Assignment 4

Ausgabe: 11 Nov 2015 Abgabe: 18 Nov 2015

Problem 1: Orbits

Let $A \in \mathbb{R}^{2 \times 2}$ be a matrix of the following type:

$$A =_{\operatorname{def}} \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, \qquad a, b \in \mathbb{R}$$

Consider the function $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2 : x \mapsto A \cdot x$ (which depends on concrete choices of a, b).

Find all pairs (a, b) of values $a, b \in \mathbb{R}$ such that the orbits of (-1, 1) and (1, 1) under **F** are disjoint.

Problem 2: Fixed points

We consider the threshold model of collective behavior. Let $A = \{1, ..., n\}$ be a population with individual thresholds $t_1 \leq t_2 \leq \cdots \leq t_n$. We define $\mathbf{F} : \{0, 1\}^A \to \{0, 1\}^A$ to be that mapping that is component-wise given as follows:

$$\mathbf{F}(r)_i =_{\text{def}} \begin{cases} 1 & \text{if } \sum_{j \in A \setminus \{i\}} r_j \ge t_i \\ 0 & \text{otherwise} \end{cases}$$

We may assume that all thresholds lie between 0 and n-1. We additionally define $t_0 =_{def} -1$ and $t_{n+1} =_{def} n+1$. We say that there is a gap at k if and only if $t_k < k$ and $t_{k+1} \ge k+1$.

Prove or disprove the following statement:

Let $r = (r_i)_{i \in A} \in \{0, 1\}^A$ satisfy that if $r_i = 1$ and $r_j = 0$ then i < j. Let $|r|_1$ denote the number of 1's in r. Then,

r is a fixed point of $\mathbf{F} \iff$ there is a gap at $|r|_1$

Problem 3: Basins of attraction

Let $\mathbf{F} : J \to J$ be a total map on a finite set J. Consider the following two definitions for some non-empty set $E \subseteq J$:

- E is said to be a *weak invariant set* of **F** if and only if $\mathbf{F}(E) \subseteq E$.
- E is said to be a strong invariant set of **F** if and only if $\mathbf{F}^{k}(E) \subseteq E$ for all $k \in \mathbb{N}$.

Which type of an invariant set—weak or strong—provides a guarantee for containment of an attractor? Prove your hypothesis.