 2.13 Let G = (X,E) be an undirected graph and let U = U(X,E) be the
update graph. Then, there exists a bijective mapping

fG : SX/ ∼U → Acyc(G),

where Acyc(G) is the set of all acyclic orientations of G.
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Proof: We first construct an appropriate mapping f̃G : SX → Acyc(G). Any permutation
π ∈ SX induces a linear ordering ≤π on X by

i ≤π j ⇐⇒def π(i) ≤ π(j).

Any linear ordering ≤π on X induces an acyclic orientation: for each {i, j} ∈ E set

i→ j ⇐⇒def i <π j

Let f̃G map each permutation to the according orientation. We have to argue that
f̃G(π) = f̃G(π′) for π ∼U π′. It suffices to show f̃G(π) = f̃G(π′) for adjacent permutations
π, π′ (proof of the general case is then by induction): If π and π′ are adjacent, they differ
in exactly two consecutive entries not connected by an edge in E. Thus, f̃G(π) = f̃G(π′).

Now, define fG : SX/ ∼U→ Acyc(G) by fG([π]U ) =def f̃G(π). Observe that fG is injective
(exercise!). It remains to show that fG is surjective. Consider an acyclic orientation of G.
For vertex i ∈ X define the rank of i as follows:

rank(i) =def length of a longest directed path to i
(with respect to the given acyclic orientation)

We should note that rank(i) = rank(j) implies {i, j} /∈ E for i 6= j. We define

H =def {h | rank−1(h) 6= ∅}

and for h ∈ H
rnk−1(h) =def (i1, . . . , imh

),

where rank(ij) = h and ij < ik for j < k. Furthermore, consider[(
rnk−1(0), rnk−1(1), . . . , rnk−1(t)

)]
U

with t = maxH. Then, clearly, fG maps
[(

rnk−1(0), . . . , rnk−1(t)
)]
U

to the given orien-
tation. Thus, fG is surjective. Hence, fG is bijective.

Example: Consider Circ4

[(0, 2, 1, 3)]U 7−→
3 2

0 1

[( 0, 2︸︷︷︸
rnk−1(0)

, 1, 3︸︷︷︸
rnk−1(1)

)]U ←− [
3 2

0 1

1 0

0 1
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Proposition 2.14 For any undirected graph G = (X,E), ‖X‖ = n, and any set L of
local transition functions with interdepence structure E,

‖
{
F(L,π)(·, n) | π ∈ SX

}
‖ ≤ ‖Acyc(G)‖;

and the bound is sharp.

Proof: Using Proposition 2.12 and Proposition 2.13, we obtain the following:∥∥{F(L,π)(·, n) | π ∈ SX
}∥∥ ≤ ‖{[π]U | π ∈ SX}‖ = ‖SX/ ∼U‖ = ‖Acyc(G)‖

Sharpness is left as an exercise. This proves the proposition.

Example: It holds that ‖Acyc(Circn)‖ = 2n − 2, since only two of the 2n

possible orientations of Circn are not acyclic. Thus, there are at most 2n − 2
essentially different local state dynamics on Circn.

How to compute ‖Acyc(G)‖?

Chromatic polynomial. Let G = (V,E) be an undirected graph. A vertex coloring
with k colors 1, . . . , k is a mapping f : V → {1, . . . , k} such that f(u) 6= f(v) if {u, v} ∈ E.
Define PG(k) to be the number of different vertex colorings with k colors ofG. The pausible
choices for the number of colors are 0, 1, . . . , n. Thus, we know the function values of PG
for n + 1 arguments. Hence, there is a uniquely determined normal polynomial (i.e., the
leading coefficient in the expanded form of the polynomial is 1) of degree n which takes on
these specified function values. We identify PG with this polynomial, and we call PG(x)
the chromatic polynomial of graph G.

Example: Let G = Kn. It holds that PG(k) = 0 for k ∈ {0, 1, . . . , n − 1}.
Moreover, PG(n) = n!. Thus, the chromatic polynomial of G is given by

PG(x) =
n−1∏
j=0

(x− j).

Lemma 2.15 Let G,H be undirected graphs.

1. If G is a one-vertex graph, PG(x) = x.

2. PG⊕H(x) = PG(x) · PH(x)

3. PG(x) = PG−e(k)− PG/e(x)

version v1.6 as of November 29, 2012



22 Chapter 2. Networks

Example: Let T be a tree with n vertices. Let u be an arbitrary leaf of T
and e = {u, v} be the edge connecting u with T . Then, it holds

PT (x) = PT−e(x)− PT/e(x)

= PT ′(x) · x− PT ′′(x)
Here, T ′ is a tree with n−1 vertices, T ′′ is a tree with n−1 vertices. Actually,
T ′ ' T ′′. We conclude

PT (x) = PT ′(x) · (x− 1).

By iteration, we obtain PT (x) = x(x− 1)n−1.

Thus, each tree with n vertices has the same chromatic polynomial independent
of its structure. Moreover, a graph G with n vertices is a tree if and only if
PG(x) = x(x− 1)n−1.

Lemma 2.16 Let G be an undirected graph. Suppose there are graphs G1, G2 such that
G = G1 ∪G2 and G1 ∩G2 = Kn. Then,

PG(x) =
PG1(x) · PG2(x)

PKn(x)

Proof: Each vertex coloring f of G corresponds to exactly one pair (f1, f2) of colorings
of G1 and G2 which are identical on Kn. So, let f1 be a k-coloring of G1. Then, there
are PG2(k)/PKn(k) k-colorings of G2 which are identical on Kn with f1. This proves the
lemma.

Example: We want to compute, once more, the chromatic polynomial for Kn.
We start with the following recursion:

PKn(x) = PKn−e(x)− PKn/e(x)

=
PKn−1(x)2

PKn−2(x)
− PKn−1(x)

=
PKn−1(x)
PKn−2(x)

(PKn−1(x)− PKn−2(x))

By induction we can prove that Pkn(x) = xn:

• Base of induction: We have two case here, n ∈ {1, 2}: PK1(x) = x = x1

and PK2(x) = x(x− 1) = x2.
• Induction step: For n > 2, we have

PKn(x) =
xn−1

xn−2 ·
(
xn−1 − xn−2

)
(by induction assumption)

= (x− (n− 1) + 1) · xn−2 · ((x− (n− 1) + 1)− 1)

= xn−2 · (x− (n− 2)) · (x− (n− 1))

= xn
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We give a different interpretation of PG(x).

Proposition 2.17 Let G = (V,E) be an undirected graph. Then, PG(k) is equal to the
numbers of pairs (f,O) where f : V → {1, . . . , k} and O is an orientation of G such that

1. the orientation O is acyclic,

2. if u→ v in orientation O then f(u) > f(v).

Proof: Consider a pair (f,O) satisfying (i), (ii). From (ii) it follows that f(u) 6= f(v)
for {u, v} ∈ E. Thus, f is a vertex coloring with k colors. Moreover, (ii) implies (i).
Conversely, if f is a vertex coloring with k colors then f defines a unique acyclic orientation
O by u → v if and only if f(u) > f(v). Hence, the number of allowed pairs (f,O) is the
number of vertex colorings with colors 1, . . . , k and is, thus, PG(k).

Proposition 2.17 suggests the following modification: Let G = (V,E) be an undirected
graph and let k ∈ {1, . . . , n} where n = ‖V ‖. Define PG(k) to be the number of pairs
(f,O) where f : V → {1, . . . , k} and O is an orientation of G such that:

1. the orientation O is acyclic,

2. if u→ v in orientation O then f(u) > f(v).

We say that the function f is compatible with O if f satisfies the second conditions.

Lemma 2.18 Let G,H be undirected graphs.

1. If G is one-vertex graph then PG(x) = x.

2. PG⊕H(x) = PG(x) · PH(x)

3. PG(x) = PG−e(x) + PG/e(x) for any e ∈ E

Proof: The first two statements are obvious.

In order to show the third statement, let f : V → {1, . . . , k} be a mapping and let O be
an acyclic orientation of G−e compatible with f , where e = {u, v} ∈ E. Let O1 be the
orientation of G obtained by adjoining u→ v to O, and O2 that is obtained by adjoining
v → u to O. We show that for each pair (f,O) exactly one of O1 and O2 is an acyclic
orientation compatible with f , except for PG/e(k) of the pairs, in which case both O1 and
O2 are acyclic orientations compatible with f . Thus, PG−e(k) = PG(k) − PG/e(k). We
consider the following three cases:

• If f(u) > f(v) then O2 is not compatible with f while O1 is compatible. Moreover,
O1 is acyclic, since if u→ v → w1 → w2 → · · · → u were a directed cycle in O1, we
would have f(u) > f(v) ≥ f(w1) ≥ f(w2) ≥ · · · ≥ f(u), which is a contradiction.
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• If f(u) < f(v) then we can argue symmetrically to the first case.

• If f(u) = f(v), both O1 and O2 are compatible with f . Then, at least one of
them is acyclic; if not: O1 contains a cycle u → v → w1 → w2 → · · · → u and
O2 contains a cycle v → u → w′1 → w′2 → · · · → v. Hence, O contains a cycle
v → w1 → w2 → · · · → u→ w′1 → w′2 → · · · → u which is not possible.

It remains to prove that O1 and O2 are acyclic for exactly PG/e(k) pairs (f,O) with
f(u) = f(v). Define Φ(f,O) =def (f ′, O′) such that f ′ : V (G/e) → {1, . . . , k} (note that
f(u) = f(v)) and O′ is an acyclic orientation of G/e compatible with f ′. Let z be the
vertex obtained by identifying u and v. Define f ′ to be the following function:

f ′(w) =def

{
f(w) if w ∈ V \ {u, v}
f(u) if w = z

Define O′ by w1 → w2 in O′ if and only if w1 → w2 in O. Then, Φ is a bijection. This
proves the proposition.

Theorem 2.19 (Stanley 1973) For each graph G = (V,E) such that ‖V ‖ = n,

PG(x) = (−1)nPG(−x).

Proof: Using the recursive rules according to Lemma 2.18 and Lemma ??, we prove the
statement by induction on the number n of vertices.

• Base of induction: Let n = 1. Then, PG(x) = x = (−1)1(−x) = (−1)1PG(−x).

• Induction step: Suppose n > 1. Again, we argue inductively, in this case however,
on the number of edges. For the base of induction, let G be the empty graph on n
vertices. Then, PG(x) = xn = (−1)n(−x)n = (−1)nPG(−x). For the induction step,
suppose ‖E‖ ≥ 1. Then, for some edge e ∈ E

PG(x) = PG−e(x) + PG/e(x)

= (−1)n PG−e(−x) + (−1)n−1 PG/e(−x)

= (−1)n
(
PG−e(−x)− PG/e(−x)

)
= (−1)n PG(−x)

This proves the theorem.

Corollary 2.20 ‖Acyc(G)‖ = (−1)n PG(−1).
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Proof: It holds that ‖Acyc(G)‖ = PG(1) = (−1)n PG(−1).

Example: We want to compute ‖Acyc(Circn)‖ for n ≥ 3. First, we prove that
PCircn(x) = (x− 1)n + (−1)n(x− 1) by induction on n ≥ 3.

• Base of induction: For n = 3, we calculate

PCirc3(x) = x(x− 1)(x− 2)

= x3 − 3x2 + 2x

= x3 − 3x2 + 3x− 1− (x− 1)

= (x− 1)3 + (−1)3(x− 1)

• Indution step: For n > 3, we calculate

PCircn(x) = PCircn−e(x)− PCircn/e(x)

= x(x− 1)n−1 −
(
(x− 1)n−1 + (−1)n−1(x− 1)

)
= (x− 1)n(x− 1)− (−1)n−1(x− 1)

= (x− 1)n + (−1)n(x− 1)

Now, from Corollary 2.20, we obtain ‖Acyc(Circn)‖ = 2n − 2 by considering
two distinctive cases:

• If n is even then PCircn(1) = PCircn(−1) = 2n − 2

• If n is odd then PCircn(1) = −PCircn(−1) = − (−2n − (−2)) = 2n − 2

Proposition 2.21 Unless P = NP, there is no algorithm for computing the number of
acyclic orientations of a given graph with n vertices, which runs in time polynomial in n.

2.3.2 Black-Box Equivalence

Want to extend functional equivalence to arbitrary (periodic) local state dynamics, i.e., to
arbitrary (periodic) schedules.

Definition 2.22 . Let G = (X,E) be an undirected graph. Let α : {1, . . . , T} → P(X)
and α′ : {1, . . . , T ′} → P(X) be update schedules having period lengths T, T ′ ∈ N+. Then,
we say that α and α′ are black-box equivalent, in symbols α ≡bb α′, if and only if for
all attribute types D and all sets L of local transition functions with attribute type D and
interdependence structure E,

F(L,α)(·, T ) = F(L,α′)(·, T ′).
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Note that for all permutations π, π′, it holds that π ∼U(X,E)π′⇐⇒ π ≡bb π
′.

In the following, we want to determine in a certain sense “best” simulations (according to
≡bb) for serial update schedules, i.e., schedules α : {1, . . . , T} → X. The case for arbitrary
schedules is still open.

Network Dynamics – Lecture Notes



Mathematical Tools A

In this chapter we discuss relevant terminology and notation for sets, relations, and graphs,
some fundamental algorithms, and a few other mathematical preliminaries.

A.1 Sets and relations

We denote the set of integers by Z, the set of non-negative integers by N, and the set of
positive integers by N+. Z2 denotes the Galois field GF[2].

Sets

The empty set is denoted by ∅. For an arbitrary set A, P(A) denotes the power set of A,
i.e., the family of all subsets of A, and P+(A) denotes the set P(A)\{∅}. For an arbitrary
finite set A, its cardinality is denoted by ‖A‖. Let A and B be any sets. Then A \ B
denotes the difference of A with B, i.e., the set of all elements that are in A but not in B.
A×B denotes the cartesian product, i.e, the set of all pairs (a, b) with a ∈ A and b ∈ B.
For m ∈ N+, define Am =def A× · · · ×A︸ ︷︷ ︸

m times

. Let M be any fixed basic set. For a set

A ⊆M , its complement in the basic set M is denoted by A, i.e., A = M \A. A multiset A
is allowed to contain elements many times. The multiplicity of an element x in a multiset
A is the number of occurrences of x in A. The cardinality of a multiset A is also denoted
by ‖A‖.

Functions

Let M and M ′ be any sets, and let f : M → M ′ by any function. The domain of f
which we denote by Df is the set of all x ∈ M such that f(x) is defined. A function f
is total if the domain of f is M . For a set A ⊆ Df , let f(A) = {f(x) | x ∈ A} denote
the image of A under f . In particular, the range of f which is denoted by Rf is the set
f(Df ). For a set A ⊆ M , the restriction of a total function f to A is denoted by f [A].
The inverse of f is denoted by f−1, i.e, f−1 : M ′ → P(M) such that for all y ∈ M ′,
f−1(y) = {x ∈ M | f(x) = y}. If f−1(y) is at most a singleton then we omit the braces.
The pre-image of A under f is the set f−1(A) = {x ∈M | f(x) ∈ A}.

We use two notations for composition of functions. If f and f ′ are functions with
f : M → M ′ and f ′ : M ′ → M ′′, then (f ′ ◦ f) is the function mapping from M to
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M ′′ which is defined for all x ∈M as (f ′ ◦ f)(x) =def f ′(f(x)). In contrast, we use f · f ′
to denote f ′ ◦ f .

A function f : M → M ′ is bijective if f is surjective, i.e., Rf = M ′ and injective, i.e., for
all y ∈ Rf , f−1(y) is a singleton. Suppose M ′ = M and M is finite. In this case a bijective
function f is a permutation. Suppose M = {1, 2, . . . , n}. A cycle (i1 i2 . . . ik) of length
k of the permutation π : M → M is a sequence (i1, i2, . . . , ik) such that π(ij) = ij+1 for
1 ≤ j < k and π(ik) = i1. Each permutation allows a decomposition into cycles.

Orders

In more detail the following can be found in any textbook (e.g., [18, 5]) about theory of
orders and lattices.

Let P be any set. A partial order on P (or order, for short) is a binary relation ≤ on P
that is reflexive, antisymmetric, and transitive. The set P equipped with a partial order
≤ is said to be a partially ordered set (for short, poset). Usually, we talk about the poset
P . Where it is necessary we write (P,≤) to specify the order. A poset P is a chain if
for all x, y ∈ P it holds that x ≤ y or y ≤ x (i.e., any two elements are comparable with
respect to ≤). Such an order is also called a total order. A poset P is an antichain if for
all x, y ∈ P it holds that x ≤ y implies that x = y (i.e., no two elements are comparable
with respect to ≤).

We consider N to be ordered by standard total order on the natural numbers. If a set A
is partially ordered by ≤ then Am can be considered to be ordered by the vector-ordering,
i.e., (x1, . . . , xm) ≤ (y1, . . . , ym) if and only if for all i ∈ {1, . . . ,m}, xi ≤ yi.

An important tool for representing posets is the covering relation ≺. Let P be a poset
and let x, y ∈ P . We say that x is covered by y (or y covers x), and write x ≺ y, if x < y
and x ≤ z < y implies that x = z. The latter condition is demanding that there be no
element z of P with x < z < y. A finite poset P can be drawn in a diagram consisting of
points (representing the elements of P ) and interconnecting lines (indicating the covering
relation) as follows: To each element x in P associate a point P (x) in the picture which is
above all points P (y) associated to elements y less than x, and connect points P (x) and
P (y) by a line if and only if x ≺ y. A poset can have different representation by diagrams.

Let P and P ′ be posets. A map ϕ : P → P ′ is said to be monotone (or order-preserving)
if x ≤ y in P implies ϕ(x) ≤ ϕ(y) in P ′. We say that ϕ is an (order-)isomorphism if ϕ
is monotone, injective, and surjective. Two posets P and P ′ are isomorphic, in symbols
P ∼= P ′, if there exists an isomorphism ϕ : P → P ′. Isomorphic poset shall be considered
to be not essentially different: Two finite posets are isomorphic if and only if they can be
drawn with identical diagrams.

Words
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Sometimes we make no difference between m-tuples (x1, . . . , xm) over a finite set M and
words x1 . . . xm of length m over M . Such finite sets are called alphabets. Let Σ be a
finite alphabet. Σ∗ is the set of all finite words that can be built with letters from Σ. For
x, y ∈ Σ∗, x · y (or xy for short) denotes the concatenation of x and y. The empty word is
denoted by ε. For a word x ∈ Σ∗, |x| denotes the length of x. For n ∈ N, Σn is the set of
all words x ∈ Σ∗ such that with |x| = n. For a word x = x1 . . . xn ∈ Σ∗ any word x1 . . . xk
such that k ≤ n is called a prefix of x. We use regular expressions to describe subsets of
Σ∗ (see, e.g., [21]).

A.2 Graph theory

A graph G = (V,E) consists of a set V of vertices and a set E of edges joining pairs
of vertices. The vertex set and edge set of a graph G are denoted by V (G) and E(G),
respectively. The cardinality of V is usually denoted by n, the cardinality of E by m. If
two vertices are joined by an edge, they are adjacent and we call them neighbors. Graphs
can be undirected und directed. In undirected graphs, the order in which vertices are
joined is irrelevant. An undirected edge joining vertices u, v ∈ V is denoted by {u, v}. In
directed graphs, each directed edge has an origin and a destination. An edge with origin
u ∈ V and destination v ∈ V is represented by an ordered pair (u, v). For a directed graph
G = (V,E), the underlying undirected graph is the undirected graph with vertex set V
that has an undirected edge between two vertices u, v ∈ V if (u, v) or (v, u) is in E.

Multigraphs

In both undirected and directed graphs, we may allow the edge set E to contain the same
edge several times, i.e., E can be a multiset. If an edge occurs several times in E, the
copies of that edge are called parallel edges. Graphs with parallel edges are also called
multigraphs. A graph is called simple, if each of its edges in contained in E only once, i.e.,
if the graph does not have parallel edges. An edge joining a vertex to itself, is called a
loop. A graph is called loopless if it has no loops. In general, we assume all graphs to be
loopless unless specified otherwise.

Degrees

The degree of a vertex v in an undirected graph G = (V,E), denoted by dv, is the number
of edges in E joining v. If G is a multigraph, parallel edges are counted according to their
multiplicity in E. The set of neighbors of v is denoted by N(v). N0(v) denotes the vertex
set N(v) ∪ {v}. If the graph under consideration is not clear from the context, these
notations can be augmented by specifying the graph as an index. For example, NG(v)
denotes the neighborhood of v in G.
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Subgraphs

A graph G′ = (V ′, E′) is a subgraph of the graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
Sometimes we denote this by G′ ⊆ G. It is a (vertex-)induced subgraph if E′ contains all
edges e ∈ E that join vertices in V ′. The induced subgraph of G = (V,E) with vertex set
V ′ ⊆ V is denoted by G[V ′]. The (edge-)induced subgraph with edge set E′ ⊆ E, denoted
by G[E′], is the subgraph G′ = (V ′, E′) of G, where V ′ is the set of all vertices in V that
are joined by at least one edge in E′.

Walks, paths, and cycles

A walk from x0 to xk in a graph G = (V,E) is a sequence x0, e1, x1, e2, x2, . . . , xk−1, ek, xk
alternating between vertices and edges of G, where ei = {xi−1, xi} in the undirected case
and ei = (xi−1, xi) in the directed case. The length of a walk is the number of edges on
the walk. As shorthands we use (x0, x1, . . . , xk) and (e1, e2, . . . , ek) to denote a walk. The
walk is called a path if xi 6= xj for i 6= j. A walk with x0 = xk is called a cycle if ei 6= ej
for i 6= j. A cycle is a simple cycle if xi 6= xk for 0 ≤ i < j ≤ k − 1.

Special graphs

A tree is a connected (for a definition see below) undirected graph not containing a cycle.
An undirected graph G = (V,E) is called complete if it contains all possible pairs of
vertices as edges. A complete graph with n vertices is denoted by Kn. A Kn is called a
clique. A K2 is a graph of two vertices with one edge joining them. A K3 is also called
a triangle or triad. A graph without edges is called empty. An independent set within a
graph G = (V,E) is a vertex set U ⊆ V such that G[U ] is empty. A graph G = (V,E)
is called bipartite if there are independent vertex sets V1, V2 ⊆ V such that V1 and V2 are
disjoint and V1∪V2 = V . We denote by E(V1, V2) the set of edges joining vertices from V1

with vertices from V2. If E(V1, V2) = V1 × V2 then G is called a complete bipartite graph.
Such a graph is denoted by Kn1,n2 if V1 consists of n1 vertices and V2 of n2 vertices. A
K1,n is also called a star. For two graphs G = (V,E) and G′ = (V ′, E′) we denote by
G⊕G′ the graph consisting of the disjoint union of the graphs G and G′.

Graph classes

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic, denoted by G ' G′, if there is a
bijective mapping ϕ : V → V ′ such that for all vertices u, v ∈ V the following is true: in the
case that G and G′ are directed graphs it holds that (u, v) ∈ E ⇔ (ϕ(u), ϕ(v)) ∈ E′, and in
the case that G and G′ are undirected graphs it holds that {u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ E′.
A set of graphs is called a graph class if for each graph G in the class all graphs isomorphic
to G belong to the class as well.
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A.3 Algorithmics

Most results of this work relate to algorithms. In the following we mention essential
problems and concepts which are needed more than once.

For two functions f : N→ N and g : N→ N we say that f is in O(g) if there are constant
n0, c ∈ N+ such that for all n ≥ n0, f(n) ≤ c · g(n). We say that f is in Ω(g) if g is in
O(f). We say that f is in Θ(g) if f is in O(g) ∩ Ω(g).

Connected components

An undirected graph G = (V,E) is connected if every vertex can be reached from every
other vertex, i.e., if there is a path from every vertex to every other vertex. A graph
consisting of a single vertex is also taken to be connected. Graphs that are not connected
are called disconnected. For a given undirected graph G = (V,E), a connected component
of G is an induced subgraphs G′ = (V ′, E′) that is connected and maximal, i.e., there is
no connected subgraph G′′ = (V ′′, E′′) such that V ′′ ⊃ V ′. Checking whether a graph is
connected and finding all its connected components can be done in time O(n+m) using
depth-first search or breadth-first search.

A directed graph G = (V,E) is strongly connected if there is a directed path from every
vertex to every other vertex. A strongly connected component of a directed graph G is
an induced subgraph that is strongly connected and maximal. The strongly connected
components of a directed graph can be computed in time O(n + m) using a depth-first
search.

NP-completeness

It is important to consider the running-time of an algorithm for a given problem. Usually,
one wants to give an upper bound on the running time of the algorithm for inputs of a
certain size. If the running-time of an algorithm is O(nk) for some k ∈ N and for inputs
of size n, we say that the algorithm runs in polynomial time. For graph problems, the
running-time is usually specified as a function of n and m, the number of vertices and edges
of the graph, respectively. For many problems, however, no polynomial-time algorithm
has been discovered. Although one cannot rule out the possible existence of polynomial-
time algorithms for such problems, the theory of NP-completeness provides means to give
evidence for the computational intractability of a problem.

A decision problem is in the complexity class NP if there is a nondeterministic Turing
machine that solves the problem in polynomial time. That is to say that the answer to
a problem instance is “yes” if there exists a solution in the set of all possible solutions to
the instance which is of polynomial size. Moreover, the test whether a potential solution
is an actual solution must be performed in polynomial time. Note that a decision problem
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is usually considered to consist of the set of the “yes”-instances. A decision problem is
NP-hard if every problem in NP can be reduced to it via a polynomial-time many-one
reduction. (A polynomial-time many-one reduction from a set A to a set B is a function
computable in polynomial time such that for all instances x, x ∈ A⇔ f(x) ∈ B.) Problems
that are NP-hard and belong to NP are called NP-complete. A polynomial-time algorithm
for an NP-hard problem would imply polynomial-time algorithms for all problems NP—
something that is considered very unlikely. Therefore, the NP-hardness of a problem is
considered substantial evidence for the computational difficulty of the problem.

A standard example of an NP-complete problem is 3SAT, i.e., checking whether a given
propositional formula given as a 3CNF has a satisfying assignment. To be more precise, a
kCNF is a formula H = C1 ∧ · · · ∧Cm consisting of clauses Ci each of which has the form
Ci = li1 ∨ li2 ∨ · · · ∨ lik where lij is either a positive or a negative literal. A positive literal
is some variable, say xk, and a negative literal is the negation of some variable, say xk.

The class of complements of NP sets is denoted by coNP, i.e., coNP = {A|A ∈ NP}.

For optimization problems (where the goal is to compute a feasible solution that maxi-
mizes or minimizes some objective function), we say that the problem is NP-hard if the
corresponding decision problem (checking whether a solution with objective value better
than a given value k exists) is NP-hard.

#P-completeness

A complexity class closely related to NP is the class #P which has been introduced in
[34, 33] to provide evidence for the computational intractability of counting problems.
The class #P consists of all problems of the form “compute f(x)” where f(x) is the
number of accepting paths of a nondeterministic Turing machine running in polynomial
time. Equivalently, a #P-functions counts the number of solutions to instances of an
NP-problem. We say that a function f is #P-complete if it belongs to #P and every
function g ∈ #P is polynomial-time Turing reducible to f , i.e., g can be computed by a
deterministic polynomial-time Turing machines which is allowed to make queries to f and
answering these queries is done within one step (see, e.g., [21, 20]). The canonical example
of a #P-complete problem is #3SAT, i.e., counting the number of satisfying assignments
of a propositional formula given as a 3CNF. One of the most prominent #P-complete
problem is counting the number of perfect matchings in a bipartite graph [33]. As in
the case of NP, if there is a polynomial-time algorithm for computing some #P-complete
function from #P then there are polynomial-time algorithms for all #P-functions—which
is equally considered unlikely. In particular, such a polynomial-time algorithm would
imply that P = NP.

[]
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