Assignment 1

Ausgabe: 21 Oct 2015 Abgabe: 28 Oct 2015

Problem 1: Relative Agreement model

Complete the proof of Proposition 1.1 in Chapter: An example of social influence: Relative agreement of the lecture notes.

Problem 2: Relative Agreement model

Let $A=\{1, \ldots, n\}$ be a set of agents. Given opinions $x=\left(x_{1}, \ldots, x_{n}\right)$ and uncertainties $u=\left(u_{1}, \ldots, u_{n}\right)$ for all agents, the (directed) actual influence graph graph $G(x, u)=(V, E)$ is given by $V={ }_{\text {def }} A$ and $E==_{\operatorname{def}}\left\{(i, j) \mid h_{i j} \geq u_{i}\right\}$ where $h_{i j}$ denotes the overlap of the opinion segments of distinct agents $i, j \in A$.

Suppose we are given six agents, i.e., $A=\{1,2,3,4,5,6\}$, together with the following opinion/uncertainty pairs $\left(x_{i}, u_{i}\right)$:

$$
\begin{array}{lll}
\left(x_{1}, u_{1}\right)=(0.7,0.3), & \left(x_{2}, u_{2}\right)=(0.3,0.2), & \left(x_{3}, u_{3}\right)=(0.1,0.6) \\
\left(x_{4}, u_{4}\right)=(-0.1,0.2), & \left(x_{5}, u_{5}\right)=(-0.3,0.6), & \left(x_{6}, u_{6}\right)=(-0.8,0.2)
\end{array}
$$

For the sake of simplicity, we set the decay constant $\mu=1$.
(a) Determine the actual influence graph $G(x, u)$.
(b) Determine the actual influence graph $G\left(x^{\prime}, u^{\prime}\right)$ where x^{\prime} and u^{\prime} are the opinions and uncertainties of all agents after an interaction $(3,5)$ according to the update rules of the Relative Agreement model.

Problem 3: Relative Agreement model

Prove or disprove the following statement for actual influence graphs (defined in Problem 2):

Suppose an actual influence graph $G(x, u)$ for a set A of agents consists of two weakly connected components. Then, there is no interaction pair (i, j) such that, after the interaction, the actual influence graph $G\left(x^{\prime}, u^{\prime}\right)$ consists of a single weakly connected component.

